張 璇,楊瑞麗,柳春紅,孫遠(yuǎn)明,雷紅濤
(廣東省食品質(zhì)量安全重點(diǎn)實(shí)驗(yàn)室 廣東省食品安全檢測與風(fēng)險(xiǎn)控制工程技術(shù)研究中心,廣東 廣州 510642)
手性除草劑異丙甲草胺毒理研究進(jìn)展
張 璇,楊瑞麗,柳春紅,孫遠(yuǎn)明,雷紅濤
(廣東省食品質(zhì)量安全重點(diǎn)實(shí)驗(yàn)室 廣東省食品安全檢測與風(fēng)險(xiǎn)控制工程技術(shù)研究中心,廣東 廣州 510642)
異丙甲草胺是目前廣泛使用的酰胺類芽前闊葉雜草防除劑。文章綜述了異丙甲草胺進(jìn)入環(huán)境后對非靶標(biāo)生物急性毒性、慢性毒性的對映體選擇性差異,這種選擇性差異與生物體的吸收及代謝密切相關(guān)。最后對異丙甲草胺手性毒理的未來研究進(jìn)行了展望。
異丙甲草胺;對映體選擇性;毒性
異丙甲草胺[2-乙基-6-甲基-N-(1-甲基-2-甲氧乙基)氯代乙酰替苯胺],通用名為metolachlor,是一種酰胺類雜草防除劑[1],因其具有廣譜、高效、選擇性強(qiáng)等特點(diǎn),可廣泛應(yīng)用于70多種作物田的雜草防除[2]。異丙甲草胺有4種光學(xué)異構(gòu)體,分別為aS,1S-、aR,1S-、aR,1R-和aS,1R-(圖1)。目前市場上常見的異丙甲草胺商品化產(chǎn)品有2種:一種是外消旋異丙甲草胺(Rac-metolachlor),即4種異構(gòu)體同時(shí)存在,又稱都爾、杜爾、杜耳、稻樂思、屠莠胺、莫多草、甲氧毒草胺;另一種是S-異丙甲草胺(S-metolachlor),又稱精異丙甲草胺、金都爾,去除了2個(gè)非活性的R-(aR,1R-和aS,1R-)并富集了S-構(gòu)型異構(gòu)體。S-異丙甲草胺的沸點(diǎn)、蒸汽壓、穩(wěn)定性、溶解度、防治雜草種類、吸收與傳導(dǎo)、代謝與降解等特性均與Rac-異丙甲草胺相似[3]。異丙甲草胺95%的除草活性來自S-異構(gòu)體(aS,1S-和aR,1S-異丙甲草胺)[4],所以S-異丙甲草胺的有效用量比Rac-異丙甲草胺低35%~38%[5]。但同時(shí),隨著異丙甲草胺的廣泛應(yīng)用,造成環(huán)境生物與其接觸,由此造成持續(xù)低水平暴露下的非靶標(biāo)毒性,而這些毒性也呈現(xiàn)出不同程度的對映體差異性[6-7]。
1.1 異丙甲草胺對動物的對映體選擇性
異丙甲草胺在使用過程中可能會對非靶標(biāo)生物造成影響或危害,如異丙甲草胺泄漏、污染、殘留等情況下,動植物及人類可能在短時(shí)間內(nèi)接觸到高濃度的異丙甲草胺,繼而發(fā)生急性中毒[8]。Rac-異丙甲草胺對雌、雄大鼠急性經(jīng)口毒性的半數(shù)致死量(LD50)分別為2 330 mg/kg和3 160 mg/kg[9],S-異丙甲草胺原藥對雄、雌性大鼠亞慢性經(jīng)口染毒劑量分別為158. 0 mg/kg和632. 0 mg/kg 及以上時(shí),對大鼠有毒性效應(yīng)[10]。S-異丙甲草胺對水生大型蚤和蚯蚓的LD50分別為51.2 mg/kg[11]和34.63 mg/kg[12](表1)。說明水生動物對異丙甲草胺的毒性敏感度較哺乳動物大鼠的更高。
注:1.EC50的單位為mg/L;2.LD50的單位為mg/kg。
Note:1.The unit of EC50is mg/L;2.The unit of LD50is mg/kg.
1.2 異丙甲草胺對水生植物的對映體選擇性
小球藻和綠藻暴露在Rac-異丙甲草胺環(huán)境下96 h,半數(shù)最大效應(yīng)濃度(EC50)分別達(dá)到18.926 mg/L[13]和5.508 mg/L[14]。羊角月牙藻暴露于Rac-異丙甲草胺條件下72 h,EC50低至0.056 mg/L[15]。S-和Rac-異丙甲草胺對斜生柵藻、粉核小球藻和水稻的半數(shù)最大效應(yīng)濃度(EC50)存在明顯的差異,對于柵藻,Rac-異丙甲草胺表現(xiàn)出的毒性效應(yīng)比S-異丙甲草胺更強(qiáng)(表1)。這表明異丙甲草胺對多種不同非靶標(biāo)生物均表現(xiàn)出比較明顯的急性毒性。
對于異丙甲草胺的慢性毒性,現(xiàn)有研究多以胚胎細(xì)胞、肝癌細(xì)胞、肝微粒體、水生魚類及哺乳動物個(gè)體等為生物模型進(jìn)行評價(jià),并且在發(fā)育毒性、免疫毒性、肝毒性等方面已有部分研究結(jié)果(表2)。
2.1 發(fā)育毒性
胚胎和幼年時(shí)期是動物發(fā)育的一個(gè)重要敏感期,該時(shí)期外源性污染物的吸收和積累可能會嚴(yán)重影響到胚胎發(fā)育和器官形成,導(dǎo)致身體畸形甚至死亡等不可逆轉(zhuǎn)的傷害。2.88 ng/mL的S-異丙甲草胺即可顯著減少雞胚胎細(xì)胞的數(shù)量[20]。在小鼠胚胎細(xì)胞培養(yǎng)液中加入100 ng/mL Rac-異丙甲草胺,72 h后細(xì)胞凋亡率顯著升高,囊胚發(fā)育受到抑制,胚胎細(xì)胞數(shù)減少[21]。10-3mol/L的Rac-異丙甲草胺對斑馬魚胚胎即表現(xiàn)出明顯的致死、致畸、抑制發(fā)育等不良影響,并且呈現(xiàn)一定的時(shí)間劑量依賴性[22](表2)。
2.2 免疫毒性
Rac-異丙甲草胺具有免疫毒性,主要表現(xiàn)為對體液免疫和非特異性免疫功能的抑制作用,影響淋巴細(xì)胞活力和分泌功能及抗體生產(chǎn)量[23]。2.0 μg/mL的Rac-異丙甲草胺即可使小鼠骨髓嗜多染紅細(xì)胞有絲分裂指數(shù)顯著下降,40 μg/mL的Rac-異丙甲草胺則能觀察到該細(xì)胞數(shù)量明顯減少[24]。Rac-異丙甲草胺還能降低小鼠脾臟體比,抑制細(xì)胞活力和降低抗體水平,抑制B淋巴細(xì)胞功能,對小鼠體液免疫功能表現(xiàn)出抑制作用;另外,小鼠腹腔巨噬細(xì)胞吞噬雞紅細(xì)胞試驗(yàn)也發(fā)現(xiàn),Rac-異丙甲草胺可使小鼠巨噬細(xì)胞吞噬率明顯降低,且存在劑量-效應(yīng)關(guān)系,對小鼠非特異性免疫功能也表現(xiàn)出一定毒性[23]。3 ng/mL的 Rac-異丙甲草胺對人淋巴細(xì)胞數(shù)量無影響[25]。Mathias等[26]研究發(fā)現(xiàn),50 mg/kg的S-異丙甲草胺可引起雄性大鼠生殖系統(tǒng)內(nèi)分泌的變化。
2.3 肝毒性
在大鼠體內(nèi)細(xì)胞色素P450酶系作用下,Rac-異丙甲草胺能代謝為具有致癌作用的二烷基醌亞胺[27]。周明等[10]對S-異丙甲草胺原藥進(jìn)行大鼠亞慢性(90 d)經(jīng)口毒性試驗(yàn),在整個(gè)染毒期間,高劑量 (632 mg/kg) 組經(jīng)病理組織學(xué)檢查發(fā)現(xiàn)大鼠肝細(xì)胞輕度水腫,而其他各臟器未見病理改變,說明受檢樣品高劑量組對大鼠肝臟有一定影響。從分子水平上研究手性農(nóng)藥的肝毒機(jī)制也已逐漸展開,如以肝癌細(xì)胞Hep G2為體外模型,發(fā)現(xiàn)Rac-異丙甲草胺能對調(diào)節(jié)細(xì)胞周期蛋白的表達(dá)起到顯著抑制作用,影響細(xì)胞正常增殖,進(jìn)而引起該細(xì)胞凋亡[28]。近年來,以癌細(xì)胞、原代細(xì)胞等為研究模型的體外監(jiān)測技術(shù)在毒理學(xué)領(lǐng)域的應(yīng)用日益廣泛,它們不但可以減少實(shí)驗(yàn)動物用量,實(shí)現(xiàn)快速、便捷、高通量分析,而且對于解釋被測物質(zhì)毒理學(xué)效應(yīng)的分子機(jī)理也有重要意義[29-32]。目前,研究者多是分析Rac-異丙甲草胺的肝毒機(jī)制[33],對異丙甲草胺毒性的對映體選擇差異性研究尚未涉及。
2.4 其他毒性
也有其他研究者以小鼠個(gè)體、水生動物及人為生物模型,研究Rac-異丙甲草胺的遺傳毒性、甲狀腺毒性、肺毒性和前列腺毒性作用,發(fā)現(xiàn)Rac-異丙甲草胺對甲狀腺、肺和前列腺有很弱的毒性作用,無遺傳毒性[9-10,34-36]。
3.1 生物吸收的對映選擇性
手性農(nóng)藥對映體選擇性的跨膜作用和特異性的生物吸收,使得實(shí)際產(chǎn)生毒性作用的單一對映體的含量與進(jìn)入生物體內(nèi)的初始含量并不一致,其中單一對映體的累積在生物體內(nèi)被廣泛觀察到[37]。 Rac-和S-異丙甲草胺對斜生柵藻細(xì)胞膜通透性的影響存在選擇性差異,Rac-異丙甲草胺對普通核小球藻和斜生柵藻的EC50,96 h時(shí)分別是S-異丙甲草胺的 2.25 和1.81倍[16]。Rac-和S-異丙甲草胺處理玉米和水稻幼苗根系后,玉米和水稻質(zhì)膜通透性均顯著增加,且通透性與2種農(nóng)藥濃度都呈正相關(guān),但S-對映體處理后的質(zhì)膜通透性顯著大于Rac-對映體處理[38]。在透射電子顯微電鏡(Transmission electron microscope,TEM)下觀察經(jīng)Rac-和S-異丙甲草胺處理的蛋白核小球藻,發(fā)現(xiàn)二者均有質(zhì)壁分離現(xiàn)象,并且在葉綠體中聚集了許多淀粉粒,在胞質(zhì)中有一些脂質(zhì)小滴和一些未知的電子不透明沉淀小體,還有大量的處于分裂狀態(tài)或未完全分裂即已死亡的細(xì)胞,這些都是細(xì)胞受損的信號,S-異丙甲草胺處理組的形態(tài)變化更為嚴(yán)重[19]。這些研究說明,Rac-和S-異丙甲草胺均會破壞受試生物的細(xì)胞結(jié)構(gòu),抑制細(xì)胞的正常生長和代謝,且Rac-和 S-異丙甲草胺表現(xiàn)出立體選擇差異性,S-異丙甲草胺對受試生物的毒性比Rac-異丙甲草胺的毒性更大。
3.2 生物代謝的對映選擇性
手性農(nóng)藥進(jìn)入環(huán)境后,在生物體的吸收、轉(zhuǎn)運(yùn)、分布及代謝中不僅可生成多種降解產(chǎn)物,而且會表現(xiàn)出對映體選擇性差異,其代謝產(chǎn)物可作為母體在環(huán)境中的風(fēng)險(xiǎn)評估指標(biāo),研究手性化合物在生物體內(nèi)的轉(zhuǎn)變過程對解釋選擇性毒性作用機(jī)制非常重要[39]。Rac-及S-異丙甲草胺在玉米根系中的代謝產(chǎn)物是一致的,它們在玉米根系中的代謝過程分為3步,依次是氯離子被羥基取代、脫羥基作用和甲氧基被羥基取代(圖2),可能對應(yīng)的降解產(chǎn)物分別為羥基化異丙甲草胺(Hydroxymetolachlor)、脫氯異丙甲草胺(Deschlorometolachlor)和丙醇脫氯異丙甲草胺(Deschlorometolachlor propanol)[38]。玉米根系對低濃度Rac-和S-異丙甲草胺消解(根系吸收和降解)較快,且S-異丙甲草胺的消解速率快于Rac-異丙甲草胺,說明2種農(nóng)藥在玉米根系的消解存在立體選擇差異性[38]。但是,母體的降解并不意味著生態(tài)風(fēng)險(xiǎn)的降低或消逝,這些降解產(chǎn)物是新型污染物,其環(huán)境行為和毒理特性仍是未知的[30,40]。Rac-異丙甲草胺在大鼠體內(nèi)代謝則生成具有致瘤作用的二烷基醌亞胺[27,41],這說明手性除草劑異丙甲草胺在不同生物體內(nèi)的代謝產(chǎn)物可能具有對映體選擇性。
我國目前使用的手性農(nóng)藥約占農(nóng)藥市場份額的40%[42]。手性除草劑異丙甲草胺作為一種疏水性持久有機(jī)物,其在營養(yǎng)級中有一個(gè)從低級到高級的積累過程[43],且在一條食物鏈的循環(huán)過程中還會伴隨著異丙甲草胺在生物體內(nèi)的對映選擇性富集放大[37]。當(dāng)異丙甲草胺對映體進(jìn)入生態(tài)環(huán)境或生物體后,若依據(jù)非手性分析方法對其分析,所得信息可能會與實(shí)際生理效應(yīng)并不相符,因此深入研究對映體選擇性毒性,將為手性農(nóng)藥的環(huán)境安全和人體健康風(fēng)險(xiǎn)評價(jià)提供不可或缺的技術(shù)支持和科學(xué)依據(jù)[44]。盡管已有不少國內(nèi)外科學(xué)家開展了相關(guān)的研究工作,但是要得出普遍的規(guī)律,還需要更多研究結(jié)果的支撐。
由于不同對映體對靶標(biāo)生物具有不同的生物作用,在關(guān)注對靶標(biāo)生物具有活性的對映異構(gòu)體的同時(shí),卻忽略了處理其在環(huán)境或是生物體中對非靶標(biāo)生物具有毒性效應(yīng)的單一對映異構(gòu)體[45]。實(shí)踐證明,手性農(nóng)藥的不同對映異構(gòu)體對于不同生物體的毒性存在顯著差異,這種選擇差異性既取決于手性農(nóng)藥的對映異構(gòu)體,亦與生物體內(nèi)參加作用的生物大分子相關(guān)[46-47]。而且,目前對于異丙甲草胺的手性分析主要集中在對映體分?jǐn)?shù)(EF值)或?qū)τ丑w比(ER值)的測定上,其對映體在環(huán)境或生物體內(nèi)代謝機(jī)理及毒理學(xué)機(jī)制等諸多方面亟待加強(qiáng)[48]。今后的研究可以從對映體水平結(jié)合物種、器官等因素進(jìn)行綜合評價(jià):一是可以從對映體間的毒性差異來展開研究;二是可針對不同物種或器官來評價(jià)對映體不同的毒性行為;三是既包括觀察對映體的選擇性代謝,也包含深入認(rèn)識不同對映體對環(huán)境和生物體的生化影響過程,最終要深入到代謝機(jī)理、蛋白和基因水平上,闡述產(chǎn)生手性對映體選擇性的根源。只有在對映體水平上研究異丙甲草胺的生物活性行為,才能更準(zhǔn)確地評估其生態(tài)風(fēng)險(xiǎn)性以及對人類健康的影響,對異丙甲草胺的合理使用也才有較好的指導(dǎo)意義,從而減少其非活性部分對環(huán)境及生物產(chǎn)生的危害和風(fēng)險(xiǎn),減少資源浪費(fèi)[49-50]。
[1] Aguilar C,Ferrer I,Borrull F,et al.Monitoring of pesticides in river water based on samples previously stored in polymeric cartridges followed by on-line solid-phase extraction-liquid chromatography-diode array detection and confirmation by atmospheric pressure chemical ionization mass spectrometry [J].Analytica Chimica Acta,1998,386(3):237-248.
[2] Kontchou C Y,Gschwind N.Interactions and biodegradation of the herbicide metolachlor with different surfaces [J].Ecotoxicology and Environmental Safety,1998,40(1/2):29-33.
[3] Mohamed Y Z,Eish A,Wells M J M,et al.Monitoring stereoselective degradation of metolachlor in a constructed wetland:Use of statistically valid enantiomeric and diastereomeric fractions as opposed to ratios [J].Journal of Chromatographic Science,2008,46(5):269-275.
[4] Moser H,Rihs G,Sauter H,et al.The influence of atropisomerism and chiral center on the biological-activity of metolachlor [J].Z Naturforsch Bodenkd,1982,37(4):451-462.
[5] Buser H R,Mueller M D.Environmental behavior of acetamide pesticide stereoisomers:1.Stereo- and enantioselective determination using chiral high-resolution gas chromatography and chiral high-performance liquid chromatography [J].Enviromental Science and Technology,1995,29(8):2023-2030.
[6] Cao P Y,Wang X Y,Liu F M,et al.Dissipation and residue of S-metolachlor in maize and soil [J].Bulletin of Environmental Contamination and Toxicology,2008,80(5):391-394.
[7] Pereira S P,Fernandes M A S.Toxicity assessment of the herbicide metolachlor comparative effects on bacterial and mitochondrial model systems [J].Toxicology in Vitro,2009,23(8):1580-1590.
[8] Dearfield K L,McCarroll N E,Protzel A,et al.A survey of EPA/OPP and open literature on selected pesticide chemicals:Ⅱ.Mutagenicity and carcinogenicity of selected chloroacetanilides and related compounds [J].Mutation Research,1999,443(1/2):183-221.
[9] 李 麗,李鳳珍,安 麗,等.異丙甲草胺的毒性研究 [J].農(nóng)藥,2000,39(5):17-18.
Li L,Li F Z,An L,et al.Toxicologic study of metolachlor [J].Pesticides,2000,39(5):17-18.(in Chinese)
[10] 周 明,劉昌英,劉志勇,等.精異丙甲草胺原藥的毒性實(shí)驗(yàn)觀察 [J].職業(yè)與健康,2009,25(24):2657-2661.
Zhou M,Liu C Y,Liu Z Y,et al.Observation on toxicity experiment of S-metolachlor [J].Occupation and Health,2009,25(24):2657-2661.(in Chinese)
[11] Liu H J,Ye W H,Zhan X M,et al.A comparative study of Rac- and S-metolachlor toxicity toDaphniamagna[J].Ecotoxicology and Environmental Safety,2006,63(3):451-455.
[12] 徐冬梅,許曉路,劉文麗,等.異丙甲草胺及其S型對映體對蚯蚓的急性毒性差異 [J].中國環(huán)境科學(xué),2009,29(9):1000-1004.
Xu D M,Xu X L,Liu W L,et al.Acute toxicity difference of metolachlor and its S-isomer on earthworms [J].China Environmental Science,2009,29(9):1000-1004.(in Chinese)
[13] Ma J Y,Xu L G,Wang S F,et al.Toxicity of 40 herbicides to the green algaChlorellavulgaris[J].Ecotoxicology and Environmental Safety,2002,51(2):128-132.
[14] Ma J Y,Wang S F,Wang P W,et al.Toxicity assessment of 40 herbicides to the green algaRaphidocelissubcapitata[J].Ecotoxicology and Environmental Safety,2006,63(3):456-462.
[15] Hartgers E M,Aalderink G H,Van Den Brink P J,et al.Ecotoxicological threshold levels mixture of herbicides (catrazine,diuron and metolachlor) in freshwater microcosms [J].Aquatic Ecology,1998,32(2):135-152.
[16] 蔡衛(wèi)丹,劉惠君,方志國.Rac-及S-異丙甲草胺對2種微藻毒性特征影響研究 [J].環(huán)境科學(xué),2012,33(2):448-453.
Cai W D,Liu H J,Fang Z G.Toxicity effects of Rac-and S-metolachlor on two algaes [J].Chinese Journal of Enviromental Science,2012,33(2):448-453.(in Chinese)
[17] Liu H J,Xiong M Y.Comparative toxicity of racemic metolachlor and S-metolachlor toChlorellapyrenoidosa[J].Aquatic Toxicology,2009,93(2):100-106.
[18] Junghans M,Backhaus T,Faust M,et al.Predictability of co-mbined effects of eight chloroacetanilide herbicides on algal reproduction [J].Pest Management Science,2003,59(10):1101-1110.
[19] Xiong M Y,Liu H J,Tian B L.Comparative phytotoxicity of Rac-metolachlor and S-metolachlor on rice seedling [J].Journal of Environmental Science and Health Part B:Pesticides Food Contaminants and Agricultural Wastes,2012,47(5):410-419.
[20] Várnagy L,Budai P,Fejes S,et al.Toxicity and degradation of metolachlor (Dual Gold 960 EC) in chicken embryos [J].Commun Agric Appl Biol Sci,2003,68(4):807-811.
[21] Greenlee A R,Ellis T M,Berg R L.Low-dose agrochemicals and lawn-care herbicides induce developmental toxicity in murine preimplantation embryos [J].Enviromentnal Health Perspect,2004,112(6):703-709.
[22] 周 炳,趙美蓉,黃海鳳.4種農(nóng)藥對斑馬魚胚胎的毒理研究 [J].浙江工業(yè)大學(xué)學(xué)報(bào),2008,36(2):136-140.
Zhou B,Zhao M R,Huang H F.Study on zebrafish embryo-toxicity of four pesticides [J].Journal of Zhejiang University of Technology,2008,36(2):136-140.(in Chinese)
[23] 胡 晶.異丙甲草胺小鼠免疫毒性作用研究 [J].哈爾濱醫(yī)科大學(xué)學(xué)報(bào),2009,43(1):53-55.
Hu J.Immunotoxicity effect of metolachlor on mice [J].Journal of Harbin Medical University,2009,43(1):53-55.(in Chinese)
[24] Grisolia C K,Ferraria I.Invitroandinvivostudies demonstrate non-mutagenicity if the herbicide metolachlor [J].Brazilian Journal of Genetics,1997,20(3):411-414.
[25] Roloff B,Belluck D,Meisner L.Cytogenetic effects of cyanazine and metolachlor on human lymphocytes exposedinvitro[J].Mutation Research Letters,1992,281(4):295-298.
[26] Mathias F T,Romano R M,Sleiman H K,et al.Herbicide metolachlor causes changes in reproductive endocrinology of male wistar rats [J].ISRN Toxicol,2012.DOI:10.5402/2012/130846.
[27] Coleman S,Linderman R,Hodgson E,et al.Comparative metabolism ofChloroacetamideherbicidesand selected metabolites in human and rat liver microsomes [J].Environmental Health Perspect,2000,108(12):1151-1157.
[28] Hartnett S,Musah S,Dhanwada K D.Cellular effects of metolachlor exposure on human liver (Hep G2) cells [J].Chemosphere,2013,90(3):1258-1266.
[29] Liu H G,Zhao M R,Zhang C,et al.Enantioselective cytotoxicity of the insecticide bifenthrin on a human aminion epithelial (FL) cell line [J].Toxicology,2008,253(1/2/3):89-96.
[30] Liu H G,Xu L H,Zhao M R,et al.Enantiomer-specific bifen-thrin-induced apoptosis mediated by MAPK signalling pathway in Hep G2 cells [J].Toxicology,2009,261(3):119-125.
[31] Hu F,Li L,Wang C,et al.Enantioselective induction of oxidative stress by permethrin in rat adrenal pheochromocytoma (PC12) cells [J].Environmental Toxicology Chemistry,2010,29(3):683-690.
[32] Scatena R,Bottoni P,Botta G.The role of mitochondria in ph-armacotoxicology:A reevaluation of an old,newly emerging topic [J].American Journal Physiology and Cell Physiology,2007,293(1):12-21.
[33] Pereira C V,Moreira A C,Pereira S P.Investigating drug-induced mitochondrial toxicity:A biosensor to increase drug safety [J].Current Drug Safety,2009,4(1):34-54.
[34] Jin Y X,Chen R J,Wang L G,et al.Effects of metolachlor on transcription of thyroid system-related genes in juvenile and adult Japanese medaka (Oryziaslatipes) [J].General and Comparative Endocrinology,2010,170(3):487-493.
[35] Alavanja M C,Dosemeci M,Samanic C,et al.Pesticides and lung cancer risk in the agricultural health study cohort [J].American Journal Epidemiology,2004,160(9):876-885.
[36] Rusiecki J A,Hou L,Lee W J,et al.Cancer incidence among pesticide applicators exposed to metolachlor in the agricultural health study [J].International Journal of Cancer,2006,118(12):3118-3123.
[37] Lehmler H J,Harrad S J,Huhnerfuss H,et al.Chiral polychlorinated biphenyl transport,metabolism,and distribution:A review [J].Environmental Science and Technology,2010,44(8):2757-2766.
[38] Liu H J,Huang R N,Xie F,et al.Enantioselective phytotoxicity of metolachlor on maize and rice root [J].Journal of Hazardous Materials,2012,217/218:330-337.
[39] Caldwell J.Stereochemical determinants of the nature and con-sequences of drug metabolism [J].Journal of Chromatography A,1995,694(1):39-48.
[40] Patil P A,Kothekar M A.Development of safer molecules through chirality [J].Indian Journal of Medical Sciences,2006,60(10):427-437.
[41] Jefferies P R,Quistad G B,Casida J E.Dialkylquinonimines validated asinvivometabolites of alachlor,acetochlor,and metolachlor herbicides in rats [J].Chemical in Research Toxicology,1998,11(4):353-359.
[42] Zhou Y,Li L,Lin K D,et al.Enantiomer separation of triazole fungicides by high-performance liquid chromatography [J].Chirality,2009,21(4):421-427.
[43] Hladik M L,Bouwer E J,Roberts A L,et al.Neutral chloroacetamide herbicide degradates and related compounds in Midwestern United States drinking water sources [J].Science of the Total Environment,2008,390(1):155-165.
[44] 劉維屏,張 穎.手性農(nóng)藥毒性評價(jià)進(jìn)展 [J].浙江大學(xué)學(xué)報(bào):農(nóng)業(yè)與生命科學(xué)版,2012,38(1):63-70.
Liu W P,Zhang Y.Progress in potential toxicity of chiral pesticides [J].Journal of Zhejiang University:Agriculture & Life Sciences,2012,38(1):63-70.(in Chinese)
[45] Wiberg K,Harner T,Wideman J L,et al.Chiral analysis of organochlorine pesticide in Alabama soils [J].Chemosphere,2001,45(6/7):843-848.
[46] Jin Y X,Wang W Y,Xu C,et al.Induction of hepatic estrogen-responsive gene transcription by permethrin enantiomers in male adult zebrafish [J].Aquatic Toxicology,2008,88(2):146-152.
[47] Wang L M,Liu W P,Yang C X,et al.Enantioselectivity in estrogenic potential and uptake of bifenthrin [J].Environmental Science and Technology,2007,41(17):6124-6128.
[48] 范瑞芳,方展強(qiáng),于志強(qiáng),等.手性農(nóng)藥的環(huán)境行為研究進(jìn)展 [J].生態(tài)環(huán)境,2008,17(4):1690-1695.
Fan R F,Fang Z Q,Yu Z Q,et al.Research progress in environmental fate of chiral pesticides [J].Ecology and Environment,2008,17(4):1690-1695.(in Chinese)
[49] Wang G X,Huang J L,Gao W N,et al.The effect of high-voltage electrostatic field (HVEF) on aged rice (OryzasativaL.) seeds vigor and lipid peroxidation of seedlings [J].Journal of Electrostatics,2009,67(5):759-764.
[50] Choo K,Snoeijs P,Pedersén M.Oxidative stress tolerance in the filamentous green algaeCladophoraglomerataandEnteromorphaahlneriana[J].Journal of Experimental Marine Biology and Ecology,2004,298(1):111-123.
Progress in toxicity of chiral herbicide metolachlor
ZHANG Xuan,YANG Rui-li,LIU Chun-hong,SUN Yuan-ming,LEI Hong-tao
(GuangdongProvincialKeyLaboratoryofFoodQualityandSafety,ResearchCenterofEngineeringandTechniqueforFoodSafetyDetectionandRiskControl,Guangzhou,Guangdong510642,China)
Chiral herbicide metolachlor is widely used for preemergence control of broad-leaved weeds.This review focused on its enantioselective differences of acute and chronic toxicities to non-target organisms after entering the environment.These differences are closely related to biological absorption and metabolism.The developmental trends of future investigations on chiral toxicology were also discussed.
metolachlor;enantioselectivity;toxicity
2013-09-22
廣東省科技計(jì)劃項(xiàng)目(2013B051000072,2012A020100002);廣東省自然科學(xué)基金項(xiàng)目(S2013030013338);教育部博士點(diǎn)基金項(xiàng)目(20114404130002);公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201003008-08);國家星火計(jì)劃項(xiàng)目(2011GA780024)
張 璇(1989-),女,湖北荊州人,碩士,主要從事生物分析化學(xué)研究。E-mail:zhang_xuan_2009@163.com
雷紅濤(1973-),男,陜西渭南人,教授,博士,主要從事生物分析化學(xué)與分子識別研究。 E-mail:immunoassay@126.com
時(shí)間:2014-12-12 09:30
10.13207/j.cnki.jnwafu.2015.01.015
S481+.1
A
1671-9387(2015)01-0152-07
網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/61.1390.S.20141212.0930.015.html