談潘莉,汪浙炯,趙金方
白假絲酵母菌臨床菌株對(duì)氟康唑耐藥性及其與CAP1基因相關(guān)性研究
談潘莉,汪浙炯,趙金方
目的 了解白假絲酵母菌臨床菌株對(duì)氟康唑的耐藥率以及氟康唑耐藥與白假絲酵母菌CAP1基因相關(guān)性。方法 采用微量稀釋法檢測(cè)了245株白假絲酵母菌臨床菌株對(duì)氟康唑的敏感性。采用實(shí)時(shí)熒光定量RT-PCR(qRT-PCR)和流式細(xì)胞術(shù)分別檢測(cè)白假絲酵母菌CAP1基因mRNA(CAP1-mRNA)及其表達(dá)產(chǎn)物Cap1p。采用氟康唑濃度遞增(4~64 μg/mL)的YPD培養(yǎng)液連續(xù)培養(yǎng)法了解氟康唑誘導(dǎo)白假絲酵母菌耐藥性的作用,qRT-PCR和流式細(xì)胞術(shù)確定CAP1基因與氟康唑耐藥性形成的關(guān)系。結(jié)果 134株白假絲酵母菌對(duì)氟康唑敏感(MIC≤8 μg/mL)、36株劑量依賴敏感(16~32 μg/mL)、75株耐藥(≥64 μg/mL),耐藥率為30.6%(75/245)。氟康唑耐藥白假絲酵母菌株CAP1-mRNA和Cap1p表達(dá)水平均明顯高于氟康唑敏感菌株(P<0.05)。氟康唑能誘導(dǎo)氟康唑敏感菌株產(chǎn)生耐藥性(MIC≥64 μg/mL),其CAP1-mRNA和Cap1p表達(dá)水平也顯著升高(P<0.05)。結(jié)論 白假絲酵母菌臨床菌株對(duì)氟康唑有較高的耐藥率。氟康唑能誘導(dǎo)氟康唑敏感白假絲酵母菌株產(chǎn)生耐藥性。白假絲酵母菌對(duì)氟康唑耐藥性與CAP1基因表達(dá)上調(diào)密切相關(guān)。
白假絲酵母菌;氟康唑;耐藥性;CAP1基因;表達(dá)
由于人口老齡化及抗生素廣泛使用等原因,近年來(lái)真菌感染性疾病發(fā)病率不斷升高,尤其是侵襲性真菌(invasive fungi)感染性疾病,已成為嚴(yán)重威脅人類健康和生命安全的新問(wèn)題[1]。國(guó)外文獻(xiàn)報(bào)道,侵襲性真菌感染性疾病最常見(jiàn)的病原體為假絲酵母菌屬(Candida)真菌,占所有病原真菌的70%~90%,我國(guó)也不例外[2-5]。假絲酵母菌屬真菌種類繁多、分布廣泛,目前發(fā)現(xiàn)至少有9個(gè)種可引起人和動(dòng)物侵襲性真菌病,其中以白假絲酵母菌(Candidaalbicans)最為常見(jiàn),當(dāng)機(jī)體免疫功能低下時(shí),白假絲酵母菌常作為條件致病菌引起局部或全身感染[6]。氟康唑(fluconazole)是臨床治療時(shí)最常用的抗假絲酵母菌感染性疾病藥物,但其耐藥現(xiàn)象也最為嚴(yán)重[7-8]。有文獻(xiàn)報(bào)道,CAP1基因及其產(chǎn)物轉(zhuǎn)錄因子Cap1p與白假絲酵母菌耐藥密切相關(guān)[9-10]。我們檢測(cè)了245株白假絲酵母菌臨床菌株對(duì)氟康唑的敏感性,檢測(cè)了氟康唑敏感或耐藥菌株CAP1-mRNA、Cap1p蛋白表達(dá)水平差異,同時(shí)探討了氟康唑誘導(dǎo)白假絲酵母菌耐藥及其與CAP1基因表達(dá)關(guān)系。
1.1 菌株來(lái)源及培養(yǎng) 采用假絲酵母菌顯色培養(yǎng)基(BioMerieux)從2013年1-12月本院各臨床科室送檢的咽拭、痰液、尿液、糞便標(biāo)本中分離假絲酵母菌,各菌株經(jīng)VITEK 2-compact全自動(dòng)微生物分析儀(BioMerieux)進(jìn)行鑒定,從中獲得白假絲酵母菌245株。氟康唑敏感的白假絲酵母菌ATCC22019株由本實(shí)驗(yàn)室保存并提供。上述菌株接種于沙保瓊脂平板上,35 ℃培養(yǎng)2 d。
1.2 最低抑菌濃度測(cè)定 采用美國(guó)臨床實(shí)驗(yàn)室標(biāo)準(zhǔn)化研究所(CLSI)介紹的微量稀釋法,檢測(cè)氟康唑?qū)Π准俳z酵母菌的最低抑菌濃度(MIC)。挑取沙保平板上培養(yǎng)的白假絲酵母菌接種于YPD培養(yǎng)液中,35 ℃、400 r/min振蕩培養(yǎng)24 h。培養(yǎng)物經(jīng)細(xì)胞計(jì)數(shù)板計(jì)數(shù)后,用RPMI-1640培養(yǎng)液(GiBco)配制成菌數(shù)為5×103CFU/mL的懸液。96孔細(xì)胞培養(yǎng)板中每孔加100 μL白假絲酵母懸液,然后加入100 μL RPMI-1640培養(yǎng)液稀釋的氟康唑注射液(法國(guó)輝瑞制藥有限公司,國(guó)藥準(zhǔn)字J20100010),使氟康唑終濃度分別為0.25、0.5、2、4、8、16、32、64和128 μg/mL,35 ℃培養(yǎng)24 h后觀察結(jié)果,以未見(jiàn)真菌生長(zhǎng)的最低藥物濃度為該菌株的MIC。MIC≤8 μg/mL為敏感、16~32 μg/mL為劑量依賴敏感、≥64 μg/mL為耐藥[11]。實(shí)驗(yàn)中采用白假絲酵母菌ATCC22019株為質(zhì)控菌株。
1.3 CAP1-mRNA測(cè)定 挑取沙保平板上培養(yǎng)的白假絲酵母菌接種于YPD培養(yǎng)液中,35 ℃、400 r/min振蕩培養(yǎng)16 h,8 000 r/min離心5 min(4 ℃)。取白假絲酵母菌沉淀用Novelase消化液懸浮,室溫消化10 min后,參照Trizol試劑(Invitrogen)說(shuō)明書介紹的步驟提取總RNA,紫外分光光度法測(cè)定其RNA濃度[12]。根據(jù)文獻(xiàn)報(bào)道的CAP1基因序列[13-14],采用Primer Premier 5.0軟件設(shè)計(jì)檢測(cè)白假絲酵母菌CAP1-mRNA和18S-RNA的實(shí)時(shí)熒光定量RT-PCR(qRT-PCR)引物(表1),各引物由上海Invitrogen公司合成。以1 μg總RNA為模板,采用逆轉(zhuǎn)錄試劑盒(TaKaRa)、SYBR Premix Ex.TaqTM熒光定量PCR試劑盒(TaKaRa)、上述引物及ABI-7500型實(shí)時(shí)熒光定量PCR儀檢測(cè)CAP1-mRNA,反應(yīng)參數(shù):95 ℃30 s;95 ℃5 s、60 ℃30 s,40個(gè)循環(huán)。以18S-RNA為內(nèi)參照,采用ΔΔCt模型及REST2005軟件對(duì)qRT-PCR數(shù)據(jù)進(jìn)行定量分析[15]。
Note: F--上游引物(Forward primers); R--下游引物(Reverse primers).
1.4 Cap1p表達(dá)水平測(cè)定 挑取沙保平板上培養(yǎng)的白假絲酵母菌接種于YPD培養(yǎng)液中,35 ℃、400 r/min振蕩培養(yǎng)16 h,8 000 r/min離心5 min(4 ℃)。取白假絲酵母菌沉淀用pH7.4、0.01 mol/L磷酸緩沖鹽水(PBS)懸浮,經(jīng)細(xì)胞計(jì)數(shù)板計(jì)數(shù)后用PBS配制成菌數(shù)為1×106CFU/mL的懸液,然后按上法離心,如此重復(fù)2次。白假絲酵母菌沉淀懸于1 mL 1%去氧膽酸鈉-1%無(wú)水乙醇-PBS中,37 ℃、200 r/min振蕩孵育30 min,按上法離心后用1%去氧膽酸鈉-PBS懸浮、離心2次。取白假絲酵母菌沉淀加入1∶1 000稀釋的兔抗Cap1p-IgG(本實(shí)驗(yàn)室提供),4 ℃孵育30 min,按上法用PBS洗滌、離心3次后加入1∶1 000稀釋的FITC標(biāo)記羊抗兔IgG(ImmunoResearch),4 ℃孵育30 min,按上法用PBS洗滌、離心3次。白假絲酵母菌沉淀用0.5 mL PBS懸浮,然后用FACSCalibur流式細(xì)胞儀檢測(cè)20 000個(gè)菌細(xì)胞(激發(fā)波長(zhǎng)488 nm),用Cellquest軟件分析表達(dá)Cap1p蛋白(Cap1p+)菌細(xì)胞百分率及其平均熒光強(qiáng)度(mean fluorescence intensity,MFI)。
1.5 耐藥性誘導(dǎo)及CAP1-mRNA和Cap1p檢測(cè) 氟康唑敏感的134株白假絲酵母菌中,34株氟康唑MIC<2 μg/mL,其余100株氟康唑MIC為2~8 μg/mL。將上述100株白假絲酵母菌分別接種于YPD培養(yǎng)液中,35 ℃、400 r/min振蕩培養(yǎng)至濃度約為1×108CFU/mL,取1×106白假絲酵母菌接種于5 mL含4 μg/mL氟康唑的YPD培養(yǎng)液中,按上法振蕩培養(yǎng)并計(jì)數(shù),再取1×106白假絲酵母菌接種于5 mL含8 μg/mL氟康唑的YPD培養(yǎng)液中,直至培養(yǎng)液中氟康唑濃度為64 μg/mL。將64 μg/mL氟康唑YPD白假絲酵母菌培養(yǎng)物8 000 r/min離心5 min(4 ℃),取沉淀的白假絲酵母菌按上法進(jìn)行MIC、CAP1-mRNA和Cap1p蛋白表達(dá)水平測(cè)定,實(shí)驗(yàn)中設(shè)置氟康唑未誘導(dǎo)菌株對(duì)照。
1.6 統(tǒng)計(jì)學(xué)分析 分別采用SPSS19.0統(tǒng)計(jì)學(xué)軟件中的t檢驗(yàn),對(duì)實(shí)驗(yàn)中獲得的CAP1-mRNA和Cap1p表達(dá)水平數(shù)據(jù)進(jìn)行檢驗(yàn)。
2.1 白假絲酵母菌臨床菌株的耐藥率 氟康唑?qū)Π准俳z酵母菌質(zhì)控菌株ATCC22019的MIC為0.25或0.5 μg/mL,表明本研究中微量稀釋法實(shí)驗(yàn)質(zhì)量及其結(jié)果可靠[11]。微量稀釋法檢測(cè)結(jié)果顯示,245株白假絲酵母菌對(duì)氟康唑的MIC范圍為0.25~128 μg/mL,其中134株對(duì)氟康唑敏感、36株劑量依賴敏感、75株耐藥,敏感率為54.7%(134/245),耐藥率為30.6%(75/245)(表2)。
2.2 氟康唑耐藥臨床菌株CAP1基因高表達(dá) qRT-PCR和流式細(xì)胞術(shù)檢測(cè)結(jié)果分別顯示,75株氟康唑耐藥白假絲酵母菌臨床菌株CAP1-mRNA和Cap1p表達(dá)水平均明顯高于134株氟康唑敏感白假絲酵母菌臨床菌株(t=2.784,2.154;P<0.05)(圖1)。
*:Expression of CAP1-mRNA and Cap1p levels in fluconazole-resistantC.albicansisolates compared with that in fluconazole- sensitiveC.albicansisolates (P<0.05).
圖1 白假絲酵母菌CAP1-mRNA和Cap1p表達(dá)水平比較
Fig.1 Comparison of CAP1-mRNA and Cap1p expression levels inC.albicansisolates
2.3 氟康唑誘導(dǎo)白假絲酵母菌耐藥性 100株氟康唑敏感白假絲酵母菌(MIC=2~8 μg/mL)依次在4、8、16、32和64 μg/mL氟康唑YPD培養(yǎng)液中均能良好生長(zhǎng),但生長(zhǎng)速度減慢。微量稀釋法檢測(cè)結(jié)果顯示,氟康唑?qū)?4 μg/mL氟康唑YPD培養(yǎng)液中收集的菌株MIC≥64 μg/mL。
2.4 誘導(dǎo)耐藥菌株CAP1基因高表達(dá) 與氟康唑誘導(dǎo)前比較,100株氟康唑敏感白假絲酵母菌(MIC=2~8 μg/mL)最終經(jīng)64 μg/mL氟康唑YPD培養(yǎng)液培養(yǎng)后,其CAP1-mRNA水平和Cap1p表達(dá)水平均顯著升高(t=3.675,2.772;P<0.05)(圖2)。
白假絲酵母菌是一種條件致病性真菌,可引起人和動(dòng)物的局部或全身性感染[16-17],所致疾病種類繁多,既可引起皮膚、黏膜、內(nèi)臟、中樞神經(jīng)系統(tǒng)感染性疾病,也可引起皮膚、呼吸道、消化道過(guò)敏性疾病[18]。氟康唑是臨床上治療白假絲酵母菌感染性疾病的首選藥物,但白假絲酵母菌對(duì)其耐藥性也最為嚴(yán)重,且對(duì)氟康唑耐藥菌株通常也對(duì)其他唑類抗真菌藥物交叉耐藥[7-8]。因此,了解白假絲酵母菌臨床菌株對(duì)氟康唑耐藥率及其耐藥機(jī)制具有重要的臨床意義。最近的國(guó)外和國(guó)內(nèi)文獻(xiàn)報(bào)道,白假絲酵母菌臨床菌株對(duì)氟康唑的耐藥率分別為21.3%和15.0%[19-20]。本研究發(fā)現(xiàn),白假絲酵母菌臨床菌株對(duì)氟康唑的耐藥率高達(dá)30.6%,提示藥物治療白假絲酵母菌感染性疾病時(shí),應(yīng)進(jìn)行藥物敏感試驗(yàn)并根據(jù)其結(jié)果選用合適抗真菌藥物,以提高臨床療效。
*:Expression of CAP1-mRNA and Cap1p levels inC.albicansisolates compared with that inC.albicansisolates before fluconazole induction (P<0.05).
圖2 氟康唑誘導(dǎo)后白假絲酵母菌CAP1-mRNA和Cap1p表達(dá)水平變化
Fig.2 Change of CAP1-mRNA and Cap1p expression levels ofC.albicansafter fluconazole induction
白假絲酵母菌對(duì)氟康唑耐藥機(jī)制主要有真菌多藥抗藥蛋白(multidrug resistant protein,MRP)表達(dá)水平上調(diào)、氟康唑靶酶14α-去甲基化酶(CYP51A1)突變所致親和力下降[21-22]。CAP1基因表達(dá)產(chǎn)物Cap1p是普遍存在于真核細(xì)胞中的AP-1家族成員,為含有bZip結(jié)構(gòu)域的轉(zhuǎn)錄因子[14]。Alarco等首先發(fā)現(xiàn)釀酒酵母Cap1p能上調(diào)MFS超家族多藥抗藥基因FLR1的表達(dá),從而使釀酒酵母產(chǎn)生對(duì)氟康唑產(chǎn)生抗藥性[23];此后Alarco等又發(fā)現(xiàn)白假絲酵母菌Cap1p可上調(diào)多個(gè)MRP編碼基因表達(dá),從而在白假絲酵母菌對(duì)氟康唑耐藥性形成過(guò)程中發(fā)揮重要作用[9]。有文獻(xiàn)報(bào)道,白假絲酵母菌長(zhǎng)期暴露于低濃度氟康唑中,也可誘導(dǎo)其產(chǎn)生對(duì)氟康唑的耐藥性[24]。本研究發(fā)現(xiàn),氟康唑耐藥的白假絲酵母菌臨床菌株CAP1-mRNA和Cap1p表達(dá)水平,均明顯高于氟康唑敏感的白假絲酵母菌臨床菌株(P<0.05);氟康唑敏感的白假絲酵母菌能適應(yīng)培養(yǎng)基中濃度逐步增加的氟康唑,轉(zhuǎn)變?yōu)閷?duì)氟康唑耐藥的菌株,同時(shí)其CAP1-mRNA和Cap1p表達(dá)水平也顯著升高(P<0.05)。上述實(shí)驗(yàn)結(jié)果提示,氟康唑能誘導(dǎo)白假絲酵母菌產(chǎn)生對(duì)其耐藥性,其機(jī)制與CAP1 基因密切相關(guān);臨床上使用氟康唑治療白假絲酵母菌感染性疾病時(shí),不僅應(yīng)足量使用并注意合適療程,還需監(jiān)測(cè)白假絲酵母菌對(duì)氟康唑敏感性變化,以免誘導(dǎo)白假絲酵母菌產(chǎn)生耐藥性。
[1]Perlroth J, Choi B, Spellberg B. Nosocomial fungal infections: epidemiology, diagnosis, and treatment[J]. Med Mycol, 2007, 45(4): 321-346. DOI: 10.1080/13693780701218689
[2]Kabir MA, Hussain MA. Human fungal pathogenCandidaalbicansin the postgenomic era: an overview[J]. Expert Rev Anti Infect Ther, 2009, 7(1): 121-134. DOI: 10.1586/14787210.7.1.121
[3]Feng WL, Yang J, Xi ZQ, et al. Epidemiologic study on patients with invasive fungal infectious[J]. Chin J Epidemiol, 2009, 30(10): 1043-1045. (in Chinese) 馮文莉,楊靜,奚志琴,等. 侵襲性真菌醫(yī)院內(nèi)感染的流行病學(xué)調(diào)查[J]. 中華流行病學(xué)雜志,2009, 30(10):1043-1045.
[4]Yu XL, Zhu J, Lu J, et al. Dynamic change of deep fungal infections[J]. Chin J Nosocomiol, 2013, 23(21): 5362-5364. (in Chinese) 余旭良,祝進(jìn),陸軍,等. 深部真菌感染動(dòng)態(tài)變化分析[J]. 中華醫(yī)院感染學(xué)雜志,2013, 23(21):5362-5364.
[5]Wu D, Hu JY, Zhang T. Distribution and drug resistance of pathogens causing nosocomial infections during 2002-2011[J]. 2014, 24(9): 2096-2098. (in Chinese) 吳迪,吳靜儀,張弢. 2002-2011年醫(yī)院病原菌分布與耐藥性分析[J]. 中華醫(yī)院感染學(xué)雜志,2014, 24(9):2096-2098.
[6]Wilson D, Thewes S, Zakikhany K, et al. Identifying infection-associated genes ofCandidaalbicansin the postgenomic era[J]. FEMS Yeast Res, 2009, 9(5): 688-700. DOI: 10.1111/j.1567-1364.2009.00524.x
[7]Sorgo AG, Heilmann CJ, Dekker HL, et al. Effects of fluconazole on the secretome, the wall proteome, and wall integrity of the clinical fungusCandidaalbicans[J]. Eukaryote Cell, 2011, 10(8): 1071-1081. DOI: 10.1128/EC.05011-11
[8]Higgins J, Pinjon E, Oltean HN, et al. Triclosan antagonizes fluconazole activity againstCandidaalbicans[J]. J Dent Res, 2012, 91(1): 65-70. DOI: 10.1177/0022034511425046
[9]Alarco AM, Raymond M. The bZip transcription factor Cap1p is involved in multidrug resistance and oxidative stress response inCandidaalbicans[J]. J Bacteriol, 1999, 181(3): 700-708. DOI: 10.1016/j.gene.2006.08.010
[10]Ferrari S, Sanguinetti M, Torelli R, et al. Contribution of CgPDR1-regulated genes in enhanced virulence of azole-resistantCandidaglabrata[J]. PLoS One, 2011, 6(3): 17589. DOI: 10.1371/journal.pone.0017589
[11]National Committee for Clinical Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard[S]. Wayne, Pa. NCCLS document M27-A. 1997.
[12]Sambrook J, Fritsch EF, Maniatis T. Molecular cloning, a latoratory manual[M]. 2nd ed, New York: Cold Spring Harbor Laboratory Press, 1989, 1.21-1.52, 2.60-2.80, 7.30-7.35, 9.14-9.22.
[13]Henry KW, Cruz MC, Katiyar SK, et al. Antagonism of azole activity againstCandidaalbicansfollowing induction of multidrug resistance genes by selected antimicrobial agents[J]. Antimicrob Agents Chemother, 1999, 43(8): 1968-1974.
[14]Zhang X, De Micheli M, Coleman ST, et al. Analysis of oxidative stress regulation of theCandidaalbicanstranscription factor, Cap1p[J]. Mol Microbiol, 2000, 36(3): 618-629. DOI: 10.1046/j.1365-2958. 2000.01877
[15]Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR[J]. Nucleic Acids Res, 2002, 30(9): 36-45. DOI: 10.1093/nar/30.9.e36
[16]Arai T, Mikami Y, Yokoyama K, et al. Phagocytosis ofCandidaalbicansby rabbit alveolar macrophages and guinea pig neutrophils[J]. Sabouraudia, 1977, 15(2): 171-177. DOI: 10.1080/00362177785190261
[17]Tada R, Yamanaka D, Naqi-Miura N, et al. Vasculitis and anaphylactoid shock induced in mice by cell wall extract of the fungusCandidametapsilosis[J]. Pol J Microbiol, 2014, 63(2): 223-230.
[18]Yan J. Medical Microbiology[M]. 2nd ed, Beijing: Higher Education Press, 2012: 301-302. (in Chinese) 嚴(yán)杰. 醫(yī)學(xué)微生物學(xué)[M]. 2版,北京:高等教育出版社,2012, 301-302.
[19]Maldonado NA, Cano LE, De Bedout C, et al. Association of clinical and demographic factors in invasive candidiasis caused by fluconazole-resistantCandidaspecies: a study in 15 hospitals, Medellin, Colombia 2010-2011[J]. Diaqn Microbiol Infect Dis, 2014, 79(2): 280-286. DOI: 10.1016/j.diagmicrobio.2014.02.003
[20]Zhang W, Lin ZF, Zhao J, et al. Trends of fungal spectrum and drug resistance changes in Intensive Care Unit[J]. Chin J Mycol, 2014, 9(1): 24-27. (in Chinese) 張偉,林兆奮,趙瑾,等. 重癥監(jiān)護(hù)病房真菌譜及耐藥性6年變化趨勢(shì)[J]. 中國(guó)真菌學(xué)雜志,2014, 9(1):24-27.
[21]Wirsching S, Michel S, Kohler G, et al. Activation of the multiple drug resistance gene MDR1 in fluconazole-resistant, clinicalCandidaalbicansstrains is caused by mutations in a trans-regulatory factor[J]. J Bacteriol, 2000, 182(2): 400-404. DOI: 10.1128/JB.182.2.400-404.2000
[22]Lamb DC, Kelly DE, White TC, et al. The R467K amino acid substitution inCandidaalbicanssterol 14alpha-demethylase causes drug resistance through reduced affinity[J]. Antimicrobial Agents Chemotherapy, 2000, 44(1): 63-67. DOI: 10.1128/AAC.44.1.63-67.2000
[23]Alarco AM, Balan I, Talibi D, et al. AP1-mediated multidrug resistance inSaccharomycescerevisiaerequires FLR1 encoding a transporter of the major facilitator superfamily[J]. J Biol Chem, 1997, 272(31): 19304-19313. DOI: 10.1074/jbc.272.31.19304
[24]Georgiev VS. Membrane transporters and antifungal drug resistance[J]. Curr Drug Targets, 2000, 1(3): 261-284. DOI: 10.2174/1389450003349209
Resistance of Candida albicans isolates against fluconazole and the resistance correlation with CAP1 gene
TAN Pan-li,WANG Zhe-jiong,ZHAO Jin-fang
(Department of Laboratory Medicine, the First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou 310006, China)
The aim of this study is to investigate the resistant rate ofCandidaalbicans(C.albicans) isolates against fluconazole, and to determine the correlation between the fluconazole-resistance and CAP1 gene ofC.albicans. The microdilution test on 245C.albicansisolates showed that 134 strains were fluconazole-sensitive (MIC≤8 μg/mL), 36 strains were fluconazole-dose-dependent sensitive (16-32 μg/mL) and 75 strains were fluconazole-resistant (≥64 μg/mL) that produced a 30.6% (75/245) fluconazole-resistant rate. The real-time fluorescent quantitative RT-PCR (qRT-PCR) and flow cytometric examination confirmed that the mRNA (CAP1-mRNA) and Cap1p levels expressed by CAP1 gene in the fluconazole-resistantC.albicansisolates were significantly higher than those in the fluconazole-sensitive isolates (P<0.05). When the fluconazole-sensitiveC.albicansisolates were continuously cultured in YPD liquid medium containing fluconazole with progressively-increased dosages (4-64 μg/mL), the isolates produced the resistance against fluconazole (MIC≥64 μg/mL) as well as the CAP1-mRNA and Cap1p expression levels were significantly elevated (P<0.05). All the data indicate thatC.albicansisolates have a higher fluconazole-resistant rate. Fluconazole can induce the resistance against itself in fluconazole-sensitiveC.albicansstrains. The fluconazole-resistance ofC.albicansis closely associated with the expression up-regulation of its CAP1 gene.
Candidaalbicans; fluconazole; resistance; CAP1 gene; expression
Zhao Jin-fang, Email:xinqiuzh@163.com
10.3969/cjz.j.issn.1002-2694.2015.04.007
趙金方,xinqiuzh@163.com
浙江中醫(yī)藥大學(xué)附屬第一醫(yī)院檢驗(yàn)科,杭州 310006
R379.4
A
1002-2694(2015)04-0325-05
2014-10-03;
2014-11-08