祝曉瑩, 王桂美, 胡 敏, 陸 歡, 鄧 晶, 嚴(yán)曉紅△
硫化氫活化ERK抵抗內(nèi)質(zhì)網(wǎng)應(yīng)激誘導(dǎo)的心肌細(xì)胞凋亡*
祝曉瑩1,2#, 王桂美1#, 胡 敏1, 陸 歡1, 鄧 晶1, 嚴(yán)曉紅1△
1武漢大學(xué)基礎(chǔ)醫(yī)學(xué)院生理學(xué)系,武漢 430071
2河南科技大學(xué)醫(yī)學(xué)院病原生物學(xué)教研室,洛陽(yáng) 471003
目的 探討硫化氫(H2S)對(duì)心肌的保護(hù)作用是否通過(guò)激活細(xì)胞外信號(hào)調(diào)節(jié)激酶(ERK)通路來(lái)抵抗心肌缺血誘導(dǎo)的內(nèi)質(zhì)網(wǎng)應(yīng)激所致的心肌細(xì)胞凋亡。方法 60只雄性SD大鼠隨機(jī)分為對(duì)照組、ISO模型組、NaHS+I(xiàn)SO組及PD98059阻斷組,每組各15只。對(duì)照組大鼠注射等體積生理鹽水;ISO模型組大鼠第1、2天腹腔注射生理鹽水,第3、4天注射完生理鹽水30min后背部皮下分別注射10mg/kg和5mg/kg的ISO;NaHS+I(xiàn)SO組大鼠腹腔注射NaHS 14 μmol/kg,1次/d,連續(xù)2d后,改為2次/d,連續(xù)2d,并在后2d的第1次注射30min后,于背部皮下分別注射10mg/kg和5mg/kg的ISO,1次/d;PD98059阻斷組大鼠在上述NaHS+I(xiàn)SO組大鼠處理基礎(chǔ)上,于注射ISO之前經(jīng)尾靜脈注射MEK/ERK抑制劑PD98059(4mg/kg),1次/d,連續(xù)2d。每組最后一次注射ISO并禁食12h后,檢測(cè)心電圖、心功能指標(biāo);測(cè)定血漿中H2S濃度變化;TTC染色測(cè)定心肌梗死面積;TUNEL法檢測(cè)心肌細(xì)胞凋亡指數(shù)(AI);免疫組織化學(xué)方法檢測(cè)心肌中GRP78、CHOP及ERK磷酸化(p-ERK)蛋白的表達(dá)。結(jié)果 ISO模型組大鼠血漿的H2S含量明顯低于對(duì)照組(P<0.01);14μmol/kg NaHS可以顯著改善心肌缺血引起的心功能改變,而PD98059阻斷組可以逆轉(zhuǎn)NaHS的心肌保護(hù)作用;與ISO模型組相比,NaHS+I(xiàn)SO組大鼠心肌組織中GRP78、CHOP的表達(dá)明顯減少(均P<0.05),p-ERK表達(dá)明顯增多(P<0.01),AI、心肌梗死面積明顯減?。ň鵓<0.05);與NaHS+I(xiàn)SO組相比,PD98059阻斷組大鼠心肌組織中GRP78、CHOP的表達(dá)、AI、梗死面積均顯著增加(均P<0.05),心功能明顯降低(P<0.05),而p-ERK無(wú)表達(dá)。相關(guān)分析顯示大鼠心肌細(xì)胞CHOP表達(dá)、AI與p-ERK的表達(dá)呈負(fù)相關(guān)(P<0.01)。結(jié)論 內(nèi)源性H2S濃度的降低及內(nèi)質(zhì)網(wǎng)應(yīng)激可能參與急性缺血心肌損傷的發(fā)生與發(fā)展,H2S對(duì)缺血損傷的心肌保護(hù)作用機(jī)制可能與其激活ERK進(jìn)而抑制內(nèi)質(zhì)網(wǎng)應(yīng)激誘導(dǎo)的心肌細(xì)胞凋亡有關(guān)。
硫化氫; 心肌缺血; 內(nèi)質(zhì)網(wǎng)應(yīng)激; 細(xì)胞外信號(hào)調(diào)節(jié)激酶; GRP78; CHOP
硫化氫(hydrogen sulfide,H2S),是繼NO和CO之后新發(fā)現(xiàn)的第3種氣體信號(hào)分子。在心血管系統(tǒng)中,內(nèi)源性H2S主要由胱硫醚-γ-裂解酶(Cystathionine-γ-lyase,CSE)裂解L-半胱氨酸產(chǎn)生,體內(nèi)1/3以H2S形式存在,2/3以硫氫化鈉(NaHS)形式存在,且能維持動(dòng)態(tài)平衡。因H2S氣體具有揮發(fā)性,故一般采用NaHS作為外源性H2S的供體。目前對(duì)H2S的心肌保護(hù)作用及其機(jī)制的研究已成為心血管研究領(lǐng)域的新熱點(diǎn)[1-4]。研究表明,異丙腎上腺素(isoproterenol,ISO)誘導(dǎo)的心肌缺血損傷大鼠心肌內(nèi)源性CSE/H2S生成減少,給予外源性H2S對(duì)心臟具有明顯的保護(hù)作用,其機(jī)制可能涉及H2S清除氧自由基和降低脂質(zhì)過(guò)氧化水平[5]。H2S還可以通過(guò)激活細(xì)胞外信號(hào)調(diào)節(jié)激酶(extracellular signal regulation kinase,ERK)而發(fā)揮心肌保護(hù)作用[6]。近年,又有研究表明心肌缺血可誘導(dǎo)內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic reticulum stress,ERS)[7],而過(guò)強(qiáng)或持續(xù)時(shí)間過(guò)長(zhǎng)的ERS可激活凋亡信號(hào)分子,如CHOP、JNK等,啟動(dòng)由ERS介導(dǎo)的凋亡信號(hào)通路,引起細(xì)胞凋亡,促進(jìn)心肌疾病的發(fā)生[810]。H2S能否通過(guò)活化ERK抑制心肌缺血誘導(dǎo)的ERS所致心肌細(xì)胞凋亡而發(fā)揮心肌保護(hù)作用?本實(shí)驗(yàn)采用ISO制造心肌缺血模型,應(yīng)用ERK抑制劑PD98059,通過(guò)檢測(cè)心功能、心肌梗死面積、心肌凋亡指數(shù)及內(nèi)質(zhì)網(wǎng)標(biāo)志蛋白GRP78、CHOP與ERK磷酸化(p-ERK)蛋白的表達(dá)水平等指標(biāo),探討H2S對(duì)心肌的保護(hù)作用是否通過(guò)激活ERK通路來(lái)拮抗心肌缺血誘導(dǎo)的ERS所致的心肌細(xì)胞凋亡。
1.1 主要試劑及儀器
NaHS、TUNEL檢測(cè)試劑盒(美國(guó)Sigma公司);TTC(紅四氮唑,北京縱橫洋洲醫(yī)藥生物技術(shù)有限公司);PD98059[2-氨基-3-甲氧黃酮,普洛麥格(北京)生物技術(shù)有限公司];兔抗大鼠GRP78多克隆抗體、兔抗大鼠CHOP多克隆抗體、兔抗大鼠p-ERK多克隆抗體(北京博奧森生物技術(shù)有限公司);羊抗兔IgG-HRP(Santa Cruz公司)。BL-420生物機(jī)能實(shí)驗(yàn)系統(tǒng)(成都泰盟科技有限公司);DW-2000動(dòng)物人工呼吸機(jī)(上海嘉鵬科技有限公司);UV-2100分光光度計(jì)[尤尼柯(上海)儀器有限公司]。
1.2 實(shí)驗(yàn)方法
1.2.1 急性心肌缺血模型的制作 健康SD大鼠適應(yīng)性喂養(yǎng)2d后,于第1、2天腹腔注射生理鹽水,第3、4天腹腔注射生理鹽水0.5h后皮下分別注射ISO 10 mg/kg、5mg/kg復(fù)制大鼠心肌缺血模型[11]。心電圖監(jiān)測(cè),出現(xiàn)ST段抬高即表示模型復(fù)制成功。
1.2.2 動(dòng)物分組 模型制作穩(wěn)定后將60只SD大鼠隨機(jī)分為4組:對(duì)照組、ISO模型組、NaHS+I(xiàn)SO組及PD98059阻斷組,每組15只。對(duì)照組注射等體積生理鹽水;NaHS+I(xiàn)SO組腹腔注射NaHS 14 μmol/kg,每日1次,連續(xù)2d后,改用每日2次,連續(xù)2d,并在后2天的第1次注射30min后,于背部皮下分別注射10mg/kg和5mg/kg的ISO,每日1次;PD98059阻斷組大鼠在上述NaHS+I(xiàn)SO組大鼠處理基礎(chǔ)上,于注射ISO前經(jīng)尾靜脈注射MEK/ERK抑制劑PD98059(4mg/kg),每日1次,連續(xù)2 d。
1.2.3 大鼠心功能指標(biāo)檢測(cè)及標(biāo)本制備 通過(guò)BL-420生物機(jī)能實(shí)驗(yàn)系統(tǒng)連續(xù)記錄左心室收縮壓(LVSP)、左室舒張末期壓(LVEDP)及左室壓最大變化速率(±dp/dtmax);分離左頸外靜脈,靜脈插管取血1mL,取血后室溫靜置30min,離心30min收集血清,-20℃凍存?zhèn)溆?,用于測(cè)H2S濃度;開(kāi)胸取心臟組織,4%多聚甲醛固定,用于免疫組化檢測(cè)。
1.2.4 血清H2S濃度的測(cè)定 血清H2S濃度的測(cè)定采用去蛋白法[12],在預(yù)先準(zhǔn)備好的5mL Ep管中先加入0.5mL 10g/L醋酸鋅,再加入0.1mL血清標(biāo)本,振蕩搖勻,依次加入0.5mL 20mmol/L對(duì)苯二胺鹽酸鹽和0.5mL 30mmol/L三氯化鐵,室溫孵育,使之顯色充分,再加入1mL 10%的三氯醋酸,最后加入蒸餾水補(bǔ)足體積至5mL,充分混勻。離心6 000r/min,5min,然后吸出上清液,用紫外分光光度計(jì)測(cè)上清液在670nm處的吸光度值。根據(jù)H2S標(biāo)準(zhǔn)曲線計(jì)算出血清中H2S的含量。
1.2.5 心肌梗死范圍的測(cè)定 采用TTC染色法[13]。開(kāi)胸后迅速取出心臟,保留左心室,用4℃生理鹽水沖洗殘血,-20℃冷凍保存。1h后取出,平行房室溝將左室切成1~2mm厚,置37℃1% TTC磷酸緩沖液中避光染色15min,然后用磷酸鹽緩沖液(pH7.4)洗去多余染料,再放于10%甲醛中固定24h,以增強(qiáng)染色的對(duì)比。梗死區(qū)心肌呈蒼白色,未梗死心肌呈磚紅色。取不同顏色心肌組織分別稱重,按質(zhì)量百分比法計(jì)算梗死心肌占整個(gè)左心室心肌的百分比,判斷模型穩(wěn)定性。
1.2.6 心肌細(xì)胞凋亡的檢測(cè) 心肌石蠟切片常規(guī)脫蠟、水化后,PBS漂洗3×5min;按照TUNEL檢測(cè)試劑盒說(shuō)明書(shū)進(jìn)行操作。用DNA酶處理切片作陽(yáng)性對(duì)照,用標(biāo)記液代替TdT酶反應(yīng)液作陰性對(duì)照。在光學(xué)顯微鏡下觀察并記錄實(shí)驗(yàn)結(jié)果。每張切片心肌細(xì)胞凋亡原位標(biāo)記標(biāo)本隨機(jī)取10個(gè)高倍視野(×200),用計(jì)算機(jī)圖像分析軟件分析凋亡心肌細(xì)胞,計(jì)算凋亡心肌細(xì)胞數(shù)占心肌細(xì)胞總數(shù)的百分比即凋亡指數(shù)(apoptotic index,AI)。
1.2.7 大鼠心肌組織GRP78、CHOP、p-ERK表達(dá)的測(cè)定 取固定后的心臟組織,常規(guī)石蠟包埋,4 μm切片,撈片后,放入烤箱中烘烤4h,放置于標(biāo)本盒中用于免疫組化檢測(cè)。主要步驟:將石蠟切片常規(guī)脫蠟,梯度乙醇水化,PBS漂洗3×5min;微波爐修復(fù)抗原;室溫冷卻后,PBS漂洗3×5min;滴加50 μL過(guò)氧化物酶阻斷液,37℃溫箱中孵育10min;PBS漂洗3×5min;滴加山羊血清封閉液,37℃溫箱孵育10min;甩去多余血清,分別滴加GRP78、CHOP、p-ERK抗體,4℃過(guò)夜,PBS漂洗3×5min;分別滴加生物素標(biāo)記的二抗,37℃孵育1h,PBS漂洗3×5min;滴加辣根過(guò)氧化物酶標(biāo)記的鏈抗生物素蛋白,37℃溫箱中孵育1h,PBS漂洗3×5min;每片滴加DAB顯色,再依次滴加蘇木精輕度復(fù)染、脫水、透明、封片,在顯微鏡下觀察結(jié)果。陰性對(duì)照采用PBS取代一抗,其余步驟相同。陽(yáng)性表達(dá)細(xì)胞膜或胞質(zhì)呈棕褐色或黃褐色,正常細(xì)胞呈均勻的淡紫色。各組照片都用Quantimet-520圖像分析儀對(duì)免疫組化染色的陽(yáng)性反應(yīng)產(chǎn)物進(jìn)行定量分析,隨機(jī)選12個(gè)位點(diǎn)測(cè)量陽(yáng)性反應(yīng)產(chǎn)物的灰度值,然后取其平均值。陽(yáng)性產(chǎn)物強(qiáng)度用灰度值表示,灰度值愈大則陽(yáng)性反應(yīng)物的陽(yáng)性強(qiáng)度愈小。
1.3 統(tǒng)計(jì)學(xué)處理
計(jì)量資料以均數(shù)±標(biāo)準(zhǔn)差(ˉx±s)表示,統(tǒng)計(jì)處理采用SPSS 13.0統(tǒng)計(jì)分析軟件,多組間比較采用單因素方差分析(one-way ANOVA),若差異顯著則進(jìn)一步用least-significant-difference法進(jìn)行兩兩比較,相關(guān)分析采用Pearson法,以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1 H2S對(duì)心肌缺血損傷大鼠心功能的影響
為觀察H2S對(duì)大鼠心功能的影響,我們分別記錄了各組大鼠心臟的LVSP、LVEDP及±dp/dtmax(表1)。與對(duì)照組比較,ISO模型組大鼠LVSP和±dp/dtmax值明顯降低,分別下降27%和50%(P<0.05和P<0.01),LVEDP上升了321.5%(P<0.01),差異顯著;與ISO模型組比較,NaHS+I(xiàn)SO組的LVSP和±dp/dtmax均明顯增加(均P<0.05),而LVEDP則明顯降低(P<0.01);與NaHS+I(xiàn)SO組比較,PD98059阻斷組LVSP和±dp/dtmax均明顯減?。ň鵓<0.05),而LVEDP則明顯增加(P<0.01);但是PD98059阻斷組與ISO模型組相比差異無(wú)統(tǒng)計(jì)學(xué)意義。
表1 各組大鼠血流動(dòng)力學(xué)指標(biāo)(ˉx±s,n=15)Table1 Hemodynamics in different groups of rats(ˉx±s,n=15)
2.2 H2S在心肌缺血損傷大鼠血清中含量的變化
各組大鼠血清H2S的濃度如圖1所示。與對(duì)照組相比,ISO模型組大鼠血清中H2S濃度明顯降低[(26.64±0.84)vs.(39.01±0.50)μmol/L,P<0.01];與ISO模型組比較,NaHS+I(xiàn)SO組大鼠血清H2S的濃度明顯增加[(35.48±1.18)μmol/L vs.(26.64±0.84)μmol/L,P<0.01],PD98059阻斷組亦明顯增加[(35.65±0.72)μmol/Lvs.(26.64±0.84)μmol/L,P<0.01];與NaHS+I(xiàn)SO組比較,PD98059阻斷組大鼠血清H2S濃度變化沒(méi)有統(tǒng)計(jì)學(xué)意義。
圖1 各組大鼠血清H2S濃度Fig.1 H2S concentration in different groups of rats
2.3 H2S對(duì)心肌缺血損傷大鼠心肌梗死面積的影響
TTC染色結(jié)果顯示:梗死區(qū)心肌呈蒼白色,未梗死心肌呈磚紅色。按質(zhì)量百分比法計(jì)算各組大鼠的心肌梗死面積。各組間梗死面積比較如圖2所示。設(shè)定對(duì)照組梗死面積為0,與對(duì)照組比較,ISO模型組梗死面積明顯增加[(37.45±5.20)%,P<0.01];與ISO模型組比較,NaHS+I(xiàn)SO組梗死面積明顯減?。郏?3.87±4.51)%vs.(37.45± 5.20)%,P<0.05];與NaHS+I(xiàn)SO組比較,PD98059阻斷組梗死面積顯著增加[(33.25± 2.41)vs.(23.87±4.51)%,P<0.05],而與ISO模型組相比則差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。
圖2 各組大鼠心肌梗死面積Fig.2 Myocardial infarct size in different groups of rats
2.4 H2S對(duì)心肌缺血損傷大鼠心肌細(xì)胞凋亡的影響
圖3顯示:對(duì)照組心肌的凋亡指數(shù)(AI)極低,與對(duì)照組比較,ISO模型組心肌細(xì)胞凋亡明顯增加[(42.5±7.9)%vs.(2.7±0.7)%,P<0.01];與ISO模型組比較,NaHS+I(xiàn)SO組凋亡指數(shù)顯著減小[(11.6±2.4)%vs.(42.5±7.9)%,P<0.01];與NaHS+I(xiàn)SO組比較,PD98059阻斷組凋亡指數(shù)明顯增加[(28.9±6.1)%vs.(11.6±2.4)%,P<0.05],而與ISO模型組差異無(wú)統(tǒng)計(jì)學(xué)意義,提示ERK磷酸化可能抑制缺血心肌組織中的細(xì)胞凋亡。
圖3 各組大鼠心肌細(xì)胞TUNEL染色(標(biāo)尺=0.4μm)Fig.3 TUNEL staining of cardiomyocytes in different groups of rats(bar=0.4μm)
2.5 H2S對(duì)大鼠缺血損傷心肌中GRP78和CHOP表達(dá)的影響
GRP78是ERS的標(biāo)志蛋白,在胞質(zhì)中表達(dá),免疫組化染色呈棕黃色;CHOP是內(nèi)質(zhì)網(wǎng)啟動(dòng)的凋亡信號(hào)中最多的分子之一,主要位于壞死區(qū),陽(yáng)性表達(dá)呈深淺不一的棕黃色(圖4)。半定量灰度值分析顯示,與對(duì)照組比較,ISO模型組GRP78的灰度值[(98.6±3.4)vs.(180.2±4.8),P<0.01]和CHOP的灰度值[(100.3±5.4)vs.(199.8±3.6),P<0.01]均顯著降低;與ISO模型組比較,NaHS+I(xiàn)SO組GRP78的灰度值[(152.6±3.3)vs.(98.6 ±3.4),P<0.01]和CHOP的灰度值[(162.5± 3.2)vs.(100.3±5.4),P<0.01]均明顯增加;與NaHS+I(xiàn)SO組比較,PD98059阻斷組GRP78的灰度值[(124.7±2.5)vs.(152.6±3.3),P<0.05]和CHOP的灰度值[(119.9±3.6)vs.(162.5±3.2),P<0.05]均顯著減小,但與ISO模型組相比二者差異均無(wú)統(tǒng)計(jì)學(xué)意義。
圖4 各組大鼠心肌GRP78和CHOP的表達(dá)(標(biāo)尺=0.4μm)Fig.4 The expression of GRP78and CHOP in myocardial tissues of rats in each group(bar=0.4μm)
2.6 H2S對(duì)缺血損傷大鼠心肌中p-ERK表達(dá)的影響
p-ERK免疫組化檢測(cè)結(jié)果如圖5所示:與對(duì)照組相比,ISO模型組p-ERK表達(dá)的灰度值明顯降低[(141.7±2.5)vs.(239.4±2.0),P<0.05],提示當(dāng)心肌缺血時(shí),會(huì)有少量ERK磷酸化發(fā)揮作用;與ISO模型組相比,NaHS+I(xiàn)SO組p-ERK灰度值明顯降低[(90.3±3.1)vs.(141.7±2.5),P<0.05],說(shuō)明加入NaHS后,大量ERK被激活;而PD98059組因加入ERK抑制劑,幾乎沒(méi)有p-ERK的表達(dá)。
圖5 各組大鼠心肌p-ERK的表達(dá)(標(biāo)尺=0.4μm)Fig.5 The expression of p-ERK in myocardial tissues of rats in each group(bar=0.4μm)
2.7 p-ERK與CHOP、凋亡指數(shù)之間的相關(guān)分析
相關(guān)分析顯示,缺血心肌中CHOP灰度值、凋亡指數(shù)(AI)與p-ERK灰度值間的相關(guān)系數(shù)分別為r=-0.762及r=0.638。由于灰度值越大,陽(yáng)性表達(dá)產(chǎn)物越少,因此缺血心肌中CHOP表達(dá)、凋亡指數(shù)(AI)與p-ERK的表達(dá)均呈負(fù)相關(guān)。見(jiàn)圖6。
圖6 p-ERK與CHOP、凋亡指數(shù)之間的相關(guān)分析Fig.6 Correlation analysis of the relationship between p-ERK and CHOP or apoptotic index
作為繼NO和CO之后的第3類氣體信號(hào)分子,H2S已經(jīng)被證實(shí)對(duì)心血管有保護(hù)作用[4,14]。H2S可以活化KATP通道引起血管舒張,還可通過(guò)促進(jìn)肌漿網(wǎng)重拾胞內(nèi)游離鈣及依賴PKC的Na+/Ca2+交換機(jī)制緩解缺血心肌細(xì)胞內(nèi)鈣超載;Geng等[4-5,15]從CSE/H2S途徑出發(fā)分析了在ISO誘導(dǎo)的心肌缺血模型中H2S的心臟保護(hù)作用,并指出H2S是通過(guò)清除氧自由基和降低脂質(zhì)過(guò)氧化水平而起作用的。
本實(shí)驗(yàn)ISO模型組大鼠血清中H2S濃度明顯低于對(duì)照組(P<0.01),這表明H2S濃度的降低參與了心肌缺血損傷。心肌發(fā)生缺血損傷后,心功能會(huì)發(fā)生改變。通常評(píng)價(jià)左心室收縮和舒張功能的指標(biāo)主要是LVSP、LVEDP、±dp/dtmax。本實(shí)驗(yàn)結(jié)果顯示,ISO組LVSP、±dp/dtmax與對(duì)照組相比分別下降27%和50%(P<0.05和P<0.01),LVEDP上升了321.5%(P<0.01),說(shuō)明缺血可造成心肌損傷導(dǎo)致心室舒縮功能下降;給予14μmol/mL NaHS后,LVSP和±dp/dtmax與ISO組相比均明顯增加(P<0.05),而LVEDP則明顯降低(P<0.01),同時(shí)心肌梗死面積明顯減少,提示H2S可改善心肌缺血損傷導(dǎo)致的心功能下降[5,14]。
ISO是β受體激動(dòng)劑,注射一定劑量ISO后,β受體興奮,腺苷酸環(huán)化酶活性增加,細(xì)胞內(nèi)cAMP濃度提高,通過(guò)cAMP依賴性蛋白激酶系統(tǒng),促進(jìn)鈣內(nèi)流,加重細(xì)胞內(nèi)鈣超載,而內(nèi)質(zhì)網(wǎng)是真核細(xì)胞中細(xì)胞內(nèi)鈣離子的儲(chǔ)存場(chǎng)所,細(xì)胞內(nèi)鈣超載會(huì)造成內(nèi)質(zhì)網(wǎng)內(nèi)鈣離子平衡紊亂,進(jìn)而誘導(dǎo)內(nèi)質(zhì)網(wǎng)應(yīng)激(ERS)[16]。ERS參與了諸多心血管系統(tǒng)疾病的病理發(fā)展過(guò)程[17-18]。葡萄糖調(diào)節(jié)蛋白GRP78是一種對(duì)細(xì)胞起保護(hù)作用的內(nèi)質(zhì)網(wǎng)分子伴侶,在ERS時(shí)可以幫助內(nèi)質(zhì)網(wǎng)對(duì)蓄積的錯(cuò)誤折疊和未折疊蛋白質(zhì)進(jìn)行處理以增強(qiáng)內(nèi)質(zhì)網(wǎng)應(yīng)激能力,促進(jìn)內(nèi)質(zhì)網(wǎng)功能恢復(fù),因而被認(rèn)為是ERS的一種標(biāo)志蛋白。伴侶蛋白GRP78過(guò)度表達(dá)可作為一種ERS的指示劑,而過(guò)強(qiáng)或過(guò)長(zhǎng)時(shí)間的ERS將通過(guò)激活下游的凋亡信號(hào)分子CHOP/GADD153等,啟動(dòng)由ERS所介導(dǎo)的凋亡信號(hào)通路,誘導(dǎo)細(xì)胞凋亡[1922]。為驗(yàn)證ISO所致的急性心肌缺血是否誘導(dǎo)ERS及H2S是否通過(guò)抑制ERS保護(hù)心肌,本實(shí)驗(yàn)用免疫組化檢測(cè)各組大鼠心肌中GRP78和CHOP的表達(dá),結(jié)果顯示:ISO模型組GRP78和CHOP表達(dá)比對(duì)照組顯著增加(P<0.01);而NaHS+I(xiàn)SO組GRP78和CHOP的表達(dá)明顯低于ISO模型組(P<0.01),提示ISO所致的心肌缺血可誘導(dǎo)心肌細(xì)胞ERS,并激活下游ERS凋亡分子CHOP的凋亡通路引起大鼠心肌細(xì)胞的凋亡。這與Szegezdi等[23]在模擬缺血的乳鼠心肌細(xì)胞上發(fā)現(xiàn)缺血能誘導(dǎo)ERS,促凋亡的分子CHOP表達(dá)明顯上調(diào)是一致的。給予外源性H2S可使GRP78和CHOP的表達(dá)下調(diào),提示H2S可能通過(guò)拮抗心肌缺血誘導(dǎo)的ERS而實(shí)現(xiàn)心肌保護(hù)的。
細(xì)胞外信號(hào)調(diào)節(jié)激酶(ERK)是絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)家族的一員,它的信號(hào)傳遞途徑是調(diào)節(jié)細(xì)胞生長(zhǎng)、發(fā)育及分裂信號(hào)網(wǎng)絡(luò)的核心。ERK信號(hào)通路的激活在細(xì)胞生命活動(dòng)中有重要意義,如在細(xì)胞增殖、分化和抗凋亡中發(fā)揮作用[2425]。本研究應(yīng)用ERK阻斷劑,并通過(guò)免疫組化檢測(cè)ERK磷酸化蛋白(p-ERK)的表達(dá)以進(jìn)一步探討H2S抵抗心肌缺血誘導(dǎo)的ERS是否通過(guò)激活ERK通路。結(jié)果顯示:與ISO模型組比較,NaHS+I(xiàn)SO組p-ERK表達(dá)明顯增加(P<0.05),GRP78、CHOP表達(dá)明顯降低(P<0.01),AI明顯減少(P<0.01);給予ERK阻斷劑PD98059,p-ERK表達(dá)抑制,而GRP78、CHOP表達(dá)及AI等明顯增加(P<0.05)。進(jìn)一步相關(guān)分析顯示,心肌細(xì)胞CHOP表達(dá)及凋亡指數(shù)(AI)與p-ERK的表達(dá)呈負(fù)相關(guān)(P<0.05)。提示H2S可能通過(guò)ERK通路調(diào)控心肌缺血誘導(dǎo)的ERS所引起的心肌細(xì)胞凋亡。
總之,本研究表明內(nèi)源性H2S濃度的降低及ERS可能參與心肌缺血的發(fā)生與發(fā)展。補(bǔ)充外源性H2S可保護(hù)心肌,其機(jī)制可能與H2S可激活ERK從而抑制ERS誘導(dǎo)的細(xì)胞凋亡有關(guān),其確切機(jī)制仍需進(jìn)一步闡明。
[1] Bolli R.Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research[J].J Mol Cell Cardiol,2001,33(11):1897-1918.
[2] Clark J E,Naughton P,Shurey S,et al.Cardioprotective actions by a water-soluble carbon monoxide-releasing molecule[J].Circ Res,2003,93(2):e2-e8.
[3] Wang R.Two’s company,three’s a crowd:can H2S be the third endogenous gaseous transmitter?[J].FASEB J,2002,16(13):1792-1798.
[4] Wang R.Physiological implications of hydrogen sulfide:a whiff exploration that blossomed[J].Physiol Rev,2012,92(2):791-896.
[5] Geng B,Chang L,Pan C,et al.Endogenous hydrogen sulfide regulation of myocardial injury induced by isoproterenol[J].Biochem Biophys Res Commun,2004,318(3):756-763.
[6] Hu Y,Chen X,Pan T T,et al.Cardioprotection induced by hydrogen sulfide preconditioning involves activation of ERK and PI3K/Akt pathways[J].Pflugers Arch,2008,455(4): 607-616.
[7] Minamino T,Komuro I,Kitakaze M.Endoplasmic reticulum stress as a therapeutic target in cardiovascular disease[J].Circ Res,2010,107(9):1071-1082.
[8] Han S W,Li C,Ahn K O,et al.Prolonged endoplasmic reticulum stress induces apoptotic cell death in an experimental model of chronic cyclosporine nephropathy[J].Am J Nephrol,2008,28(5):707-714.
[9] Shore G C,Papa F R,Oakes S A.Signaling cell death from the endoplasmic reticulum stress response[J].Curr Opin Cell Biol,2011,23(2):143-149.
[10] Okada K,Minamino T,Tsukamoto Y,et al.Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction:Possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis[J].Circulation,2004,110(6):705-712.
[11] Rona G,Chappel C I,Balazs T,et al.An infarct-like myocardial lesion and other toxic manifestations produced by isoproterenol in the rat[J].AMA Arch Pathol,1959,67(4):443-455.
[12] Chunyu Z,Junbao D,Dingfang B,et al.The regulatory effect of hydrogen sulfide on hypoxic pulmonary hypertension in rats[J].Biochem Biophys Res Commun,2003,302(4):810-816.
[13] Rao P R,Kumar V K,Viswanath R K,et al.Cardioprotective activity of alcoholic extract of Tinosporacordifolia in ischemiareperfusion induced myocardial infarction in rats[J].Biol Pharm Bull,2005,28(12):2319-2322.
[14] SzabóC.Hydrogen sulphide and its therapeutic potential[J].Nat Rev Drug Discov,2007,6(11):917-935.
[15] Johansen D,Ytrehus K,Baxter G F.Exogenous hydrogen sulfide(H2S)protects against regional myocardial ischemiareperfusion injury—Evidence for a role of KATPchannels[J].Basic Res Cardiol,2006,101(1):53-60.
[16] Ono Y,Shimazawa M,Ishisaka M,et al.Imipramine protects mouse hippocampus against tunicamycin-induced cell death[J].Eur J Pharmacol,2012,696(1-3):83-88.
[17] Xu J,Wang G,Wang Y,et al.Diabetes and angiotensin II-induced cardiac endoplasmic reticulum stress and cell death: Metallothionein protection[J].J Cell Mol Med,2009,13(8 A):1499-1512.
[18] Dou G,Sreekumar P G,Spee C,et al.Deficiency of alphaB crystallin augments ER stress-induced apoptosis by enhancing mitochondrial dysfunction[J].Free Radic Biol Med,2012,53(5):1111-1122.
[19] Shore G C,Papa F R,Oakes S A.Signaling cell death from the endoplasmic reticulum stress response[J].Curr Opin Cell Biol,2011,23(2):143-149.
[20] Okada K,Minamino T,Tsukamoto Y,et al.Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction:Possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis[J].Circulation,2004,110(6):705-712.
[21] Zhao H,Liao Y,Minamino T,et al.Inhibition of cardiac remodeling by pravastatin is associated with amelioration of endoplasmic reticulum stress[J].Hypertens Res,2008,31(10): 1977-1987.
[22] Marciniak S J,Yun C Y,Oyadomari S,et al.CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum[J].Genes Dev,2004,18(24): 3066-3077.
[23] Szegedi E,Duffy A,O’Mahoney M E.ER stress contributes to ischemia-induced cardiomyocyte apoptosis[J].Biochem Biophys Res Commun,2006,349(4):1406-1411.
[24] Chang L,Karin M.Mammalian MAP kinase signalling cascades[J].Nature,2001,410(6824):37-40.
[25] Johnson G L,Lapadat R.Mitogen-activated protein kinase pathways mediated by ERK,JNK,and p38protein kinases[J].Science,2002,298(5600):1911-1912.
(2015-03-02 收稿)
Hydrogen Sulfide Inhibits Endoplasmic Reticulum Stress-induced Myocardial Cell Apoptosis by Activating ERK
Zhu Xiaoying1,2#,Wang Guimei1#,Hu Min1et al
1Department of Physiology,School of Basic Medicine,Wuhan University,Wuhan 430071,China
2Department of Pathogen Biology,Medical College of Henan University of Science and Technology,Luoyang 471003,China
Objective To investigate whether hydrogen sulfide(H2S)protects cardiomyocytes from endoplasmic reticulum stress-induced apoptosis by activating the extracellular signal regulation kinase(ERK).Methods A total of 60SD rats were randomly divided into control group,ISO group,NaHS+I(xiàn)SO group and PD98059group(n=15in each group).Animals in control group was injected with saline;those in ISO group was intraperitoneally injected with saline at the same volume as control group for 4days,and subcutaneously injected with ISO at 10mg/kg and 5mg/kg,respectively,on the back,30min after the intraperitoneal injection with saline at the later 2days;those in NaHS+I(xiàn)SO group was intraperitoneally injected with 14μmol/kg NaHS once a day for 2days,twice a day for 2days,and then subcutaneously injected with ISO 10mg/kg and 5mg/kg,respectively,on the back,30min after NaHS injection at the later 2days;those in PD98059group was given the same treatment as NaHS+I(xiàn)SO group except intravenous injection with 4mg/kg PD98059(ERK inhibitor)via the caudal vein before ISO injection.Animals were fasted for 12hafter last injection with ISO.The heart function was monitored with physiologic signal analysis system and the electrocardiogram was recorded.The H2S concentration in plasma was biochemically determined.The myo-cardial infarction size and the apoptosis index(AI)of cardiomyocytes was measured by TTC staining and TUNEL assay,respectively.And the expression of GRP78,CHOP and p-ERK were detected in the myocardial tissue by using immunohistochemistry.Results The H2S concentration was much lower in ISO group than in control group(P<0.01for all).NaHS(14μmol/kg)could significantly improve the impaired heart function caused by myocardial ischemia,which could be reversed by PD98059.The expression of GRP78and CHOP was significantly decreased,that of p-ERK was significantly increased and the AI and the myocardial infarction size were profoundly reduced in NaHS+I(xiàn)SO group when compared with ISO group(P<0.05).However,the myocardial infarction size,the AI,the expression of GRP78and CHOP were obviously increased,while the heart function was significantly attenuated in PD98059group when compared with NaHS+I(xiàn)SO group(all P<0.05).There was no statistical difference in p-ERK expression between the two groups.Moreover,the correlation analysis showed that the expression of CHOP and AI had a negative correlation with the expression of p-ERK in myocardial tissues(P<0.01).Conclusion The decrease of endogenous H2S and the endoplasmic reticulum stress may be involved in the occurrence and development of acute ischemic myocardial injury.The protective effect of H2S on ischemic myocardia may be associated with the activation of ERK and thereby inhibit the apoptosis induced by the endoplasmic reticulum stress.
hydrogen sulfide; myocardial ischemia; endoplasmic reticulum stress; extracellular signal regulation kinase; GRP78; CHOP
R363.1
10.3870/j.issn.1672-0741.2015.03.002
*國(guó)家自然科學(xué)基金資助項(xiàng)目(No.31071005)
#同為第一作者
祝曉瑩,女,1982年生,碩士研究生,E-mail:luofan3904@sina.com;王桂美,女,1986年生,碩士研究生,E-mail:yuhan-zp@163.com△通訊作者,Corresponding author,E-mail:yanxiaohong461@126.com
華中科技大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)2015年3期