·論著·
肽核酸鉗制-PCR檢測K-ras突變法的陽性判斷閾值及檢測下限的研究
丁佳寅高軍李泉江金晶吳洪玉滿曉華李兆申
【摘要】目的確定肽核酸鉗制-PCR(PNA-PCR)檢測K-ras突變的陽性判斷閾值(Cut off)和檢測下限。方法將含K-ras基因 12或13密碼子突變的胰腺癌細(xì)胞株P(guān)ANC1、SW1990基因組DNA以不同的濃度分別與K-ras野生型的胎盤DNA混合配制成含不同突變率(0、0.1%、0.2%、0.4%、0.8%、1.6%、3.1%、6.25%、12.5%、25%、50%)的樣本,并制備1%突變率PANC1細(xì)胞及30%突變率SW1990細(xì)胞DNA總量分別為50、20、5、1 ng和50、10、5、1 ng的樣本。應(yīng)用PNA-PCR方法檢測樣本中的K-ras基因12、13密碼子突變,收集它們的突變Ct值、總體Ct值,并計算出ΔCt值(突變Ct值-總體Ct值)。實驗重復(fù)10次。采用受試者工作特征(ROC)曲線分析ΔCt值,確定K-ras基因突變的最適Cut off值,計算診斷陽性率及確定診斷下限。結(jié)果所有不同突變率的PANC1細(xì)胞12密碼子突變以及SW1990細(xì)胞13密碼子突變的突變Ct值及ΔCt值與陰性對照樣本的差異均有統(tǒng)計學(xué)意義(P值均<0.05),而總體Ct值與陰性對照樣本的差異無統(tǒng)計學(xué)意義。診斷K-ras基因12密碼子突變的ROC曲線下面積(AUC)為0.926,最適Cut off值為11,相應(yīng)的敏感度和特異度為84%和100%,檢出下限為0.4 ng;診斷K-ras基因13密碼子突變的AUC為0.906,最適Cut off值為9.5,相應(yīng)的敏感度和特異度為71%和100%,檢測下限為1.5 ng。固定突變率的檢測結(jié)果進(jìn)一步確定上述的檢測下限。結(jié)論成功確立了PNA-PCR法檢測K-ras基因12、13密碼子突變的Cut off值和檢測下限,達(dá)到臨床應(yīng)用的要求。
【關(guān)鍵詞】K-ras基因;突變;肽核酸類;聚合酶鏈反應(yīng)
DOI:10.3760/cma.j.issn.1674-1935.2015.01.008
基金項目:國家自然科學(xué)基金重大國際合作項目(30910103911),上海市重點科技攻關(guān)項目(11441901800)
收稿日期:(2014-10-31)
Identification of cut off value and lower limit of detection for K-ras mutation by PNA-PCR clamping methodDingJiayin,GaoJun,LiQuanjiang,JinJing,WuHongyu,ManXiaohua,LiZhaoshen.DepartmentofGastroenterology,ChanghaiHospital,SecondMilitaryUniversity,Shanghai200433,China
Correspondingauthor:GaoJun,Email:13816012151@163.com
Abstract【】ObjectiveTo determine the lower limit of detection (LLOD) and cut off values of K-ras mutation detection by peptide nucleic acid (PNA) clamping-PCR. MethodsThe genomic DNA of pancreatic cancer cell lines (PANC1 and SW1990) with codon12, 13 mutation and the genomic DNA of placenta with K-ras wild type were mixed and diluted serially into samples with different mutation rate (0, 0.1%, 0.2%, 0.4%, 0.8%, 1.6%, 3.1%, 6.25%, 12.5%, 25%, 50%), PANC1 cells with 1% mutation rate and SW1990 cells with 30% mutation rate and 4 samples with the quantity of DNA was 50, 20, 5, 1 ng and 50, 10, 5, 1 ng was prepared. Codon 12, 13 mutation of K-ras was determined by PNA-PCR, and the mutation Ct values, overall Ct values were collected, and the ΔCt values (mutation Ct values-overall Ct values) were calculated, and the tests were repeated for 10 times. ROC curve was used to analyze the ΔCt values and determine the best cut off values for K-ras mutation, and the positive diagnostic rate, LLOD was evaluated. ResultsThe mutation Ct, ΔCt values of codon 12 mutation of PANC1 and codon 13 mutation of SW1990 of all the different mutation rates were statistically significantly different (P<0.05) when compared with negative
作者單位:200433上海,第二軍醫(yī)大學(xué)長海醫(yī)院消化內(nèi)科
通信作者:高軍,Email:13816012151@163.com
control group, but the overall Ct values were not statistically significantly different from that of negative control group. For detection of K-ras codon 12 mutation by ROC curve, the relevant area of ROC curve (AUC) was 0.926, the optimum cut off value of ΔCT was 11, the sensitivity and specificity were 84% and 100%, respectively, and the LLOD was 0.4 ng. For detection of K-ras codon 13 mutation by ROC curve, the relevant AUC was 0.906, the optimum cut off value of ΔCT was 9.5, the sensitivity and specificity were 71% and 100%, respectively, and the LLOD was 1.5 ng. The mutation detection results of fixed rate further confirmed the LLOD. ConclusionsThis study successfully defines LLOD and cut off value of PNA clamping-PCR/K-ras method in detection of K-ras 12 and 13 codon mutations. This method meets the requirement of clinical application.
【Key words】K-ras gene;Mutation;Peptide nucleic acids;Polymerase chain reaction
K-ras基因在胰腺癌中的突變率高達(dá)90%以上[1],在結(jié)直腸癌和肺癌中為30%~40%[2-4]。在K-ras基因突變中,2號外顯子的12、13密碼子突變占90%以上[5-8]。目前,K-ras基因突變檢測已成為腫瘤患者進(jìn)行表皮生長因子受體(epithelia groth factor receptor, EGFR)單克隆抗體治療時的必檢項目[9-11],且K-ras基因的突變對患者生存及預(yù)后有重要影響[12]。由于臨床樣本中提取的DNA往往夾雜大量的野生DNA,為避免野生DNA的干擾以獲得較高的靈敏度和特異度,本課題組前期建立了肽核酸(PNA)鉗制-PCR(PNA-PCR)檢測K-ras突變的方法,即利用PNA鉗制樣本中野生DNA的擴增。本研究進(jìn)一步明確該方法的檢測下限及陽性判斷標(biāo)準(zhǔn),為今后檢測臨床樣本提供實驗依據(jù)。
材料和方法
一、K-ras基因突變的細(xì)胞株及野生型K-ras基因組織的DNA抽提
PANC1細(xì)胞株為K-ras基因12密碼子突變,SW1990細(xì)胞株為K-ras基因13密碼子突變。兩細(xì)胞株為上海長海醫(yī)院消化內(nèi)科實驗室保存,常規(guī)培養(yǎng)、傳代,使用細(xì)胞株DNA提取試劑盒(天根生物公司)抽提PANC1和SW1990細(xì)胞總DNA,按試劑盒說明書操作。
胎盤組織委托Invitrogen公司進(jìn)行測序分析,證實胎盤DNA中的K-ras基因為野生型,故以胎盤組織DNA作為陰性對照。取適量凍存的胎盤組織,在液氮中搗碎,使用組織DNA提取試劑盒(天根生物公司)抽提胎盤DNA,按說明書操作。
二、K-ras基因突變DNA參考樣本制備
將兩株細(xì)胞DNA從50 ng/μl倍比稀釋至0.1 ng/μl,共11個梯度。將突變DNA與突變+野生DNA比例為50%、25%、12.5%、6.25%、3.1%、1.6%、0.8%、0.4%、0.2%、0.1%、0的每個濃度梯度的細(xì)胞DNA與胎盤DNA混合作為參考樣本,DNA總量為50 ng。另外,將PANC1 DNA與胎盤DNA混合比例為1%的樣本DNA總量分為50、20、5、1 ng 4種參考樣本;將SW1990 DNA與胎盤DNA混合比例為30%的樣本DNA總量分為50、10、5、1 ng 4種參考樣本。
三、PNA-PCR法檢測K-ras基因突變
將上述各個K-ras基因突變DNA樣本分別加入含檢測12、13密碼子突變和DNA總量的MGB探針(Invitrogen公司)的PCR反應(yīng)體系中進(jìn)行反應(yīng)。PCR總反應(yīng)體系:參考樣本2.5μl,Master Mix 7.5 μl,引物(10 pmol/μl)1.5 μl,PNA1(75 pmol/μl)或PNA2(100 pmol/μl)或鮭精液(20 ng/μl)2.5 μl,MGB探針1 μl,總體積為15 μl。其中PNA1加入檢測12密碼子突變反應(yīng)體系,PNA2加入檢測13密碼子突變反應(yīng)體系,鮭精液加入檢測DNA總量反應(yīng)體系。引物和PNA序列擬申請專利保護(hù),未列出。反應(yīng)條件:95℃ 10 min,95℃ 10 s、70℃ 10 s、45℃ 5 s、72℃ 30 s,50個循環(huán)。在每個循環(huán)末收集熒光信號,通過儀器自帶軟件獲取突變Ct值、總體Ct值及ΔCt值(突變Ct值-總體Ct值)。實驗獨立重復(fù)10個批次。
四、統(tǒng)計學(xué)處理
采用SPSS 15.0軟件進(jìn)行統(tǒng)計分析。各K-ras基因突變參考樣本的突變Ct值、總體Ct值及ΔCt值與陰性樣本胎盤DNA之間的比較采用非參數(shù)檢驗。采用受試者工作特征(ROC)曲線分析法選定陽性判斷閾值(Cut off)。檢測下限和陽性檢出率的確定以及檢測下限的驗證采用交叉表法。P<0.05為差異具有統(tǒng)計學(xué)意義。
結(jié)果
一、K-ras基因突變樣本與陰性對照樣本Ct值、總體Ct值及ΔCt值的比較
所有不同突變率的PANC1細(xì)胞12密碼子突變以及SW1990細(xì)胞13密碼子突變的突變Ct值及ΔCt值與陰性對照樣本的差異均有統(tǒng)計學(xué)意義(P值均<0.05),而總體Ct值與陰性對照樣本的差異無統(tǒng)計學(xué)意義(圖1、2)。
與對照樣本比較, aP<0.05 圖1 PANC1細(xì)胞不同的K-ras 基因12密碼子突變率樣本及胎盤對照樣本的突變Ct值、總體Ct值及ΔCt值
與對照樣本比較, aP<0.05 圖2 SW1990細(xì)胞不同的K-ras基因13密碼子突變率樣本及胎盤對照樣本的突變Ct值、總體Ct值及ΔCt值
二、陽性診斷標(biāo)準(zhǔn)及檢查下限的確定
PANC1細(xì)胞K-ras 基因12密碼子突變的ROC曲線見圖3,相應(yīng)的曲線下面積(AUC)為0.926,對應(yīng)的Cut off值為11,診斷12密碼子突變的敏感度和特異度分別為84%(84/100)和100%(100/100)。對0、0.1%、0.2%、0.4%、0.8%、1.6%、3.1%、6.25%、12.5%、25%、50%突變率參考樣本的陽性檢出率分別為0、10%、40%、90%、100%、100%、100%、100%、100%、100%、100%,檢測下限為0.8%的突變率(表1),即能檢出≥0.4 ng的12密碼子突變DNA。
SW1990細(xì)胞K-ras基因13密碼子突變的ROC曲線見圖4,相應(yīng)的AUC為0.906,相應(yīng)的Cut off值為9.5,診斷13密碼子突變的敏感度和特異度分別為71%(71/100)和100%(100/100)。 在上述各突變率梯度參考樣本的陽性檢出率分別為0、10%、10%、60%、60%、70%、100%、100%、100%、100%、100%,檢測下限為3.1%突變率(表2),即能檢出≥1.5 ng的13密碼子突變DNA。
圖3 PANC1細(xì)胞K-ras基因12密碼子突變ΔCt值診斷價值的ROC曲線
表1PANC1細(xì)胞K-ras基因12密碼子突變的陽性檢出率
PANC1細(xì)胞的突變率(%)檢測次數(shù)12密碼子突變陽性次數(shù)陽性率(%)13密碼子突變陽性次數(shù)陽性率(%)501010100002510101000012.51010100006.251010100003.11010100001.61010100000.81010100000.410990000.210440000.110110000(胎盤)80000
圖4 SW1990細(xì)胞K-ras基因13密碼子突變ΔCt值診斷價值的ROC曲線
表2SW1990細(xì)胞K-ras基因13密碼子突變的陽性檢出率
SW1990細(xì)胞的突變率(%)檢測次數(shù)12密碼子突變陽性次數(shù)陽性率13密碼子突變陽性次數(shù)陽性率(%)501000101002510001010012.51000101006.251000101003.11000101001.610007700.810006600.410006600.210001100.110001100(胎盤)80000
通過對固定突變率而DNA總量不同的參考樣本的檢測,能檢出突變率為1%、DNA總量為50 ng的PANC1參考樣本,即0.5 ng的突變DNA(表3);能檢出突變率為30%,DNA總量為5 ng的SW1990參考樣本,即1.5 ng的突變DNA(表4)。
表31%突變率PANC1細(xì)胞不同DNA總量的K-ras基因12密碼子突變陽性檢出率
參考樣本的DNA含量檢測次數(shù)12密碼子突變陽性次數(shù)陽性率(%)13密碼子突變陽性次數(shù)陽性率(%)50ng10101000020ng10770005ng1000001ng100000
討論
近年來,K-ras基因突變檢測已廣泛應(yīng)用于指導(dǎo)腫瘤患者進(jìn)行靶向藥物治療。所有轉(zhuǎn)移性結(jié)直腸癌和非小細(xì)胞肺癌患者使用EGFR抑制劑(如西妥昔單抗和帕尼單抗)之前都需要進(jìn)行K-ras基因突變檢測,只有K-ras基因為野生型的患者才能接受EGFR抑制劑靶向治療[13-14]。既往報道的K-ras基因突變檢測方法較多,主要有直接測序法、焦磷酸測序法、突變特異性擴增系統(tǒng)(ARMS)、高分辨率熔解曲線分析法(HRM)和StripAssay法。這些方法的靈敏度各不相同,但都存在操作繁瑣、靈敏度不夠、對設(shè)備要求高、成本過高等缺陷,難以在臨床推廣普及。Jancik等、Tsiatis等和Ogino等[15-17]用含突變型和野生型K-ras基因的腫瘤細(xì)胞株DNA配制成不同拷貝數(shù)的梯度模板,測定了上述5種K-ras突變檢測法的檢測下限:直接測序法為25%~30%,焦磷酸測序法為5%~10%,ARMS法為1%,HRM法為5%~10%,StripAssay法小于1%。Tsiatis等[16]分析了上述各方法的檢測下限,認(rèn)為測序法、HRM法和StripAssay法在樣品檢測值接近檢測下限時易受讀者主觀因素的干擾,焦磷酸測序法和ARMS法雖然受讀者主觀因素干擾小,但靈敏度有待提高。上述文獻(xiàn)中只使用了K-ras 12密碼子突變的細(xì)胞株DNA確立檢測方法的靈敏度和檢測下限,并未提及檢測的DNA總量。本研究除了確立K-ras 12密碼子突變細(xì)胞株DNA的檢測靈敏度和檢測下限之外,還對K-ras 13密碼子突變細(xì)胞株DNA的檢測靈敏度和檢測下限進(jìn)行了研究,并且對DNA總量的投入做了限定,并用參考樣本對檢測下限進(jìn)行了驗證。由于本研究將含突變型基因的細(xì)胞株DNA與K-ras野生型的組織DNA混合制成參考樣本,可以最大限度地模擬臨床樣本,所以確立的細(xì)胞株DNA檢測下限和最適Cut off值更具實用價值,為臨床樣本的檢測提供了重要的參數(shù)。
表430%突變率SW1990細(xì)胞不同DNA總量的K-ras基因13密碼子突變陽性檢出率
參考樣本的DNA含量檢測次數(shù)12密碼子突變陽性次數(shù)陽性率(%)13密碼子突變陽性次數(shù)陽性率(%)50ng10001010010ng1000101005ng1000101001ng100000
參考文獻(xiàn)
[1]Almoguera C,Shibata D,Forrester K,et al. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes[J].Cell,1988,53(4):549-554.
[2]De Roock W,De Vriendt V,Normanno N,et al.KRAS,BRAF,PIK3CA and PTEN mutations:implications for targeted therapies in metastatic colorectal cancer[J].Lancet Oncol,2011,12(6):594-603.
[3]Kalikaki A,Koutsopoulos A,Trypaki M,et al.Comparison of EGFR and K-ras gene status between primary tumours and corresponding metastases in NSCLC[J].Br J Cancer,2008,99(6):923-929.
[4]Rajagopalan H,Bardelli A,Lengauer C,et al.Tumorigenesis:RAF/RAS oncogenes and mismatch-repair status[J].Nature,2002,418(6901):934.
[5]Bos JL.Ras oncogenes in human cancer:a review[J].Cancer Res,1989,49(17):4682-4689.
[6]Adjei AA.Blocking oncogenic Ras signaling for cancer therapy[J].J Natl Cancer Inst,2001,93(14):1062-1074.
[7]Ma ES,Wong CL,Law FB,et al.Detection of KRAS mutations in colorectal cancer by high resolution melting analysis[J].J Clin Pathol,2009,62(10):886-891.
[8]Whitehall V,Tran K,Umapathy A,et al.A multicenter blinded study to evaluate KRAS mutation testing methodologies in the clinical setiing[J].J Mol Diagn,2009,11(6):543-552.
[9]Allegra CJ,Jessup JM,Somerfield MR,et al.American Society of Clinical Oncology provisional clinical opinion:testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy[J].J Clin Oncol,2009,27(12):2091-2096.
[10]Wierzbicki R,Jonker DJ,Moore MJ,et al.A phase Ⅱ,multicenter study of cetuximab monotherapy in patients with refractory,metastatic colorectal carcinoma with absent epidermal growth factor receptor immunostaining[J].Invest New Drugs,2011,29(1):167-174.
[11]Krens LL,Baas JM,Gelderblom H,et al.Therapeutic modulation of K-ras signaling in colorectal cancer[J].Drug Discov Today,2010,15(13-14):502-516.
[12]Jancik S, Drabek J, Radzioch D, et al. Clinical relevance of KRAS in human cancers[J]. J Biomed Biotechnol, 2010, 2010: 150960.
[13]De Roock W, Claes B, Bemasconi D, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemocherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis[J]. Lancet Oncol, 2010, 11(8):753-762.
[14]Jancik S, drabek J, berkovcova J, et al. A comparison of Direct sequencing. Pyosequencing. High resolution meltinganalysis. TheraScreen Dxs, and the K-ras Strip Assay for detecting KRAS mutations in non small cell lung carcinomas[J]. J Exp Clin Cancer Res, 2012,31:79.
[15]Jancik S,Drabek J,Berkovcova J,et al.A comparison of Direct sequencing,Pyrosequencing,High resolution melting analysis,TheraScreen DxS and the K-ras StripAssay for detecting KRAS mutations in non small cell lung carcinomas[J].J Exp Clin Cancer Res,2012,31:79.
[16]Tsiatis AC,Norris-Kirby A,Rich RG,et al.Comparison of Sanger sequencing,pyrosequencing and melting curve analysis for the detection of KRAS mutations:diagnostic and clinical implications[J].J Mol Diagn,2010,12(4):425-432.
[17]Ogino S,Kawasaki T,Brahmandam M,et al.Sensitive sequencing method for KRAS mutation detection by Pyrosequencing[J].J Mol Diagn,2005,7(3):413-421.
(本文編輯:屠振興)
歡迎訂閱《中華胰腺病雜志》