国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

用“裂項(xiàng)法”求解一類高考數(shù)列題

2015-05-30 12:06:25王琪芬
儷人·教師版 2015年18期
關(guān)鍵詞:等比數(shù)列等差數(shù)列

王琪芬

【摘要】高考題是既源于教材,又注重能力,處處體現(xiàn)創(chuàng)新。所以在平常的教學(xué)和學(xué)習(xí)中,關(guān)鍵要學(xué)會(huì)學(xué)習(xí)方法,注重理解,才能提升能力,有所創(chuàng)新,以不變應(yīng)萬(wàn)變。而不要盲目背題型,套模式,做題目。

【關(guān)鍵詞】數(shù)列求和 裂項(xiàng)法 分式數(shù)列 等比數(shù)列 等差數(shù)列

普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(A版)必修5第47頁(yè),習(xí)題2.3 B組第4題:數(shù)列{ }的前 項(xiàng)和 。研究一下,能否找到求 的一個(gè)公式,你能對(duì)這個(gè)問(wèn)題作一些推廣嗎?

顯然,我們不妨把數(shù)列{ }叫分式數(shù)列,其求和方法為“裂項(xiàng)法”。即因?yàn)?= ,所以

= = = 。

推廣:一般地,形如分式結(jié)構(gòu)的數(shù)列求和問(wèn)題,可考慮用“裂項(xiàng)法”使數(shù)列裂項(xiàng)后能前后相消達(dá)到求和的目的。

2014年高考數(shù)學(xué)試卷中,有關(guān)數(shù)列求和問(wèn)題,有的和分式數(shù)列求和有關(guān),但又不是簡(jiǎn)單的課本上所講的裂項(xiàng),他需要我們根據(jù)題目的特征進(jìn)行分析,整理,構(gòu)造。真正體現(xiàn)出高考出題的“源于課本,重在能力,體現(xiàn)創(chuàng)新”的精神,確實(shí)需要我們?cè)诮虒W(xué)和學(xué)習(xí)中去體會(huì)。

例1. (2014大綱卷理18) 等差數(shù)列 的前n項(xiàng)和為 ,已知 , 為整數(shù),且 .(1)求 的通項(xiàng)公式;(2)設(shè) ,求數(shù)列 的前n項(xiàng)和 .

解:(1)因?yàn)?,所以 ,得到 ,又因?yàn)?為整數(shù),所以 ,所以 。

(2)因?yàn)?= = 。所以 =

= 。

[評(píng)析]:本題(2)與課本題是同一類題型,關(guān)鍵是裂項(xiàng)時(shí)要注意等價(jià)變形。

例2.(2014新課標(biāo)卷理17)已知數(shù)列 滿足 =1, .

(Ⅰ)證明 是等比數(shù)列,并求 的通項(xiàng)公式;

(Ⅱ)證明: .

(Ⅰ)證明:由 得 ,所以 ,所以 是等比數(shù)列,首項(xiàng)為 ,公比為3,所以 ,解得 。

⑵ 因?yàn)?,所以

。

所以 +

.

[評(píng)析]:本題(2)從形式上看是不等式的證明,進(jìn)一步分析確是分式數(shù)列求和,但這個(gè)分式數(shù)列通頂公式的分母中只含一項(xiàng),按常規(guī)不能用裂項(xiàng)法,要用裂項(xiàng)法就要再構(gòu)造一相鄰項(xiàng)從而達(dá)到裂項(xiàng)目的。由此可看出出題人的良苦用心。

例3.(2014山東卷理19)已知等差數(shù)列 的公差為2,前 項(xiàng)和為 ,且 成等比數(shù)列.(Ⅰ)求數(shù)列 的通項(xiàng)公式;(Ⅱ)令 ,求數(shù)列 的前 項(xiàng)和 .

解:(I)∵

解得

(II) ,

[評(píng)析]:本題(2)中雖然是分式數(shù)列,但按常規(guī),通項(xiàng)裂成相減的兩項(xiàng)顯然不能達(dá)到要求,而恰恰相反它能裂成相加的兩項(xiàng),此時(shí)注意到前面的符號(hào)關(guān)系,馬上就能達(dá)到要求。

綜上所述,高考題是既源于教材,又注重能力,處處體現(xiàn)創(chuàng)新。所以在今后的教學(xué)和學(xué)習(xí)中,關(guān)鍵要學(xué)習(xí)方法,注重理解,才能提升能力,有所創(chuàng)新,以不變應(yīng)萬(wàn)變。

【參考書目】

2014高考試題。

猜你喜歡
等比數(shù)列等差數(shù)列
建構(gòu)“等比數(shù)列”的奇葩之美
聚焦遞推關(guān)系求數(shù)列通項(xiàng)
由數(shù)列想到語(yǔ)文的概括題
對(duì)一類數(shù)列通項(xiàng)公式的探究
東方教育(2016年12期)2017-01-12 16:33:21
等差數(shù)列及等比數(shù)列的性質(zhì)運(yùn)用
例談錯(cuò)位相減求和在高考中的應(yīng)用
考試周刊(2016年61期)2016-08-16 14:28:46
用函數(shù)和方程思想求解等差數(shù)列的前n項(xiàng)和
甘肅教育(2015年6期)2015-05-12 18:50:28
兖州市| 阜阳市| 南雄市| 周宁县| 和田市| 宁国市| 吉木乃县| 聂荣县| 广灵县| 中方县| 陇川县| 法库县| 余江县| 东乡县| 张家界市| 开远市| 丹凤县| 油尖旺区| 都兰县| 南木林县| 麻栗坡县| 海口市| 绍兴市| 久治县| 江北区| 新干县| 石楼县| 牟定县| 株洲市| 伊吾县| 长葛市| 固阳县| 南靖县| 云南省| 松桃| 蚌埠市| 纳雍县| 吉木乃县| 合水县| 治多县| 福贡县|