国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

原發(fā)性高尿酸血癥及痛風(fēng)相關(guān)易患基因的研究進(jìn)展

2015-03-04 05:30:54周兆偉綜述李長(zhǎng)貴審校
醫(yī)學(xué)綜述 2015年13期
關(guān)鍵詞:高尿酸血癥痛風(fēng)

周兆偉(綜述),李長(zhǎng)貴(審校)

(青島大學(xué)附屬醫(yī)院代謝病科,山東 青島266003)

?

分子生物學(xué)

原發(fā)性高尿酸血癥及痛風(fēng)相關(guān)易患基因的研究進(jìn)展

周兆偉△(綜述),李長(zhǎng)貴※(審校)

(青島大學(xué)附屬醫(yī)院代謝病科,山東 青島266003)

摘要:原發(fā)性高尿酸血癥及痛風(fēng)屬于多基因遺傳病,其發(fā)病及臨床特征具有明顯的遺傳特異性:不同地域、不同種族、不同性別的人群遺傳易患性顯著不同,與遺傳易患性密切相關(guān)的基因單核苷酸多態(tài)性位點(diǎn)也存在著明顯的差異。約90%的原發(fā)性高尿酸血癥和痛風(fēng)與尿酸排泄減少相關(guān),尿酸排泄減少與多基因遺傳有關(guān)?,F(xiàn)已通過全基因組掃描和候選基因的方法發(fā)現(xiàn)多個(gè)易患基因與尿酸代謝水平及原發(fā)性痛風(fēng)相關(guān),為痛風(fēng)疾病的診斷、預(yù)測(cè)及治療提供依據(jù)。

關(guān)鍵詞:高尿酸血癥;痛風(fēng);易患基因

原發(fā)性高尿酸血癥及痛風(fēng)是由于人體內(nèi)長(zhǎng)期嘌呤代謝紊亂產(chǎn)生尿酸過多或者尿酸排泄減少,血尿酸水平持續(xù)增高,其高濃度的尿酸以鈉鹽的形式沉積在關(guān)節(jié)腔、軟組織、軟骨和腎臟中,從而引起組織炎癥反應(yīng)的一組代謝性疾病。近年來,隨著人們生活水平的不斷提高,高尿酸血癥和痛風(fēng)的發(fā)病率有上升趨勢(shì)。研究發(fā)現(xiàn),血清尿酸水平是高度遺傳的,遺傳度估計(jì)約為40%[1]。遺傳因素對(duì)血尿酸水平及痛風(fēng)發(fā)病起重要作用。近幾年國(guó)內(nèi)外針對(duì)血清尿酸水平及痛風(fēng)的全基因組關(guān)聯(lián)研究以及薈萃分析研究較多,確定了多個(gè)復(fù)雜基因與血清尿酸濃度和或痛風(fēng)相關(guān),為痛風(fēng)疾病的病因診斷、預(yù)測(cè)及治療提供依據(jù)?,F(xiàn)就近年來發(fā)現(xiàn)的主要的原發(fā)性高尿酸血癥及痛風(fēng)相關(guān)易患基因予以綜述。

1SLC2A9基因和ABCG2基因

SLC2A9基因編碼葡萄糖轉(zhuǎn)運(yùn)體9是位于腎小管上皮細(xì)胞的一種電壓性尿酸轉(zhuǎn)運(yùn)體,通過交換葡萄糖參與尿酸的轉(zhuǎn)運(yùn)及重吸收。該基因定位于染色體4p16.1,含1個(gè)非編碼外顯子和13個(gè)編碼外顯子,長(zhǎng)度214 kb[1]。SLC2A9基因突變可導(dǎo)致尿酸排泄分?jǐn)?shù)降低,從而引起高尿酸血癥及痛風(fēng),并且女性患者該基因的突變率是男性患者的2倍[2-3]。通過對(duì)爪蟾卵母細(xì)胞的基因功能研究發(fā)現(xiàn),該基因編碼的蛋白對(duì)尿酸轉(zhuǎn)運(yùn)效率及底物特異性比SLC22A12更強(qiáng),且與血糖、三酰甘油、胰島素等水平的變化不相關(guān)[4-5]。多個(gè)全基因組關(guān)聯(lián)研究(genome-wide association study,GWAS)發(fā)現(xiàn),SLC2A9基因rs6855911、rs6449213、rs7442295、ra12510549、rs1014290、rs737267等單核苷酸多態(tài)性(single nucleotide polymorphisms,SNP)位點(diǎn)與尿酸水平密切相關(guān),且女性更加顯著[2-3,6-7]。最近一項(xiàng)大規(guī)模Meta分析證實(shí),rs12498742與高尿酸血癥和痛風(fēng)均密切相關(guān)[8]。最近的一些研究顯示,SLC2A9的常見變異位點(diǎn) rs16890979、rs3733591與血尿酸水平顯著降低密切相關(guān)[9];功能失調(diào)性突變R198C(rs121908322)和R380W(rs121908321)可降低腎近端小管細(xì)胞尿酸的重吸收,進(jìn)而導(dǎo)致2型腎性低尿酸血癥的發(fā)生[10-13]。然而,其他研究則顯示,rs16890979、rs3733591與高尿酸血癥密切相關(guān)[14-15]。其中,rs16890979在弗明漢和鹿特丹人群(尤其是女性)[2]及克羅地亞的亞得里亞海岸的島嶼人群[16]與高尿酸血癥密切相關(guān),非洲裔美國(guó)人則不存在此關(guān)聯(lián)[2];在中國(guó)漢族人群、所羅門群島及日本人群中,rs3733591都與高尿酸血癥和痛風(fēng)密切相關(guān)[15,17],但是此關(guān)聯(lián)并未在東方波利尼西亞人、西方波利尼西亞人和歐洲人群中得到驗(yàn)證[14,16],說明該基因?qū)ν达L(fēng)的影響具有種屬間特異性。

ABCG2基因位于染色體4q22,編碼ABC家族轉(zhuǎn)運(yùn)體人乳癌耐藥蛋白,表達(dá)于腎臟近端小管刷狀緣,參與尿酸的頂端分泌[18];也表達(dá)于小腸和肝臟上皮細(xì)胞頂端膜,提示該蛋白可能參與尿酸的腎外排泄途徑[19-20]。ABCG2基因的功能障礙是痛風(fēng)和高尿酸血癥的一個(gè)主要原因[18,21-23]。其SNP位點(diǎn)rs2231142(Q141K)在西方白人、黑人以及日本人、中國(guó)人中都得到了驗(yàn)證[24-29]。日本一項(xiàng)研究表明,ABCG2基因的功能障礙對(duì)高尿酸血癥進(jìn)展的影響比其他熟悉的風(fēng)險(xiǎn)因素更大[25]。最近一項(xiàng)關(guān)于中國(guó)漢族男性痛風(fēng)人群的研究證實(shí),ABCG2的126X和Q141K SNP與痛風(fēng)的發(fā)病風(fēng)險(xiǎn)有關(guān),而12M SNP的最小等位基因A對(duì)中國(guó)漢族男性人群有保護(hù)作用[26]。

來自歐洲的一項(xiàng)大規(guī)模Meta分析確定了18個(gè)新的基因位點(diǎn)與尿酸水平相關(guān)(不包括曾經(jīng)報(bào)道過的10個(gè)位點(diǎn)),它們僅能解釋7.7%的尿酸水平變異,其中3.4%由SLC2A9和ABCG2解釋[8]。最近,來自中國(guó)的一項(xiàng)GWAS證實(shí)了兩個(gè)先前報(bào)道過的尿酸水平相關(guān)位點(diǎn)SLC2A9(rs11722228,結(jié)合P=8.98×10-31)和ABCG2(rs2231142,結(jié)合P=3.34×10-42);這兩個(gè)獨(dú)立的單核苷酸多態(tài)性分別解釋尿酸水平總變異的1.03%和1.09%;更重要的是,這兩個(gè)獨(dú)立的單核苷酸多態(tài)性rs11722228和rs2231142對(duì)血清尿酸水平的影響與性別顯著相關(guān);SLC2A9(rs11722228)的最小等位基因(T)對(duì)女性尿酸水平的升高影響更大,而ABCG2(rs2231142)的最小等位基因(T)對(duì)男性尿酸水平的影響更大[30]。這些證據(jù)表明,SLC2A9和ABCG2對(duì)尿酸代謝的影響在不同人群中的功能是基本一致的。

2cGMP依賴的蛋白激酶Ⅱ基因

cGMP依賴的蛋白激酶Ⅱ基因(cGKⅡ)基因是cGMP依賴的蛋白激酶Ⅱ基因,定位于染色體4q13.1~q21.1,是一類被cGMP激活,催化蛋白質(zhì)的絲氨酸或蘇氨酸磷酸化的酶。該基因在腎臟中的作用是腎素抑制劑,可以阻止血管緊張素原轉(zhuǎn)變?yōu)檠芫o張素Ⅰ。cGKⅡ基因突變可導(dǎo)致cGMP依賴的蛋白激酶Ⅱ功能紊亂,從而使腎素活性增加,血壓增高,腎血流量減少,最終導(dǎo)致血尿酸水平增高[31]。 Chang等[32]通過GWAS發(fā)現(xiàn),該基因中rs7688672和rs6837293 SNP與痛風(fēng)的發(fā)病密切相關(guān),并推斷cGKⅡ基因突變對(duì)痛風(fēng)的影響是不依賴于高尿酸血癥的,而是通過激活內(nèi)皮細(xì)胞活動(dòng)及促炎因子的產(chǎn)生而影響痛風(fēng)的發(fā)病,但機(jī)制尚不明確。然而,日本近期的一項(xiàng)研究卻顯示該基因的4個(gè)常見變異位點(diǎn)rs7688672、rs6837293、rs11736177、rs10033237與痛風(fēng)發(fā)病并無關(guān)聯(lián),說明其對(duì)痛風(fēng)的影響具有種屬間特異性。該基因單核苷酸多態(tài)性在中國(guó)人群中尚未得到驗(yàn)證[33]。

3SLC22A12基因和SLC22A11基因

SLC22A12基因編碼尿酸鹽轉(zhuǎn)運(yùn)蛋白1,是有機(jī)陰離子轉(zhuǎn)運(yùn)體家族的成員之一,主要作用于腎近端小管上皮細(xì)胞管腔膜,參與尿酸在腎臟的重吸收[34]。該基因定位于染色體11q13,包含10個(gè)外顯子和9個(gè)內(nèi)含子。Flynn等[35]通過對(duì)新西蘭不同種族人群的研究證實(shí),SLC22A12基因的4個(gè)位點(diǎn)rs475688、rs7932775、rs3825018、rs476037與痛風(fēng)發(fā)生存在關(guān)聯(lián),且具有明顯的種族差異性。Graessler等[36]研究表明,hURATI 基因啟動(dòng)子788 T>A、第1外顯子的C258T、第2外顯子的C426T多態(tài)性與腎臟尿酸排泄率下降及高尿酸血癥顯著相關(guān),其中C426T的相關(guān)性最強(qiáng)。rs12800450 SNP在非洲裔美國(guó)人中與高尿酸血癥和痛風(fēng)存在相關(guān)性[37]。本課題組對(duì)SLC22A12 SNP基因分析顯示,第3內(nèi)含子區(qū)11(G>A)及第8外顯子區(qū)rs7932775位點(diǎn)SNP與高尿酸血癥密切相關(guān)[38-39]。此外,研究發(fā)現(xiàn)嚴(yán)重低尿酸血癥患者的SLC22A12基因功能缺陷,并證明該基因的變異可能導(dǎo)致遺傳性低尿酸血癥[12]。日本[40]及韓國(guó)[41]也有研究證實(shí),腎性低尿酸血癥與SLC22A12的W258X位點(diǎn)突變顯著有關(guān)。Shima等[42]對(duì)日本人群的研究中發(fā)現(xiàn),該基因的rs893006位點(diǎn)與血尿酸水平相關(guān),且TT基因型的患者血尿酸水平最低。

SLC22A11基因編碼有機(jī)陰離子轉(zhuǎn)運(yùn)體4(organic anion transporter 4,OAT4)與URAT1有53%的同源性,與其他OAT家族蛋白有38%~44%的氨基酸同源,主要表達(dá)于近端腎小管頂膜和胎盤中,其可將有機(jī)陰離子轉(zhuǎn)運(yùn)入腎小管腔,作用底物尿酸由管腔進(jìn)入腎臟近端小管細(xì)胞內(nèi)[34]。該基因同樣定位于11q13。日本最近一項(xiàng)研究顯示[43],rs17300741 SNP與所有痛風(fēng)的發(fā)生不相關(guān),卻與腎臟低分泌型痛風(fēng)密切相關(guān),提示該基因可能通過影響尿酸的重吸收導(dǎo)致高尿酸血癥和痛風(fēng)的發(fā)生。新西蘭的研究顯示,rs2078267 SNP與歐洲白人的痛風(fēng)發(fā)生不存在相關(guān)性,卻與波利尼西亞人的痛風(fēng)發(fā)生存在相關(guān)性[35]。目前OAT4對(duì)血尿酸的作用機(jī)制尚不明確。

4PDZK1基因

PDZK1基因編碼PDZK1蛋白,具有4個(gè)PDZ結(jié)構(gòu)結(jié)合域。該基因定位于染色體1q21。已有研究表明,URAT1、OAT4和Na+依賴性磷酸鹽轉(zhuǎn)運(yùn)蛋白體1等尿酸鹽轉(zhuǎn)運(yùn)體的合成受PDZK1、SLC17A1、SLC22A12、SLC22A11基因共同作用的影響,據(jù)此推測(cè)該基因可能對(duì)尿酸轉(zhuǎn)運(yùn)體具有調(diào)節(jié)功能[44]。GWAS及Meta研究發(fā)現(xiàn),PDZK1上游2 kb左右區(qū)域的rs12129861和rs1171614、rs1471633與血尿酸水平關(guān)系密切[4,8,24]。

5葡萄糖激酶調(diào)節(jié)蛋白基因

葡萄糖激酶調(diào)節(jié)蛋白基因(glucokinase regulatory protein gene,GCKR)編碼葡萄糖激酶調(diào)節(jié)蛋白,主要作用于肝臟和胰腺,抑制葡萄糖激酶活性,從而調(diào)節(jié)血糖和三酰甘油水平。該基因定位于染色體2p23,其基因的變異可引起成人發(fā)病型糖尿病及2型糖尿病[45]。GWAS及相關(guān)研究發(fā)現(xiàn),該基因中rs780094、rs780093的SNP與血尿酸水平顯著相關(guān)[24,46],該SNP主要影響血糖和三酰甘油水平,升高空腹血糖,降低三酰甘油,已有相關(guān)研究表明胰島素抵抗的增加可使尿酸的清除率下降,因此考慮 GCKR基因可能與高尿酸血癥及痛風(fēng)相關(guān)。

6LRRC16A基因

LRRC16A基因編碼細(xì)胞骨架蛋白,主要作用于腎臟和上皮組織,參與肌動(dòng)蛋白細(xì)胞骨架的組成。該基因定位于染色體6p22.2。Meta分析發(fā)現(xiàn)該基因內(nèi)含子rs742132 SNP與血尿酸水平顯著相關(guān),但其作用機(jī)制尚不明確[4]。日本最近的一項(xiàng)研究證實(shí),rs742132 SNP與痛風(fēng)發(fā)生存在相關(guān)性,并推測(cè)可能是由于影響尿酸轉(zhuǎn)運(yùn)體的活動(dòng)影響尿酸轉(zhuǎn)運(yùn)而導(dǎo)致高尿酸血癥和痛風(fēng)的發(fā)生[47]。

7SLC16A9基因

SLC16A9基因編碼單羧酸鹽轉(zhuǎn)運(yùn)體9,主要作用于腎臟、甲狀旁腺、腎上腺等,其對(duì)尿酸的作用機(jī)制目前尚不清楚,推測(cè)可能是鈉依賴性尿酸鹽轉(zhuǎn)運(yùn)體。GWAS發(fā)現(xiàn)該基因中與血尿酸水平關(guān)系密切的SNP位于rs1235619[4]。日本的研究顯示,rs2242206與腎臟超負(fù)荷型痛風(fēng)密切相關(guān)[48]。

8SLC17A1和 SLC17A3

SLC17A1和SLC17A3定位于染色體6p21.3~p23這一區(qū)域中,GWAS及Meta研究發(fā)現(xiàn),rs1183201 SNP和rs1165205與血尿酸水平及痛風(fēng)發(fā)作相關(guān)[2,49-50]。

9結(jié)語

痛風(fēng)屬多基因遺傳缺陷,國(guó)際上以痛風(fēng)和高尿酸血癥GWAS為熱點(diǎn),GWAS以鎖定相關(guān)易患基因?yàn)槟康?。我?guó)對(duì)于國(guó)外GWAS鎖定的相關(guān)基因位點(diǎn)進(jìn)行初步驗(yàn)證,對(duì)于SLC2A9、ABCG2、SLC22A12等研究較為深入,但尚存不足:首先,僅通過PCR序列測(cè)試尿酸排泄相關(guān)基因位點(diǎn)及多態(tài)性,缺乏基因作用機(jī)制的詳盡論述;其次,東方人群的資料匱乏,亟需擴(kuò)充樣本量進(jìn)行SNP位點(diǎn)篩查與驗(yàn)證;最后,目前發(fā)現(xiàn)的痛風(fēng)易感基因也比較多,但攜帶致病等位基因的患者發(fā)生痛風(fēng)的相對(duì)風(fēng)險(xiǎn)值多很低,提示這些易患基因是微效基因,因此尋找痛風(fēng)的主效基因是未來的發(fā)展方向。隨著分子遺傳學(xué)和分子生物學(xué)技術(shù)的迅猛推進(jìn),高尿酸血癥和痛風(fēng)易患基因的研究有望取得突破。

參考文獻(xiàn)

[1]Vitart V,Rudan I,Hayward C,etal.SLC2A9 is a newly identified urate transporter influencing serum urate concentration,urate excretion and gout[J].Nat Genet,2008,40(4):437-442.

[2]Dehghan A,K?ttgen A,Yang Q,etal.Association of three genetic loci with uric acid concentration and risk of gout:a genome-wide association study[J].Lancet,2008,372(9654):1953-1961.

[3]D?ring A,Gieger C,Mehta D,etal.SLC2A9 influences uric acid concentrations with pronounced sex-specific effects[J].Nat Genet,2008,40(4):430-436.

[4]Kolz M,Johnson T,Sanna S,etal.Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations[J].PLoS Genet,2009,5(6):e1000504.

[5]Anzai N,Ichida K,Jutabha P,etal.Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1(SLC2A9) in humans[J].J Biol Chem,2008,283(40):26834-

28838.

[6]Wallace C,Newhouse SJ,Braund P,etal.Genome-wide associationstudy identifies genes for biomarkers of cardiovascular disease:serum urate and dyslipidemia[J].Am J Hum Genet,2008,82(1):139-149.

[7]Li S,Sanna S,Masehio A,etal.The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts[J].PLoS Genet,2007,3(11):e194.

[8]K?ttgen A,Albrecht E,Teumer A,etal.Genome-wide association analysis identify 18 new loci associated with serum urate concentrations[J].Nat Genet,2013,45(2):145-154.

[10]Chiba T,Matsuo H,Nagamori S,etal.Identification of a hypouricemia patient with SLC2A9 R380W,a pathogenic mutation for renal hypouricemia type 2[J].Nucleosides Nucleotides Nucleic Acids,2014,33(4/6):261-265.

[11]Kawamura Y,Matsuo H,Chiba T,etal.Pathogenic GLUT9 mutations causing renal hypouricemia type 2 (RHUC2)[J].Nucleosides Nucleotides Nucleic Acids,2011,30(12):1105-1111.

[12]Sebesta I,Stiburkova B.Purine disorders with hypouricemia[J].Prilozi,2014,35(1):87-92.

[13]Shen H,Feng C,Jin X,etal.Recurrent exercise-induced acute kidney injury by idiopathic renal hypouricemia with a novel mutation in the SLC2A9 gene and literature review[J].BMC Pediatr,2014,14:73.

[14]Hollis-Moffatt JE,Gow PJ,Harrison AA,etal.The SLC2A9 nonsynonymous Arg265His variant and gout:evidence for a population-specific effect on severity[J].Arthritis Res Ther,2011,13(3):R85.

[15]Tu HP,Chen CJ,Tovosia S,etal.Associations:a non-synonymous variant in SLC2A9 with gouty arthritis and uric acid levels in Han Chinese subjects and Solomon Islanders[J].Ann Rheum Dis,2010,69(5):887-890.

[16]Karns R,Zhang G,Sun G,etal.Genome-wide association of serum uric acid concentration:replication of sequence variants in an island population of the Adriatic coast of Croatia[J].Ann Hum Genet,2012,76(2):121-127.

[17]Urano W,Taniguchi A,Anzai N,etal.Association between GLUT9 and gout in Japanese men[J].Ann Rheum Dis,2010,69(5):932-933.

[18]Woodward OM,K?ttgen A,Coresh J,etal.Identification of a urate transporter,ABCG2,with a common functional polymorphism causing gout[J].Proc Natl Acad Sci U S A,2009,106(25):10338-10342.

[19]Hosomi A,Nakanishi T,Fujita T,etal.Extra-renal limination of uric acid via intestinal efflux transporter BCRP/ABCG2[J].PLoS One,2012,7(2):e30456.

[20]Takada T,Ichida K,Matsuo H,etal.ABCG2 Dysfunction Increases Serum Uric Acid by Decreased Intestinal Urate Excretion[J].Nucleosides Nucleotides Nucleic Acids,2014,33(4/6):275-281.

[21]Matsuo H,Takada T,Ichida K,etal.Common defects of ABCG2,a high-capacity urate exporter,cause gout:a function-based genetics analysis in a Japanese population[J].Sci Transl Med,2009,1(5):5ra11.

[22]Matsuo H,Ichida K,Takada T,etal.Common dysfunctional variants in ABCG2 are a major cause of early-onset gout[J].Sci Rep,2013,3:2014.

[23]Matsuo H,Takada T,Nakayama A,etal.ABCG2 dysfunction increases the risk of renal overload hyperuricemia[J].Nucleosides Nucleotides Nucleic Acids,2014,33(4/6):266-274.

[24]Wang B,Miao Z,Liu S,etal.Genetic analysis of ABCG2 gene C421A polymorphism with gout disease in Chinese Han male population[J].Hum Genet,2010,127(2):245-246.

[25]Nakayama A,Matsuo H,Nakaoka H,etal.Common dysfunctional variants of ABCG2 have stronger impact on hyperuricemia progression than typical environmental risk factors[J].Sci Rep,2014,4:5227.

[26]Zhou D,Liu Y,Zhang X,etal.Functional Polymorphisms of the ABCG2 Gene Are Associated with Gout Disease in the Chinese Han Male Population[J].Int J Mol Sci,2014,15(5):9149-9159.

[27]Ichida K.Recent progress and prospects for research on urate efflux transporter ABCG2[J].Nihon Rinsho,2014,72(4):757-765.

[28]Zhang L,Spencer KL,Voruganti VS,etal.Association of functional polymorphism rs2231142 (Q141K) in the ABCG2 gene with serum uric acid and gout in 4 US populations:the PAGE Study[J].Am J Epidemiol,2013,177(9):923-932.

[29]Tabara Y,Kohara K,Kawamoto R,etal.Association of four genetic loci with uric acid levels and reduced renal function:the J-SHIPP Suita study[J].Am J Nephrol,2010,32(3):279-286.

[30]Yang B,Mo Z,Wu C,etal.A genome-wide association study identifies common variants influencing serum uric acid concentrations in a Chinese population[J].BMC Med Genomics,2014,7:10.

[31]Zhou X,Matavelli L,Frohlich ED,etal.Uric acid:its relationship to renal hemodynamics and the renal renin-angiotensin system[J].Curr Hypertens Rep,2006,8:120-124.

[32]Chang SJ,Tsai MH,Ko YC,etal.The cyclic GMP-dependent protein kinase Ⅱ gene associates with gout disease:identified by genome-wide analysis and case-control study[J].Ann Rheum Dis,2009,68(7):1213-1219.

[33]Sakiyama M,Matsuo H,Chiba T,etal.Common variants of cGKⅡ/PRKG2 are not associated with gout susceptibility[J].J Rheumatol,2014,41(7):1395-1397.

[34]Anthony M,Reginato,David B,etal.The genetics of hyperuricaemia and gout[J].Nat Rev Rheumatol,2012,8(10):610-621.

[35]Flynn TJ,Phipps-Green A,Hollis-Moffatt JE,etal.Association analysis of the SLC22A11(organic anion transporter 4) and SLC22A12 (urate transporter 1) urate transporter locus with gout in New Zealand case-control sample sets reveals multiple ancestral-specific effects[J].Arthritis Res Ther,2013,15(6):R220.

[36]Graessler J,Graessler A,Unger S,etal.Association of the human urate transporter 1 with reduced renal uric acid excretion and hypemricemia in a German Caucasian population[J].Arthritis Rheum,2006,54(1):292-300.

[37]Tin A,Woodward OM,Kao WH,etal.Genome-wide association study for serum urate concentrations and gout among African Americans identifies genomic risk loci and a novel URAT 1 loss-of-function allele[J].Hum Mol Genet,2011,20(20):4056-4068.

[38]Li C,Han L,Levin AM,etal.Multiple single nucleotide polymorphisms in the human urate transporter 1 (hURAT1) gene are associated with hyperuricaemia in Han Chinese[J].J Med Genet,2010,47(3):204-210.

[39]孟冬梅,韓琳,苗志敏.SLC22A12基因第8外顯子和第8內(nèi)含子多態(tài)與中國(guó)漢族人原發(fā)性高尿酸血癥關(guān)聯(lián)研究[J].中華醫(yī)學(xué)遺傳學(xué)雜志,2010,27(6):659-663.

[40]Komeda F,Sekine T,Inatomi J,etal.The 258X mutation in SLC22A12 is the predominant Cause of Japanese renal hypourieemia[J].Pediatr Nephrol,2004,19(7):728-733.

[41]Cheong HI,Kang JH,Lee JH,etal.Mutational analysis of idiopathic renal hypourieemia in Korea[J].Pediatr Nephrol,2005,20(7):886-890.

[42]Shima Y,Teruya K,Ohta H,etal.Association between intronic SNP in urate-anion exchanger gene,SLC22A12,and serum uric acid levels in Japanese[J].Life Sci,2006,79(23):2234-2237.

[43]Sakiyama M,Matsuo H,Shimizu S,etal.A common variant of organic anion transporter 4 (OAT4/SLC22A11) gene is associated with renal underexcretion type gout[J].Drug Metab Pharmacokinet,2014,29(2):208-210.

[44]Roddy E,Doherty M.Epidemiology of gout [J].Arthritis Res Ther,2010,12(6):223.

[45]Warner JP,Leek JP,Intody S,etal.Human glucokinase regulatory protein (GCKR):cDNA and genomic cloning,complete primary structure,and chromosomal localization[J].Mamm Genome,1995,6(8):532-536.

[46]Wang J,Liu S,Wang B,etal.Association between gout and polymorphisms in GCKR in male Han Chinese[J].Hum Genet,2012,131(7):1261-1265.

[47]Sakiyama M,Matsuo H,Shimizu S,etal.A common variant of leucine-rich repeat-containing 16A (LRRC16A) gene is associated with gout susceptibility[J].Hum Cell,2014,27(1):1-4.

[48]Nakayama A,Matsuo H,Shimizu T,etal.Common missense variant of monocarboxylate transporter 9 (MCT9/SLC16A9) gene is associated with renal overload gout,but not with all gout susceptibility[J].Hum Cell,2013,26(4):133-136.

[49]Hollis-Moffatt JE,Phipps-Green AJ,Chapman B,etal.The renal urate transporter SLC17A1 locus:confirmation of association with gout[J].Arthritis Res Ther,2012,14(2):R92.

[50]Dalbeth N,House ME,Gamble GD,etal.Population-specific effects of SLC17A1 genotype on serum urate concentrations and renal excretion of uric acid during a fructose load[J].Ann Rheum Dis,2014,73(1):313-314.

Progress in Primary Hyperuricemia and Gout-related Susceptibility GenesZHOUZhao-wei,LIChang-gui. (DepartmentofMetabolicDiseases,QingdaoUniversityAffiliatedHospital,Qingdao266003,China)

Abstract:Primary hyperuricemia and gout are polygenic disease.The incidence and clinical features have obvious genetic specificity:genetic susceptibility and SNP loci related to genetic susceptibility are significantly different among different regions,different races,and different genders.About 90% of primary hyperuricemia and gout relates to decreased uric acid excretion associated with polygenic inheritance.Now multiple susceptibility genes have been found associated with uric acid metabolism and primary gout through genome-wide scan and candidate gene approach,which may provide a basis for the etiological diagnosis,prediction and intervention.

Key words:Hyperuricemia; Gout; Susceptible genes

收稿日期:2014-10-11修回日期:2014-12-25編輯:伊姍

基金項(xiàng)目:國(guó)家自然科學(xué)基金(31371272)

doi:10.3969/j.issn.1006-2084.2015.13.001

中圖分類號(hào):R589.7

文獻(xiàn)標(biāo)識(shí)碼:A

文章編號(hào):1006-2084(2015)13-2305-04

猜你喜歡
高尿酸血癥痛風(fēng)
痛風(fēng)的治療
中老年保健(2021年8期)2021-08-24 06:21:52
痛風(fēng)了,怎么辦?
雛鵝痛風(fēng)“三步五防”更有效
痛風(fēng):改善生活方式防復(fù)發(fā)
夏天,從第一次痛風(fēng)開始預(yù)防
厄貝沙坦等治療老年糖尿病高血壓合并高尿酸血癥患者的效果
中醫(yī)藥治療高尿酸血癥的作用機(jī)制研究進(jìn)展
寇秋愛教授治療痛風(fēng)經(jīng)驗(yàn)擷菁
痛風(fēng)治療新藥——選擇性尿酸重吸收抑制劑lesinurad
高尿酸血癥與缺血性腦卒中的相關(guān)性研究
湘阴县| 建昌县| 尉犁县| 惠东县| 安多县| 桑植县| 泗水县| 寻乌县| 朔州市| 剑川县| 大渡口区| 丽江市| 仁化县| 平谷区| 龙门县| 遂昌县| 墨竹工卡县| 凯里市| 乐亭县| 舞阳县| 南皮县| 宣恩县| 航空| 阜新| 三河市| 宜章县| 尤溪县| 余姚市| 邢台市| 都兰县| 秀山| 昭觉县| 鹤山市| 化州市| 东山县| 新巴尔虎左旗| 鄄城县| 鄂托克前旗| 普安县| 乌拉特中旗| 桂阳县|