何曉樂(lè),劉 軍,張航向,王 寧,徐 榮,楊 潔,王曉明*
?
TLR4/NF-κB信號(hào)轉(zhuǎn)導(dǎo)通路介導(dǎo)吡格列酮在內(nèi)脂素誘導(dǎo)內(nèi)皮細(xì)胞炎癥損傷過(guò)程中作用機(jī)制的探討
何曉樂(lè)1,劉 軍2,張航向1,王 寧1,徐 榮1,楊 潔3,王曉明1*
(1第四軍醫(yī)大學(xué)西京醫(yī)院老年病科,西安 710032;2蘭州軍區(qū)蘭州總醫(yī)院骨科中心,蘭州 730000;3蘭州軍區(qū)28分部西關(guān)干休所,西安 710000)
觀察吡格列酮對(duì)內(nèi)脂素誘導(dǎo)人臍靜脈內(nèi)皮細(xì)胞(HUVECs)炎癥損傷過(guò)程中的影響,探討吡格列酮改善內(nèi)皮功能的信號(hào)轉(zhuǎn)導(dǎo)機(jī)制。將HUVECs隨機(jī)分組,給予不同濃度的內(nèi)脂素進(jìn)行誘導(dǎo),運(yùn)用蛋白印跡法(Western blotting)檢測(cè)各組細(xì)胞Toll樣受體4(TLR4)、細(xì)胞間黏附分子-1(ICAM-1)、核因子-κB(NF-κB)和NK-κB抑制蛋白α(IκB-α)的表達(dá);再給予過(guò)氧化物酶體增殖物激活受體γ(PPARγ)激動(dòng)劑吡格列酮,觀察各組指標(biāo)表達(dá)變化。與正常對(duì)照組相比,內(nèi)脂素呈濃度依賴性地增加ICAM-1含量,下調(diào)IκB-α蛋白的表達(dá),同時(shí)上調(diào)TLR4的表達(dá),差異具有統(tǒng)計(jì)學(xué)意義(<0.05),且當(dāng)內(nèi)脂素濃度為1×10-5mol/L時(shí)效果最顯著。而吡格列酮呈濃度依賴性地抑制內(nèi)脂素所誘導(dǎo)的上述效應(yīng),差異具有統(tǒng)計(jì)學(xué)意義(<0.05),當(dāng)吡格列酮濃度為20μmol/L時(shí)效果最顯著。吡格列酮對(duì)內(nèi)脂素誘導(dǎo)的HUVECs炎癥損傷有保護(hù)作用,其機(jī)制可能與抑制TLR4/NF-κB信號(hào)轉(zhuǎn)導(dǎo)通路有關(guān)。
吡格列酮;內(nèi)脂素;內(nèi)皮細(xì)胞;炎癥;TLR4/NF-κB信號(hào)通路
Toll樣受體4(Toll-like receptor 4,TLR4)是天然免疫系統(tǒng)的一種模式識(shí)別受體,在免疫效應(yīng)細(xì)胞單核/巨噬細(xì)胞和樹(shù)突狀細(xì)胞中均有表達(dá)[1]。TLR4與其相應(yīng)配體結(jié)合上調(diào)核因子-κB(nuclear factor-κB,NF-κB)的表達(dá)和免疫反應(yīng)基因的激活,進(jìn)而調(diào)控多種炎性因子、趨化因子、黏附因子等分泌,參與動(dòng)脈粥樣硬化(atherosclerosis,AS)的發(fā)生、發(fā)展,TLR4在斑塊的穩(wěn)定性破壞方面起重要作用[2]。內(nèi)脂素(visfantin)是Fukuhara等[3]最新發(fā)現(xiàn)的由一種脂肪細(xì)胞分泌的細(xì)胞因子,研究表明該因子與炎性反應(yīng)及2型糖尿病均有密切關(guān)系。在周桂建等[4]的研究中指出,冠心病患者中的血清內(nèi)脂素水平顯著升高,是冠心病的危險(xiǎn)因子之一。吡格列酮(pioglitazone)作為目前臨床廣泛應(yīng)用的經(jīng)典噻唑烷二酮類(thiazolidinediones,TZDs)胰島素增敏劑類藥物,在控制血糖的同時(shí)具有改善多種心血管危險(xiǎn)因素的作用[5],但其對(duì)AS發(fā)展前期血管內(nèi)皮細(xì)胞損傷過(guò)程中的影響目前尚不清楚,TLR4/NF-κB信號(hào)通路是否參與吡格列酮對(duì)內(nèi)脂素誘導(dǎo)的內(nèi)皮細(xì)胞的損傷過(guò)程,國(guó)內(nèi)外均無(wú)報(bào)道。本研究用吡格列酮干預(yù)內(nèi)脂素誘導(dǎo)的人臍靜脈內(nèi)皮細(xì)胞(human umbilical vein endothelial cells,HUVECs),探討吡格列酮改善內(nèi)皮細(xì)胞炎癥損傷的分子機(jī)制。
HUVECs細(xì)胞株(第四軍醫(yī)大學(xué)免疫教研室),核因子κB抑制蛋白α(inhibitor of nuclear factor κB-α,IκB-α)抗體(江蘇碧云天生物技術(shù)研究所);鼠抗兔二抗、二甲亞砜(DMSO)、胰蛋白酶(均Sigma公司,美國(guó));DMEM低糖培養(yǎng)液(HycLone公司,美國(guó));小牛血清(杭州四季青公司);吡格列酮(Cayman公司,美國(guó))。
HUVECs用含10%小牛血清的DMEM細(xì)胞培養(yǎng)液在37%、5%CO2的培養(yǎng)箱內(nèi)培養(yǎng)2~3d。待細(xì)胞融合后,用0.25%胰蛋白酶進(jìn)行消化。鏡下觀察到細(xì)胞收縮變圓時(shí)棄去消化液,加入培養(yǎng)液以終止胰蛋白酶的作用。用滴管吹打壁上的細(xì)胞,使其完全脫落并分離。根據(jù)實(shí)驗(yàn)需要按5×105個(gè)/ml接種于培養(yǎng)板或培養(yǎng)瓶中。待細(xì)胞融合后,換用無(wú)血清的DMEM培養(yǎng)液培養(yǎng)24h,使細(xì)胞同步化,然后即可進(jìn)行分組實(shí)驗(yàn)。
取對(duì)數(shù)生長(zhǎng)期細(xì)胞,以每孔2×105/ml接種于多聚賴氨酸包被的96孔板中,于37℃、5% CO2培養(yǎng)箱中進(jìn)行孵育,24h內(nèi)細(xì)胞達(dá)到80%~90%融合后,用含體積分?jǐn)?shù)0.01%磷酸鹽緩沖液(phosphate buffer saline,PBS)的DMEM孵育細(xì)胞24h,使細(xì)胞同步化。將接種孔分為3組。(1)正常對(duì)照組:在培養(yǎng)液中孵育HUVECs 24h;(2)內(nèi)脂素干預(yù)組:給予不同濃度的內(nèi)脂素(1×10?7、l×10?6和1×10-5mol/L)后孵育24h;(3)吡格列酮干預(yù)組:給予濃度為1×10-5mol/L的內(nèi)脂素預(yù)孵2h后,加入不同濃度的吡格列酮(10和20μmol/L),孵育24h。
棄去培養(yǎng)液,用冷PBS輕輕漂洗一遍后,隨即加入細(xì)胞裂解液和蛋白酶抑制劑以裂解細(xì)胞。刮下細(xì)胞,置于Eppendorf離心管,并用破膜儀反復(fù)抽打細(xì)胞3次以剪切細(xì)胞內(nèi)核酸,使蛋白充分溶出。靜置于冰上20min以沉淀蛋白,再以12 000轉(zhuǎn)/min、4℃離心15min。取上清液并移至另一Eppendorf離心管中。按照4∶1的體積比加入蛋白上樣緩沖液,隨后煮沸10min,置-20℃保存。蛋白定量按照試劑盒說(shuō)明進(jìn)行。蛋白上樣量為20μg,12%聚丙烯酰胺凝膠電泳使用濃縮膠80V或分離膠120V電泳分離蛋白,轉(zhuǎn)膜至聚偏二氟乙烯(polyvinylidene fluoride,PVDF)膜;采用5g脫脂奶粉封閉2h;加入1∶1000稀釋的兔抗人TLR4多克隆抗體和內(nèi)標(biāo)條帶一抗的TBST緩沖液孵育過(guò)夜;磷酸鹽吐溫緩沖液振蕩洗膜10min×3次,加入1∶5000稀釋的二抗,室溫下孵育1h,再次洗膜。采用ECL底物化學(xué)發(fā)光顯色后曝光顯影,避光晾干后掃描存盤,并用電腦軟件進(jìn)行條帶灰度值的分析。
收集各組細(xì)胞加入細(xì)胞裂解液提取總蛋白,并用Bradford法測(cè)定蛋白質(zhì)濃度,補(bǔ)上樣緩沖液使總量為80μl,再加入100μl溴酚藍(lán)染液煮沸4min。然后各取10μl樣品,SDS-PAGE凝膠進(jìn)行電泳分離,半干法將蛋白轉(zhuǎn)移至硝酸纖維素膜,封閉、洗膜,加入1∶600稀釋的兔抗大鼠IκB-α、ICAM-1一抗,4℃過(guò)夜,用洗膜液漂洗后加入1∶5000稀釋的二抗,搖床1h,TBST緩沖液沖洗3遍,每次5min,加入ECL熒光液顯色,上機(jī)檢測(cè)。用目標(biāo)條帶與內(nèi)標(biāo)條帶的積分吸光度值(integrated absorbance,IA)的比值的百分率表示IκB-α和ICAM-1的表達(dá)水平。
與對(duì)照組相比,內(nèi)脂素干預(yù)組隨著濃度(1×10-7、1×10-6和1×10-5mol/L)升高,TLR4的表達(dá)升高(<0.05),且在內(nèi)脂素濃度為1×10-5mol/L時(shí)作用最為明顯,TLR4的表達(dá)最高。提示內(nèi)脂素呈濃度依賴性地上調(diào)TLR4的表達(dá)(圖1)。
圖1 內(nèi)脂素對(duì)HUVECs中TLR4蛋白表達(dá)的影響
Figure 1 Effect of visfantin on TLR4 expression in HUVECs HUVECs: human umbilical vein endothelial cells; TLR4: Toll-like receptor 4. Compared with control group,*<0.05; compared with visfantin 1×10-7mol/L group,#<0.05; compared with visfantin 1×10-6mol/L group,△<0.05
與對(duì)照組相比,內(nèi)脂素干預(yù)組隨著濃度(1×10-7、1×10-6和1×10-5mol/L)升高,ICAM-1的表達(dá)升高(<0.05),且在內(nèi)脂素濃度為1×10-5mol/L時(shí)作用最為明顯,ICAM-1的表達(dá)最高。提示內(nèi)脂素呈濃度依賴性地上調(diào)ICAM-1的表達(dá)(圖2)。
與對(duì)照組相比,內(nèi)脂素干預(yù)組隨著濃度(1×10-7、1×10-6和1×10-5mol/L)升高,IκB-α表達(dá)降低(<0.05),且在內(nèi)脂素濃度為1×10-7mol/L時(shí)作用最為明顯,IκB-α的表達(dá)最低。提示內(nèi)脂素呈濃度依賴性地下調(diào)IκB-α的表達(dá)(圖3)。
圖2 內(nèi)脂素對(duì)HUVECs中ICAM-1表達(dá)的影響
Figure 2 Effect of visfantin on ICAM-1 expression in HUVECs HUVECs: human umbilical vein endothelial cells; ICAM-1: intercellular cell adhesion molecule-1. Compared with control group,*<0.05;compared with visfantin 1×10-7mol/L group,#<0.05; compared with visfantin 1×10-6mol/L group,△<0.05
圖3 內(nèi)脂素對(duì)HUVECs中IκB-α表達(dá)的影響
Figure 3 Effect of visfantin on IκB-α expression in HUVECs HUVECs: human umbilical vein endothelial cells; IκB-α: inhibitor of nuclear factor κB-α. Compared with control group,*<0.05; compared with visfantin 1×10-7mol/L group,#<0.05; compared with visfantin 1×10-6mol/L group,△<0.05
與對(duì)照組比較,10μmol/L 吡格列酮干預(yù)組的HUVECs TLR4表達(dá)升高(<0.05);在20μmol/L 吡格列酮干預(yù)組中,TLR4的表達(dá)下降(<0.05),提示吡格列酮干預(yù)濃度為10μmol/L時(shí),中和作用較為明顯。但和1×10-5mol/L的內(nèi)脂素干預(yù)組比較,吡格列酮干預(yù)組隨著吡格列酮濃度(10和20μmol/L)升高,TLR4的表達(dá)下降(<0.05),且在吡格列酮濃度為20μmol/L時(shí)效果最為顯著,提示吡格列酮呈濃度依賴性地抑制內(nèi)脂素對(duì)HUVECs TLR4表達(dá)的上調(diào)作用(圖4)。
圖4 吡格列酮對(duì)內(nèi)脂素誘導(dǎo)的HUVECs中TLR4表達(dá)變化的影響
Figure 4 Effect of pioglitazone on TLR4 expression in HUVECs induced by visfantin HUVECs: human umbilical vein endothelial cells; TLR4: Toll-like receptor 4. Compared with control group,*<0.05; compared with visfantin 1×10-5mol/L group,#<0.05; compared with pioglitazone 10μmol/L +visfantin 1×10-5mol/L group,△<0.05
與對(duì)照組比較,10μmol/L吡格列酮干預(yù)組的HUVECs ICAM-1表達(dá)升高(<0.05),在20μmol/L吡格列酮干預(yù)組中,ICAM-1的表達(dá)下降(<0.05),提示吡格列酮干預(yù)濃度為10μmol/L時(shí),中和作用較為明顯。但與1×10-5mol/L的內(nèi)脂素干預(yù)組比較,吡格列酮干預(yù)組隨著吡格列酮濃度(10和20μmol/L)升高,ICAM-1的表達(dá)下降(<0.05),且在吡格列酮濃度為20μmol/L時(shí)效果最為顯著,提示吡格列酮呈濃度依賴性地抑制內(nèi)脂素對(duì)HUVECs ICAM-1表達(dá)的上調(diào)作用(圖5)。
與對(duì)照組和1×10-5mol/L內(nèi)脂素干預(yù)組比較,吡格列酮干預(yù)組隨著吡格列酮濃度(10和20μmol/L)升高,IκB-α表達(dá)升高(<0.05),且在吡格列酮濃度為20μmol/L時(shí)效果最為顯著,提示吡格列酮呈濃度依賴性地抑制內(nèi)脂素對(duì)HUVECs IκB-α表達(dá)的下調(diào)作用(圖6)。
圖5 吡格列酮對(duì)內(nèi)脂素誘導(dǎo)的HUVECs中ICAM-1表達(dá)的影響
Figure 5 Effect of pioglitazone on ICAM-1 expression in HUVECs induced by visfantin HUVECs: human umbilical vein endothelial cells; ICAM-1: intercellular cell adhesion molecule-1. Compared with control group,*<0.05;compared with visfantin 1×10-5mol/L group,#<0.05; compared with pioglitazone 10umol/L +visfantin 1×10-5mol/L group,△<0.05
圖6 吡格列酮對(duì)內(nèi)脂素誘導(dǎo)的HUVECs中IκB-α表達(dá)的影響
Figure 6 Effect of pioglitazone on IκB-α expression in HUVECs induced by visfantin HUVECs: human umbilical vein endothelial cells; IκB-α: inhibitor of nuclear factor κB-α. Compared with control group,*<0.05; compared with visfantin 1×10-5mol/L group,#<0.05; compared with pioglitazone 10μmol/L +visfantin 1×10-5mol/L group,△<0.05
糖代謝障礙和高血壓往往共同發(fā)生,高血壓的發(fā)病率在糖尿病人群中顯著增高,2型糖尿病伴高血壓患者往往發(fā)展成為糖尿病并發(fā)AS、甚至加快老年多器官功能不全疾病的發(fā)展。究其本質(zhì),炎性因子的過(guò)度表達(dá)是關(guān)鍵基礎(chǔ),血管內(nèi)皮細(xì)胞損傷是直接因素[6]。近年來(lái)的動(dòng)物實(shí)驗(yàn)和臨床實(shí)驗(yàn)均顯示,腫瘤壞死因子α、白細(xì)胞介素-6等炎性因子水平可影響胰島素受體敏感性[7],故而糖尿病患者體內(nèi)炎性因子濃度也明顯高于正常人,表明慢性炎癥是2型糖尿病伴高血壓患者的重要發(fā)病基礎(chǔ)。不斷有學(xué)者發(fā)現(xiàn)內(nèi)脂素有多種生理功能,包括炎性反應(yīng)、胰島素抵抗等[8]。Gheibi等[9]發(fā)現(xiàn),內(nèi)脂素水平與炎性標(biāo)志物有顯著關(guān)聯(lián),可誘導(dǎo)C?反應(yīng)蛋白、白細(xì)胞介素?1β等多種炎性因子的表達(dá)。Bu?dak等[10]研究提示血清內(nèi)脂素水平與冠狀動(dòng)脈病變程度呈正相關(guān),說(shuō)明內(nèi)脂素與炎性反應(yīng)密切相關(guān)。Lewis等[11]研究發(fā)現(xiàn),內(nèi)脂素水平隨冠狀動(dòng)脈病變支數(shù)和Gensini積分的增加而升高,是促進(jìn)斑塊不穩(wěn)定化中起關(guān)鍵作用的酶。Sato等[12]研究證實(shí)內(nèi)脂素可通過(guò)激活NF-κB途徑上調(diào)人單核細(xì)胞中基質(zhì)金屬蛋白酶(matrix metallo proteinases,MMPs)中的MMP-2和MMP-9的表達(dá)及活性。
TLR4在機(jī)體的免疫防御中起重要作用,作為聯(lián)系免疫反應(yīng)和炎性反應(yīng)之間的橋梁,與AS的發(fā)展密切相關(guān)[13]。TLR4介導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo)主要通過(guò)髓樣分化蛋白88依賴途徑和非依賴途徑產(chǎn)生大量的炎性因子[14]。已有研究證實(shí),代謝綜合征患者體內(nèi)游離脂肪酸和脂肪炎性因子等水平上升可激活TLR4引起炎性反應(yīng),進(jìn)而阻礙胰島素信號(hào)轉(zhuǎn)導(dǎo),心血管疾病患者體內(nèi)TLR4水平也高于正常水平[15]。對(duì)AS患者的研究顯示,TLR4可影響AS相關(guān)炎性因子的合成與釋放,提示TLR4很可能是AS防治的標(biāo)靶[16]。NF-κB是重要的炎性介質(zhì)轉(zhuǎn)錄因子,是由p65和p50構(gòu)成的同源或異源二聚體[17]。Junker等[18]報(bào)道NF-κB參與多種炎性介質(zhì)及細(xì)胞因子的基因調(diào)控。炎性因子可激活核因子B抑制蛋白激酶,使IκB-α分子磷酸化,啟動(dòng)一系列炎性反應(yīng)相關(guān)基因的轉(zhuǎn)錄程序,誘導(dǎo)更多的炎性因子高度表達(dá)[19]。Daeian等[20]的體外研究結(jié)果提示NF-κB不僅介導(dǎo)TLR4的下游細(xì)胞轉(zhuǎn)導(dǎo),且可誘導(dǎo)TLR4的表達(dá)。
有報(bào)道揭示在2型糖尿病患者尤其是肥胖患者的血清中內(nèi)脂素水平較高[21],我們推測(cè)其與2型糖尿病患者繼發(fā)高血壓甚至誘發(fā)AS相關(guān)。在本實(shí)驗(yàn)中,內(nèi)脂素具有上調(diào)HUVECs TLR4的表達(dá)的作用,且隨著濃度增加,效果愈加明顯,內(nèi)脂素呈濃度依賴性地下調(diào)HUVECs IκB-α表達(dá)。綜上,提示內(nèi)脂素對(duì)TLR4/NF-κB信號(hào)通路具有激活作用;同時(shí)我們發(fā)現(xiàn)內(nèi)脂素參與炎性因子的調(diào)節(jié),呈濃度依賴性地上調(diào)ICAM-1的表達(dá)。實(shí)驗(yàn)結(jié)果表明,內(nèi)脂素通過(guò)促炎作用和激活TLR4/NF-κB信號(hào)通路參與內(nèi)皮細(xì)胞的損傷過(guò)程,為患者AS發(fā)生發(fā)展的重要因素之一。
吡格列酮是胰島素增敏劑TZDs類藥物,能通過(guò)激活過(guò)氧化物酶體增殖物激活受體(peroxisome proliferators activated receptors,PPARs)而發(fā)揮其生物學(xué)作用[22],其中的受體亞型PPARγ是一個(gè)重要的細(xì)胞分化轉(zhuǎn)錄因子,調(diào)節(jié)糖和脂質(zhì)代謝,調(diào)控血管緊張素Ⅱ的Ⅰ型受體mRNA的表達(dá)[23],在炎性表達(dá)、內(nèi)皮細(xì)胞凋亡、心血管疾病的形成機(jī)制中發(fā)揮重要的作用[24]。有報(bào)道稱,PPARγ受體激動(dòng)劑通過(guò)誘導(dǎo)NO的釋放對(duì)血管內(nèi)皮具有保護(hù)作用[25]。本實(shí)驗(yàn)發(fā)現(xiàn),吡格列酮可抑制內(nèi)脂素對(duì)HUVECs TLR4表達(dá)的上調(diào)作用和對(duì)IκB-α表達(dá)的下調(diào)作用,并抑制內(nèi)脂素對(duì)ICAM-1表達(dá)的上調(diào)作用,在濃度為20μmol/L時(shí)效果較好,提示吡格列酮呈濃度依賴性地對(duì)內(nèi)脂素具有抑制作用和降低炎性表達(dá)功能,從而保護(hù)內(nèi)皮細(xì)胞損傷,降低患者高血壓和AS發(fā)病率。
綜上所述,吡格列酮可濃度依賴性地抑制內(nèi)脂素誘導(dǎo)的內(nèi)皮細(xì)胞損傷,其作用點(diǎn)和抑制TLR4/NF-κB信號(hào)通路的激活和調(diào)節(jié)炎性因子表達(dá)相關(guān),為我們今后臨床治療提供新的依據(jù)。但對(duì)血管內(nèi)皮細(xì)胞的保護(hù)作用是否涉及其他通路有待于下一步的研究。
[1] Wu JF, Chen CH, Ni YH,. Toll-like receptor and hepatitis B virus clearance in chronic infected patients: a long-term prospective cohort study in Taiwan[J]. J Infect Dis, 2012, 206(5): 662?668.
[2] Barnes MA, Roychowdhury S, Nagy LE,. Innate immunity and cell death in alcoholic liver disease: role of cytochrome P4502E1[J]. Redox Biol, 2014, 8(2): 929?935.
[3] Fukuhara A, Matsuda M, Nishizawa M,. Visfantin: a protein secreted by visceral fat that mimics the effects of insulin[J]. Science, 2005, 307(5708): 426?430.
[4] Zhou GJ, Zhang NR, Zhang H,. Study on the relationship between serum level of visfantin and coronary heart disease[J]. Clin Med China, 2011, 27(4): 384?386. [周桂建, 張寧汝, 張 恒, 等. 內(nèi)脂素與冠心病關(guān)系的探討[J]. 中國(guó)綜合臨床, 2011, 27(4): 384?386.]
[5] Breckwoldt MO, Chen JW, Stangenberg L,. Tracking the inflammatory response in strokeby sensing the enzyme myeloperoxidase[J]. Proc Natl Acad Sci USA, 2008, 105(47): 18584?18589.
[6] Neumann A, Weill A, Ricordeau P,. Pioglitazone and risk of bladder cancer among diabetic patients in France: a population-based cohort study[J]. Diabetologia, 2012, 55(7): 1953?1962.
[7] Zhou LY, Wang ZM, Gao YB,. Stimulation of hepatoma cell invasiveness and metastatic potential by proteins secreted from irradiated nonparenchymal cells[J]. Int J Radiat Oncol Biol Phys, 2012, 84(3): 822?828.
[8] Liu C, Gao F, Li B,. TLR4 knockout protects mice from radiation-induced thymic lymphoma by downregulation of IL-6 and miR-21[J]. Leukemia, 2011, 25(9): 1516?1519.
[9] Gheibi S, Aboutaleb N, Khaksari M,. Hydrogen sulfide protects the brain against ischemic reperfusion injury in a transient model of focal cerebral ischemia[J]. J Mol Neurosci, 2014, 54(2): 264?270.
[10] Bu?dak RJ, Bu?dak ?, Polaniak R,. Visfantin affects redox adaptative responses and proliferation in Me45 human malignant melanoma cells: anstudy[J]. Oncol Rep, 2013, 29(2): 771?778.
[11] Lewis JD, Ferrara A, Peng T,. Risk of bladder cancer among diabetic patients treated with pioglitazone: interim report of a longitudinal cohort study[J]. Diabetes Care, 2011, 34(4): 916?922.
[12] Sato K, Awasaki Y, Kandori H,. Suppressive effects of acid-forming diet against the tumorigenic potential of pioglitazone hydrochloride in the urinary bladder of male rats[J]. Toxicol Appl Pharmacol, 2011, 251(13): 234?244.
[13] Yang X, Chan JC. Comment: analyses using time-dependent pioglitazone usage in Cox models may lead to wrong conclusions about its association with cancer[J]. Diabetes Care, 2011, 34(8): 136?137.
[14] Shyu KG, Wang BW, Lin CM,. Cyclic stretch enhances the expression of Toll-like receptor 4 gene in cultured cardiomyocytes via p38 MAP kinase and NF-kappaB pathway[J]. J Biomed Sci, 2010, 17: 15.
[15] Carracedo-Martnez E. Comment on: prescribing of rosiglitazone and pioglitazone following safety signals analysis of trends in dispensing patterns in the Netherlands from 1998 to 2008[J]. Drug Saf, 2014, 37(12): 1069?1070.
[16] Xu H, Wu Q, Dang S,. Alteration of CXCR7 expression mediated by TLR4 promotes tumor cell proliferation and migration in human colorectal carcinoma[J]. PLoS One, 2011, 6(12): e27399.
[17] Wang S, Astsaturov IA, Bingham CA,. Effective antibody therapy induces host-protective antitumor immunity that is augmented by TLR4 agonist treatment[J]. Cancer Immunol Immunother, 2012, 61(1): 49?61.
[18] Junker Y, Zeissig S, Kim SJ,. Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of Toll-like receptor 4[J]. J Exp Med, 2012, 209(13): 2395?2408.
[19] Eiró N, González-Reyes S, González L,. Duodenal expression of Toll-like receptors and interleukins are increased in both children and adult celiac patients[J]. Dig Dis Sci, 2012, 57(9): 2278?2285.
[20] Daeian N, Radfar M, Jahangard-Rafsanjani Z,. Selenium supplementation in patients undergoing hematopoietic stem cell transplantation: effects on pro-inflammatory cytokines levels[J]. Daru, 2014, 22: 51.
[21] Dkhil MA, Abdel-Baki AA, Wunderlich F,. Dietary selenium affects intestinal development ofin mice[J]. Parasitol Res, 2014, 113(1): 267?274.
[22] Gheibi S, Aboutaleb N, Khaksari M,. Hydrogen sulfide protects the brain against ischemic reperfusion injury in a transient model of focal cerebral ischemia[J]. J Mol Neurosci, 2014, 54(2): 264?270.
[23] Kipp AP, Banning A, van Schothorst EM,. Marginal selenium deficiency down-regulates inflammation-related genes in splenic leukocytes of the mouse[J]. J Nutr Biochem, 2012, 23(9): 1170?1177.
[24] Burk RF, Olson GE, Hill KE,. Maternal-fetal transfer of selenium in the mouse[J]. FASEB J, 2013, 27(8): 3249?3256.
[25] Guo M, Lv T, Liu F,. Dietary selenium influences calcium release and activation of MLCK in uterine smooth muscle of rats[J]. Biol Trace Elem Res, 2013, 154(1): 127?133.
(編輯: 劉子琪)
TLR4/NF-κB signal pathway mediates pioglitazone protecting human vascular endothelial cells against visfantin-induced injury
HE Xiao-Le1, LIU Jun2, ZHANG Hang-Xiang1, WANG Ning1, XU Rong1, YANG Jie3, WANG Xiao-Ming1*
(1Department of Geriatrics, Xijing Hospital, the Fourth Military Medical University, Xi’an 710032, China;2Center of Orthopedics, Lanzhou General Hospital, Lanzhou Military Command, Lanzhou 730000, China;3Xiguan Post for Retired Cadres, the 28th Subcommand, Lanzhou Military Command, Xi’an 710000, China)
To determine the effect of pioglitazone on visfantin-induced inflammatory injury in human vascular endothelial cells and investigate the underlying signal pathway of pioglitazone in improving endothelial functions.Human umbilical vein endothelial cells (HUVECs) were treated by different concentrations of visfantin. Then Western blotting was used to detect the expression of Toll-like receptor4 (TLR4), intercellular cell adhesion molecule-1 (ICAM-1), nuclear factor-κB (NF-κB) and inhibitor of NK- κB-α (IκB-α). Their expression levels were measured again after the cells were respectively exposed to the agonist of peroxisome proliferator activated receptor gamma (PPARγ), pioglitazone.Compared with the control group, visfantin enhanced the expression of ICAM-1 in a dose-dependent manner, and also induced TLR4 up-regulation and IκB-α down-regulation (<0.05), with visfantin at dose of 1×10-5mol/L showing the strongest effect. However, pioglitazone inhibited the above effects of visfatin in a dose-dependent manner, with dose of 20 μmol/L having the maximal effect.Pioglitazone exerts protective effect on visfantin-induced inflammatory injury in human vascular endothelial cells, which may be due to its blocking TLR4/NF-κB signal pathway.
pioglitazone; visfantin; endothelial cells; inflammation; TLR4/NF-κB signal pathway
(81370927)(2013JM4009).
R741
A
10.11915/j.issn.1671-5403.2015.04.069
2015?02?03;
2015?03?12
國(guó)家自然科學(xué)基金(81370927);陜西省自然科學(xué)基金(2013JM4009)
王曉明, E-mail: xmwang@fmmu.edu.cn