陳首部
(中南民族大學(xué) 電子信息工程學(xué)院,武漢 430074)
摻錫氧化銦(In2O3:Sn)作為一種非常重要的透明導(dǎo)電氧化物半導(dǎo)體材料,它不僅具有穩(wěn)定的化學(xué)性質(zhì),而且具有優(yōu)良的導(dǎo)電性能和透光性能,因此被廣泛應(yīng)用于太陽能電池、電致發(fā)光、液晶顯示、傳感器以及激光器等光電子器件領(lǐng)域[1-10].對于聚合物太陽能電池和電致發(fā)光器件,其典型結(jié)構(gòu)為“三明治式”的夾心結(jié)構(gòu),即聚合物功能層被夾在上、下兩個(gè)電極之間,其中器件負(fù)極常常選用低功函的金屬材料,而正極則大多采用透明的In2O3:Sn導(dǎo)電玻璃[1-4].眾所周知,由于In2O3:Sn屬于非化學(xué)計(jì)量學(xué)化合物,沉積條件、后處理工藝和清洗方法等因素都將明顯影響其表面性質(zhì)[6,7],進(jìn)而對它與功能層之間的界面特性及其器件性能產(chǎn)生較大的影響,因此人們對In2O3:Sn薄膜表面改性進(jìn)行了比較廣泛的研究[11-21].但是這些研究主要集中在In2O3:Sn薄膜的功函數(shù)、載流子注入等電學(xué)性質(zhì)方面,而對于其表面濕潤性能、表面能等物理化學(xué)性質(zhì)的研究則很少報(bào)道.
本文采用不同方法對In2O3:Sn導(dǎo)電玻璃進(jìn)行表面改性,通過原子力顯微鏡(AFM)和接觸角測試,研究了改性方法對In2O3:Sn導(dǎo)電玻璃表面形貎和濕潤性能的影響;同時(shí)通過調(diào)和平均方法計(jì)算,定量地討論了改性方法對樣品表面能參數(shù)和表面極性度的影響.
本實(shí)驗(yàn)選用南玻公司生產(chǎn)的In2O3:Sn導(dǎo)電玻璃作為研究對象,樣品尺寸為3 cm×3 cm方塊,為了研究改性方法對導(dǎo)電玻璃性能的影響,實(shí)驗(yàn)采用下列方法對其進(jìn)行表面處理:(1)溶劑超聲處理―依次采用洗滌劑溶液、無水酒精和去離子水對導(dǎo)電玻璃各超聲清洗約10 min,并用高純氮?dú)獯蹈桑?2)H2SO4溶液浸泡―先用洗滌劑溶液和無水酒精對導(dǎo)電玻璃各超聲清洗約10 min,再用H2SO4溶液浸泡約5 min,最后采用去離子水超聲清洗10 min,并用高純氮?dú)獯蹈桑?3)NaOH溶液處理―首先用洗滌劑溶液和無水酒精對導(dǎo)電玻璃各超聲清洗約10 min,然后用NaOH溶液浸泡約10 min,最后采用去離子水超聲清洗約10 min,并用高純氮?dú)獯蹈?本實(shí)驗(yàn)中將經(jīng)過溶劑超聲處理、H2SO4溶液浸泡和NaOH溶液處理的In2O3:Sn導(dǎo)電玻璃分別標(biāo)記為1#、2#和3#樣品.通過原子力顯微鏡(AFM)表征樣品的表面形貎,分別選用蒸餾水和二碘甲烷作為測試液體來測量樣品表面的接觸角,并根據(jù)調(diào)和平均法計(jì)算各樣品的表面能、表面能分量和表面極性度,實(shí)驗(yàn)所用測試液體的表面張力參數(shù)[22,23]如表1所示.
表1 測試液體的表面張力參數(shù) mJ/m2
表面張力(或表面能)是產(chǎn)生單位面積新表面所需的可逆功,它是液體(或固體)重要的表面物理參數(shù)之一,其產(chǎn)生根源是物質(zhì)分子間的相互作用力.一般而言,液體的表面張力可以直接測定,而固體的表面能則只能采用間接方法來計(jì)算.
根據(jù)極性成分理論,Wu[22]利用半連續(xù)模型中能量可加性概念,并假定分子之間的作用能是由非極性分量和極性分量兩部分所組成,其中非極性分量是色散作用對表面能的貢獻(xiàn);而極性分量則是靜電力、誘導(dǎo)力以及氫鍵等作用對表面能的貢獻(xiàn).如圖1所示,當(dāng)液體浸潤固體并達(dá)到平衡狀態(tài)時(shí),由Young方程[22,23]可得:
γS=γSL+γLcosθ,
(1)
(1)式中,γS為固體的表面能,γL為液體的表面張力,θ為液體在固體表面上的接觸角,γSL為固體與液體(固-液)之間的界面能.根據(jù)Dupré方程[22,23],固-液之間的粘結(jié)功(Wa)可以表示為:
Wa=γS+γL-γSL.
(2)
聯(lián)合公式(1)和(2)可得,粘結(jié)功Ws與γL、θ之間的關(guān)系為:
Wa=γL(1+cosθ),
(3)
由公式(3)看出:固-液之間的粘結(jié)功Wa與接觸角θ密切相關(guān),當(dāng)γL一定時(shí),θ越小,則濕潤性越好,Wa越大;θ越大,則濕潤性越差,Wa越小.因此,常用接觸角θ的大小來度量濕潤性能和粘結(jié)強(qiáng)度.
根據(jù)調(diào)和平均方程原理[22,23],固-液之間的粘結(jié)功Wa又可以表示為:
(4)
由公式(3)和(4),可以得到調(diào)和平均法計(jì)算固體表面能的方程式為:
(5)
(6)
(7)
分別計(jì)算出該固體的總表面能γS和表面極性度χp.
圖1 液體在固體表面上的示意圖Fig.1 Side view of a liquid drop deposited onto a solid surface
圖2為經(jīng)過不同方法處理后In2O3:Sn導(dǎo)電玻璃樣品表面的AFM形貌圖,由圖可見,經(jīng)過表面改性后,導(dǎo)電玻璃表面形貌存在著比較明顯的差異:1#樣品表面顯示出無序狀,表面顆粒排列雜亂無章;而2#樣品和3#樣品的表面則顯示為比較規(guī)整,只是2#樣品表面的顆粒尺寸比3#樣品稍小些.表2列出了所有In2O3:Sn導(dǎo)電玻璃樣品的平均粗糙度(Ra)、峰谷粗糙度(Rpv)和顆粒半徑(Rg)數(shù)據(jù),從表中可以看出,1#樣品的Rg值變化范圍很大,達(dá)到30~136 nm,這很可能是由于隨機(jī)粘附的污染物所導(dǎo)致的.與1#樣品相比,2#樣品和3#樣品表面的Ra、Rpv和Rg數(shù)值都有不同程度的減小.In2O3:Sn導(dǎo)電玻璃樣品表面平均粗糙度Ra的降低和表面顆粒半徑Rg的減小,有利于增加In2O3:Sn導(dǎo)電玻璃與功能薄膜之間的有效接觸面積,因此對增大它們之間的附著是非常重要的[24--27].
圖2 處理后樣品表面的AFM圖Fig.2 AFM micrographs of the treated samples
樣品Ra/nmRpv/nmRg/nm1#3.12530~1362#2.41330~353#2.51432~43
圖3和圖4為經(jīng)過不同方法處理后In2O3:Sn導(dǎo)電玻璃樣品表面上的接觸角數(shù)據(jù),其中θ1為蒸餾水在樣品表面上的接觸角,θ2為二碘甲烷在樣品表面上的接觸角.由圖可以看出,對于1#、2#和3#樣品,θ1分別為64.5°、41.3°和35.9°,而θ2分別為39.8°,33.7°的32.2°,結(jié)果表明θ1的變化范圍較寬、θ2的變化范圍較窄,并且它們都具有類似的變化趨勢,特別是3#樣品的θ1和θ2同時(shí)具有最小值.經(jīng)過NaOH溶液處理后,In2O3:Sn導(dǎo)電玻璃表面上接觸角明顯減小,說明了該表面改性方法能夠有效提高In2O3:Sn導(dǎo)電玻璃表面的親水性,并改善其表面濕潤性能.
圖3 水在樣品表面上的接觸角Fig.3 Water contact angle of the treated samples
圖4 二碘甲烷在樣品表面上接觸角Fig.4 Diiodomethane contact angle of the treated samples
圖5 處理后樣品表面自由能的非極性分量Fig.5 Nonpolar component of the treated samples
圖6 處理后樣品表面自由能的極性分量Fig.6 Polar component of the treated samples
圖7 處理后樣品的表面自由能Fig.7 Surface energy of the treated samples
圖8 處理后樣品的表面極性度Fig.8 Surface polarity of the treated samples
采用溶劑超聲、H2SO4溶液浸泡和NaOH溶液處理分別對In2O3:Sn導(dǎo)電玻璃進(jìn)行表面改性,通過AFM和接觸角測試,研究了改性方法對導(dǎo)電玻璃表面形貎和潤濕性質(zhì)的影響.結(jié)果表明,改性方法對導(dǎo)電玻璃表面性能具有不同程度的影響,其中H2SO4溶液浸泡和NaOH溶液處理更有效地降低了表面粗糙度和顆粒尺寸,優(yōu)化了導(dǎo)電玻璃的表面形貎.同時(shí)基于測量的接觸角,采用調(diào)和平均法研究了改性處理對導(dǎo)電玻璃表面能和表面極性度的影響,結(jié)果顯示,In2O3:Sn導(dǎo)電玻璃的表面能參數(shù)與改性方法密切相關(guān),與溶劑超聲處理相比,H2SO4溶液浸泡和NaOH溶液處理具有更高的表面能和表面極性度,并且其表面能的變化主要取決于表面能極性分量的變化.
參 考 文 獻(xiàn)
[1] Park Y S, Kim E, Hong B, et al. Characteristics of ITO films with oxygen plasma treatment for thin film solar cell applications[J]. Materials Research Bulletin, 2013, 48(12): 5115-5120.
[2] Tang C W, VanSlyke S A. Organic electroluminescent diodes[J]. Applied Physics Letters, 1987, 51(12): 913-915.
[3] Kido J, Kimura M, Nagai K. Multilayer white light-emitting organic electroluminescent device [J]. Science, 1995, 267(5202): 1332-1334.
[4] Burroughes J H, Bradly D D C, Brown A R, et al. Light-emitting diodes based on conjugated polymer[J]. Nature, 1990, 347(6293): 539-541.
[5] Zhong Z, Zhong Y, Liu C, et al. Study on the surface wetting properties of treated indium-tin-oxide anodes for polymer electroluminescent devices[J]. Physica Status Solidi A-Applications and Materials Science, 2003, 198(1): 197-203.
[6] Brabec C J, Sariciftci N S, Hummelen J C. Plastic solar cells[J]. Advanced Functional Materials, 2001, 11(1): 15-26.
[7] Kim Y S, Park Y C, Ansari S G, et al. Effect of substrate temperature on the bonded states of indium tin oxide thin films deposited by plasma enhanced chemical vapor deposition[J]. Thin Solid Films, 2003, 426(2): 124-131.
[8] Zhong Z Y, Jiang Y D. The surface properties of treated ITO substrates effect on the performance of OLEDs[J]. The European Physical Journal-Applied Physics, 2006, 34(3): 173-177.
[9] Wrzesińska H, Ilka L, Wawer D, et al. Investigation of indium tin oxide (ITO) films for the VCSEL laser with dielectric Bragg reflectors[J]. Physica Status Solidi C-Current Topics in Solid State Physics, 2004, 1(2): 396-400.
[10] Zhang J, Hu J, Zhu Z Q, et al. Quartz crystal microbalance coated with sol-gel-derived indium-tin oxide thin films as gas sensor for NO detection[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2004, 236(1-3): 23-30.
[11] 鐘志有. 有機(jī)LED器件結(jié)構(gòu)對其內(nèi)部電場和電荷分布的影響[J]. 中南民族大學(xué)學(xué)報(bào):自然科學(xué)版, 2009, 28(3): 73-78.
[12] Zhong Z Y, Jiang Y D. Surface treatments of indium-tin oxide substrates for polymer electroluminescent device[J]. Physica Status Solidi A-Applications and Materials Science, 2006, 203(15): 3882-3892.
[13] Tak Y H, Kim K B, Park H G, et al. Criteria for ITO (indium tin-oxide) thin film as the bottom electrode of an organic light emitting diode[J]. Thin Solid Films, 2002, 411(1): 12-16.
[14] Jung S, Park N G, Kwak M Y, et al. Surface treatment effects of indium-tin oxide in organic light-emitting diodes[J]. Optical Materials, 2002, 21(2): 235-241.
[15] Kim J S, Ho P K H, Thomas D S, et al. X-ray photoelectron spectroscopy of surface-treated indium-tin oxide thin films[J]. Chemical Physics Letters, 1999, 315(5-6): 307-312.
[16] Kim J S, Cacialli F, Cole A, et al. Increase of carrier density and reduction of Hall mobilities in oxygen-plasma treated indium-tin-oxide anodes [J]. Applied Physics Letters, 1999, 75(1): 19-21.
[17] Choi B, Yoon H, Lee H H. Surface treatment of indium tin oxide by SF6 plasma for organic light-emitting diodes [J]. Applied Physics Letters, 2000, 76(4): 412-414.
[18] So S K, Choi W K, Cheng C H, et al. Surface preparation and characterization of indiumtin oxide substrates for organic electroluminescent devices [J]. Applied Physics A-Materials Science & Processing, 1999, 68(4): 447-450.
[19] Chan I-M, Cheng W-C, Hong F C. Enhanced performance of organic light-emitting devices by atmospheric plasma treatment of indium tin oxide surfaces[J]. Applied Physics Letters, 2002, 80(1): 13-15.
[20] Qiu Y, Zhang D Q, Wang L D, et al. Performance improvement of organic light emitting diode by low energy ion beam treatment of the indium tin oxide surface[J]. Synthetic Metals, 2002, 125(3): 415-1418.
[21] Nguyen T P, Le Rendu P, Dinh N N, et al. Thermal and chemical treatment of ITO substrates for improvement of OLED performance[J]. Synthetic Metals, 2003, 138(1-2) 229-232.
[22] Wu S. Polymer interface and adhesion[M]. New York: Marcel Dekker, 1982.
[23] Kaelble D H. Physical chemistry of adhesion[M]. New York: Wiley, 1971.
[24] Wu C C, Wu C I, Sturm J C, et al. Surface modification of indium tin oxide by plasma treatment: an effective method to improve the efficiency, brightness, and reliability of organic light emitting devices[J]. Applied Physics Letters, 1997, 70(11): 1348-1350.
[25] Nüesch F, Rothberg L J, Forsythe E W, et al. A photoelectron spectroscopy study on the indium tin oxide treatment by acids and bases[J]. Applied Physics Letters, 1999, 74(6): 880-882.
[26] Sugiyama K, Ishii H, Ouchi K. Dependence of indium-tin-oxide work function on surface cleaning method as studied by ultraviolet and x-ray photoemission spectroscopies[J]. Journal of Applied Physics, 2000, 87(1): 295-298.
[27] Ishii M, Mori T, Fujikawa H, et al. Improvement of organic electroluminescent device performance by in situ plasma treatment of indium-tin-oxide surface[J]. Journal of Luminescence, 2000, 87-89: 1165-1167.
[28] Zhong Z Y, Jiang Y D. Surface treatments of indium-tin oxide substrates for polymer electroluminescent devices[J]. Physica Status Solidi A-Applications and Materials Science, 2006, 203(15): 3882-3892.
[29] Abderrahmen A, Romdhane F F, Ouada H B, et al. Indium-tin oxide surface treatments: effects on the performance of liquid crystal devices[J]. Materials Science and Engineering C-Materials for Biological Applications, 2006, 26(2-3): 538-541.
[30] You Z Z, Dong J Y. Effect of oxygen plasma treatment on the surface properties of tin-doped indium oxide substrates for polymer LEDs[J]. Journal of Colloid and Interface Science, 2006, 300(2): 697-703.
[31] Chan I-M, Cheng W-C, Hong F C. Enhanced performance of organic light-emitting devices by atmospheric plasma treatment of indium tin oxide surfaces[J]. Applied Physics Letters, 2002, 80(1): 13-15.
[32] Qiu Y, Zhang D Q, Wang L D, et al. Performance improvement of organic light emitting diode by low energy ion beam treatment of the indium tin oxide surface[J]. Synthetic Metals, 2002, 125(3): 415-418.
[33] Nguyen T P, Le Rendu P, Dinh N N, et al. Thermal and chemical treatment of ITO substrates for improvement of OLED performance[J]. Synthetic Metals, 2003, 138(1-2): 229-232.