張厚義
【摘要】反思,意指不同于直接認(rèn)識(shí)的間接認(rèn)識(shí)。需要指出的是,人們常常錯(cuò)誤的理解反思僅僅作為回顧,只是把它放在問(wèn)題解決活動(dòng)的最后一環(huán)。在教學(xué)過(guò)程中,反思并不等同于回顧,即不僅僅是對(duì)教學(xué)結(jié)果的回顧,反思應(yīng)貫穿于教學(xué)活動(dòng)的始終。
【關(guān)鍵詞】反思能力 精講多練 提問(wèn)
在新課標(biāo)理念下,數(shù)學(xué)教學(xué)必須突出學(xué)生的主體地位,把課堂的時(shí)間、空間、學(xué)習(xí)過(guò)程都還給學(xué)生,教師應(yīng)是課堂的組織者、引領(lǐng)者、參與者。評(píng)價(jià)一堂數(shù)學(xué)課是否高效,就要看能否充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性、主動(dòng)性,激發(fā)學(xué)生學(xué)習(xí)的認(rèn)知需求,培養(yǎng)學(xué)生的創(chuàng)新精神和實(shí)踐能力,促進(jìn)學(xué)生各種能力的提高和發(fā)展。
一、在數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的新觀念、新思想
新觀念中不僅包含對(duì)事物的新認(rèn)識(shí)、新思想,而且包含一個(gè)不斷學(xué)習(xí)的過(guò)程。為此作為新人才就必須學(xué)會(huì)學(xué)習(xí),只有不斷地學(xué)習(xí),獲取新知識(shí)更新觀念,形成新認(rèn)識(shí)。在數(shù)學(xué)史上,法國(guó)大數(shù)學(xué)家笛卡爾在學(xué)生時(shí)代喜歡博覽群書(shū),認(rèn)識(shí)到代數(shù)與幾何割裂的弊病,他用代數(shù)方法研究幾何的作圖問(wèn)題,指出了作圖問(wèn)題與求方程組的解之間的關(guān)系,通過(guò)具體問(wèn)題,提出了坐標(biāo)法,把幾何曲線表示成代數(shù)方程,斷言曲線方程的次數(shù)與坐標(biāo)軸的選擇無(wú)關(guān),用方程的次數(shù)對(duì)曲線加以分類,認(rèn)識(shí)到了曲線的交點(diǎn)與方程組的解之間的關(guān)系。主張把代數(shù)與幾何相結(jié)合,把量化方法用于幾何研究的新觀點(diǎn),從而創(chuàng)立解析幾何學(xué)。作為數(shù)學(xué)教師在教學(xué)中不僅要教學(xué)生學(xué)會(huì),更應(yīng)教學(xué)生會(huì)學(xué)。在不等式證明的教學(xué)中,我重點(diǎn)教學(xué)生遇到問(wèn)題怎么分析,靈活運(yùn)用比較、分析、綜合三種基本證法,同時(shí)引導(dǎo)學(xué)生用三角、復(fù)數(shù)、幾何等新方法研究證明不等式。
例 已知a>=0,b>=0,且a+b=1,求證(a+2)(a+2)+(b+2)(b+2)>=25/2
證明這個(gè)不等式方法較多,除基本證法外,可利用二次函數(shù)的求最值、三角代換、構(gòu)造直角三角形等途徑證明。若將a+b=1(a>=0,b>=0)作為平面直角坐標(biāo)系內(nèi)的線段,也能用解析幾何知識(shí)求證。證法如下:在平面直角坐標(biāo)系內(nèi)取直線段x+y=1,(0==1),(a+2)(a+2)+(b+2)(b+2)看作點(diǎn)(-2,-2)與線段x+y=1上的點(diǎn)(a,b)之間的距離的平方。由于點(diǎn)到一直線的距離是這點(diǎn)與該直線上任意一點(diǎn)之間的距離的最小值。而d*d=(-2-2-1)/2=25/2,所以(a+2)(a+2)+(b+2)(b+2)>=25/2?!笆谥贼~(yú),不如授之以漁”,方法的掌握,思想的形成,才能使學(xué)生受益終生。
二、在數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的創(chuàng)新能力
創(chuàng)新能力在數(shù)學(xué)教學(xué)中主要表現(xiàn)對(duì)已解決問(wèn)題尋求新的解法。“學(xué)起于思,思源于疑”,學(xué)生探索知識(shí)的思維過(guò)程總是從問(wèn)題開(kāi)始,又在解決問(wèn)題中得到發(fā)展和創(chuàng)新。教學(xué)過(guò)程中學(xué)生在教師創(chuàng)設(shè)的情境下,自己動(dòng)手操作、動(dòng)腦思考、動(dòng)口表達(dá),探索未知領(lǐng)域,尋找客觀真理,成為發(fā)現(xiàn)者,要讓學(xué)生自始至終地參與這一探索過(guò)程,發(fā)展學(xué)生創(chuàng)新能力。如在球的體積教學(xué)中,我利用課余時(shí)間將學(xué)生分為三組,要求第一組每人做半徑為10厘米的半球;第二組每人做半徑為10厘米高10厘米圓錐;第三組每人做半徑為10厘米高10厘米圓柱。每組出一人又組成許多小組,各小組分別將圓錐放入圓柱中,然后用半球裝滿土倒入圓柱中,學(xué)生們發(fā)現(xiàn)它們之間的關(guān)系,半球的體積等于圓柱與圓錐體積之差。球的體積公式的推導(dǎo)過(guò)程,集公理化思想、轉(zhuǎn)化思想、等積類比思想及割補(bǔ)轉(zhuǎn)換方法之大成,就是這些思想方法靈活運(yùn)用的完美范例。教學(xué)中再次通過(guò)展現(xiàn)體積問(wèn)題解決的思路分析,形成系統(tǒng)的條理的體積公式的推導(dǎo)線索,把這些思想方法明確地呈現(xiàn)在學(xué)生的眼前。學(xué)生才能從中領(lǐng)悟到當(dāng)初數(shù)學(xué)家的創(chuàng)造思維進(jìn)程,激發(fā)學(xué)生的創(chuàng)造思維和創(chuàng)新能力。
三、在數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生經(jīng)營(yíng)和開(kāi)拓市場(chǎng)的能力
一切數(shù)學(xué)知識(shí)都來(lái)源于現(xiàn)實(shí)生活中,同時(shí),現(xiàn)實(shí)生活中許多問(wèn)題都需要用數(shù)學(xué)知識(shí)、數(shù)學(xué)思想方法去思考解決。比如,洗衣機(jī)按什么程序運(yùn)行有利節(jié)約用水;漁場(chǎng)主怎樣經(jīng)營(yíng)既能獲得最高產(chǎn)量,又能實(shí)現(xiàn)可持續(xù)發(fā)展;一件好的產(chǎn)品設(shè)計(jì)怎樣營(yíng)銷方案才能快速得到市場(chǎng)認(rèn)可,產(chǎn)生良好的經(jīng)濟(jì)效益。為此數(shù)學(xué)教學(xué)中應(yīng)有意識(shí)地培養(yǎng)學(xué)生經(jīng)營(yíng)和開(kāi)拓市場(chǎng)的能力。善于經(jīng)營(yíng)和開(kāi)拓市場(chǎng)的能力在數(shù)學(xué)教學(xué)中主要體現(xiàn)為對(duì)一個(gè)數(shù)學(xué)問(wèn)題或?qū)嶋H問(wèn)題如何設(shè)計(jì)出最佳的解決方案或模型。如證明組合恒等式Cnm=Cnm-1+Cn-1m-1,一般分析是利用組合數(shù)的性質(zhì),通過(guò)一些適當(dāng)?shù)挠?jì)算或化簡(jiǎn)來(lái)完成。但是可以讓學(xué)生思考能否利用組合數(shù)的意義來(lái)證明。即構(gòu)造一個(gè)組合模型,原式左端為m個(gè)元素中取n個(gè)的組合數(shù)。原式右端可看成是同一問(wèn)題的另一種算法:把滿足條件的組合分為兩類,一類為不取某個(gè)元素a1,有Cnm-1種取法;一類為必取a1有Cn-1m-1種取法。由加法原理及解的唯一性,可知原式成立。又如,經(jīng)營(yíng)和開(kāi)拓市場(chǎng)時(shí),我們常常需要對(duì)市場(chǎng)進(jìn)行一些基本的數(shù)字統(tǒng)計(jì),通過(guò)建立數(shù)學(xué)模型進(jìn)行分析研究來(lái)駕馭和把握市場(chǎng)的實(shí)例也不少。這類問(wèn)題的講解不僅能提高學(xué)生的智力和應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的能力,而且對(duì)提高學(xué)生的善于經(jīng)營(yíng)和開(kāi)拓市場(chǎng)的能力大有益處。
四、在數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生團(tuán)隊(duì)精神
團(tuán)隊(duì)精神就是一種相互協(xié)作、相互配合的工作精神。數(shù)學(xué)教師在教學(xué)中多設(shè)計(jì)一些學(xué)生互相配合能解決的問(wèn)題,增進(jìn)學(xué)生協(xié)作意識(shí),培養(yǎng)他們的團(tuán)隊(duì)精神。如我又在講授球的體積公式時(shí),課前我讓20名學(xué)生用厚0.5厘米的紙板依次做半徑為10、9.5、9……0.5厘米圓柱,列出各圓柱的體積計(jì)算公式并算出結(jié)果。又讓40名學(xué)生用厚0.25厘米的紙板依次做半徑為10、9.75、9.5……0.5、0.25厘米圓柱,列出各圓柱的體積計(jì)算公式并算出結(jié)果。課堂上我先把球的體積公式寫(xiě)在黑板上,然后讓學(xué)生用兩根細(xì)鐵絲分別將兩組圓柱按大到小通過(guò)中心軸依次串連得到兩個(gè)近似半球的幾何體。讓大家比較它們的體積與半徑為10厘米的半球體積,發(fā)現(xiàn)第二組比第一組的體積接近于半球的體積,如果紙板厚度變小得到的幾何體體積愈接近于半球的體積,幫助學(xué)生發(fā)現(xiàn)了球的體積公式另一證法。同時(shí)不僅向?qū)W生講教學(xué)過(guò)程中的實(shí)驗(yàn)材料為什么讓大家各自準(zhǔn)備,而且有意識(shí)地讓學(xué)生損壞串連到一起的幾何體和各自的小圓柱。通過(guò)這些使學(xué)生認(rèn)識(shí)到只有齊心協(xié)力才能達(dá)到成功的彼岸。數(shù)學(xué)教學(xué)具有不僅使學(xué)生學(xué)知,學(xué)做;而且使學(xué)生學(xué)共同生活,學(xué)共同發(fā)展的目標(biāo)任務(wù)。