国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

熱消融治療調(diào)節(jié)機(jī)體抗腫瘤免疫研究進(jìn)展

2014-04-15 06:27:44燕,梁
關(guān)鍵詞:消融射頻特異性

林 燕,梁 萍

解放軍總醫(yī)院 介入超聲科,北京 100853

熱消融治療調(diào)節(jié)機(jī)體抗腫瘤免疫研究進(jìn)展

林 燕,梁 萍

解放軍總醫(yī)院 介入超聲科,北京 100853

近年來(lái)影像引導(dǎo)下的熱消融技術(shù)在肝、腎等腫瘤的治療中發(fā)揮了重要的作用。局部熱消融技術(shù)能夠在一定程度上激活機(jī)體的抗腫瘤免疫,是真正意義上的體內(nèi)腫瘤疫苗,但其誘發(fā)的免疫反應(yīng)尚不足以完全消滅腫瘤或長(zhǎng)期發(fā)揮預(yù)防腫瘤復(fù)發(fā),因此與其他免疫調(diào)節(jié)手段同時(shí)應(yīng)用的聯(lián)合療法可能發(fā)揮更有效的作用。

熱消融;免疫調(diào)節(jié);抗原;免疫治療

近20年來(lái)局部腫瘤熱消融技術(shù)迅速發(fā)展,極大提高了失去手術(shù)機(jī)會(huì)病人的生存率,并在一定程度上取代了外科手術(shù)。局部熱消融技術(shù)是應(yīng)用極熱(射頻、微波消融)或極冷(冷凍消融)的溫度變化在局部破壞腫瘤組織,進(jìn)而達(dá)到治療的目的。此外熱消融過(guò)程本身能夠在原位留下腫瘤壞死殘骸,這些殘骸作為抗原能引發(fā)抗腫瘤免疫應(yīng)答,有助于預(yù)防局部腫瘤復(fù)發(fā)。本文對(duì)腫瘤熱消融后機(jī)體產(chǎn)生的免疫應(yīng)答及不同熱消融技術(shù)激活機(jī)體免疫反應(yīng)的區(qū)別進(jìn)行綜述,為局部熱消融聯(lián)合免疫調(diào)節(jié)方法預(yù)防腫瘤局部復(fù)發(fā)提供理論支持。

1 微波、射頻、冷凍消融影響機(jī)體免疫狀態(tài)的機(jī)制異同

射頻消融是將1根或者多根射頻電極置于腫瘤病灶內(nèi),通過(guò)高頻交變電流的作用在局部產(chǎn)生60 ~ 100℃的高溫,使腫瘤組織發(fā)生凝固性壞死[1-2]。微波消融是通過(guò)微波輻射器把某頻率的電磁波能量轉(zhuǎn)換成輻射能,后者被組織吸收轉(zhuǎn)換為熱能,進(jìn)而對(duì)腫瘤組織造成凝固性破壞。兩種消融技術(shù)都會(huì)在局部遺留凝固性壞死殘骸,因此二者對(duì)機(jī)體局部和全身的免疫狀態(tài)產(chǎn)生類似的影響。

與射頻和微波消融不同,冷凍消融對(duì)免疫系統(tǒng)的作用可以表現(xiàn)為激活或者抑制性作用。以往的研究認(rèn)為,冷凍消融主要導(dǎo)致細(xì)胞發(fā)生凋亡,細(xì)胞發(fā)生凋亡時(shí)不釋放細(xì)胞內(nèi)容物(抗原、熱休克蛋白和高遷移率族蛋白B1)進(jìn)而導(dǎo)致免疫耐受,局部的壞死細(xì)胞則可作為免疫激活劑,而凋亡細(xì)胞可導(dǎo)致局部免疫耐受和免疫抑制,近期的研究認(rèn)為,冷凍消融的頻次影響腫瘤的生長(zhǎng)和局部的T細(xì)胞募集,并且是機(jī)體冷凍消融后處于免疫活化或免疫抑制狀態(tài)的決定性因素[3-6]。

2 熱消融誘導(dǎo)機(jī)體應(yīng)激反應(yīng)釋放促炎癥細(xì)胞因子

多項(xiàng)研究對(duì)射頻消融后細(xì)胞因子、炎癥趨化因子和應(yīng)激素變化情況進(jìn)行了檢測(cè),發(fā)現(xiàn)射頻消融后數(shù)小時(shí)至數(shù)天機(jī)體血清中的促炎性細(xì)胞因子如IL-1β、IL-6、IL-8及TNF-α水平在射頻消融后出現(xiàn)暫時(shí)性的升高,引起明顯的體溫升高伴腎上腺素水平升高,但不導(dǎo)致嚴(yán)重的全身性炎癥反應(yīng)綜合征(systemic inflammatory response syndrome,SIRS)及多器官功能衰竭[7-11]。而冷凍消融可引發(fā)較嚴(yán)重的全身炎癥反應(yīng)綜合征,部分病人伴隨冷休克現(xiàn)象,主要發(fā)生于肝組織的冷凍消融[12-17]。動(dòng)物實(shí)驗(yàn)證實(shí),發(fā)生SIRS的風(fēng)險(xiǎn)與冷凍消融區(qū)的范圍呈正相關(guān),消融的肝組織>35%時(shí)發(fā)生SIRS的風(fēng)險(xiǎn)明顯升高[15]。冷凍消融后數(shù)小時(shí)內(nèi)血清中一系列細(xì)胞因子(如IFN-γ、TNF-α、IL-6、IL-12)水平升高,但不出現(xiàn)IL-10水平的升高[14,18-19]。射頻消融、冷凍消融后大鼠血清中細(xì)胞因子水平的對(duì)比研究發(fā)現(xiàn)在冷凍消融后1 ~ 6 h血清中IL-6水平明顯升高,IL-10水平僅有輕微升高[16]。而在前列腺癌病人冷凍消融后,血清TNF-α和IFN-γ可以持續(xù)增高達(dá)4 h以上[20]。

動(dòng)物實(shí)驗(yàn)證實(shí)射頻消融可導(dǎo)致肝組織中HSP-70、HSP-90、糖蛋白96轉(zhuǎn)錄、蛋白水平的表達(dá)上調(diào)以及HMGB1轉(zhuǎn)位至腫瘤細(xì)胞質(zhì)內(nèi)和細(xì)胞間質(zhì)中,且HSP-70的表達(dá)升高主要位于射頻消融區(qū)的邊緣[21-26]。對(duì)大鼠肝的不同部位進(jìn)行射頻消融,發(fā)現(xiàn)HSP-70的表達(dá)程度與消融區(qū)距大血管的相對(duì)位置有關(guān),滋養(yǎng)血管能促進(jìn)周邊肝細(xì)胞的合成代謝以及熱休克蛋白的表達(dá)[27]。此外HSP-70/HSP-90的表達(dá)水平與射頻消融應(yīng)用的能量具有相關(guān)性[22]。微波消融正常大鼠腎組織后,通過(guò)ELISA方法可檢測(cè)到HSP-70的表達(dá),然而與射頻消融相比,微波消融后HSP-70的表達(dá)上調(diào)低于射頻消融[28]。

臨床研究發(fā)現(xiàn)射頻消融后腫瘤病人血清中的HSP-70水平顯著升高,然而血清HSP-70水平與消融區(qū)大小、腫瘤的組織學(xué)類型以及臨床和實(shí)驗(yàn)室檢測(cè)指標(biāo)并無(wú)明確相關(guān)性,但預(yù)后較好的病人常伴有消融后次日血清HSP-70水平的升高[29]。

3 熱消融活化特異性抗腫瘤免疫細(xì)胞

文獻(xiàn)報(bào)道肺腫瘤患者接受射頻消融1個(gè)月后外周血循環(huán)中Treg(CD4+CD25+Foxp3+)比例明顯降低[8]。對(duì)20位原發(fā)性肝癌患者射頻消融后的淋巴細(xì)胞亞群結(jié)果進(jìn)行分析,發(fā)現(xiàn)在消融1個(gè)月后患者的T淋巴細(xì)胞亞群比例(初始/記憶性CD4+、CD8+)無(wú)明顯變化,但循環(huán)中自然殺傷(natural killer,NK)細(xì)胞及活化T細(xì)胞的比例有所升高,而在治療后1周、4周CD3-CD56dim效應(yīng)NK細(xì)胞的比例明顯增加[30-31]。動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn)多種免疫細(xì)胞(中性粒細(xì)胞、巨噬細(xì)胞、漿細(xì)胞、樹(shù)突狀細(xì)胞、CD3+和CD4+T細(xì)胞)在消融治療后數(shù)小時(shí)至數(shù)天內(nèi)可浸潤(rùn)至消融區(qū)邊緣[32-34]。通過(guò)IFN-γELISPOT實(shí)驗(yàn)對(duì)20例原發(fā)性肝癌病人射頻消融前的自身腫瘤抗原刺激的外周血單個(gè)核細(xì)胞進(jìn)行檢測(cè),消融前在4例病人體內(nèi)發(fā)現(xiàn)腫瘤抗原反應(yīng)性T細(xì)胞,而在射頻治療后1個(gè)月在9例病人體內(nèi)發(fā)現(xiàn)該反應(yīng)性T細(xì)胞,這提示射頻治療在體內(nèi)發(fā)揮了調(diào)節(jié)抗腫瘤免疫的作用,這一結(jié)果在另外兩組原發(fā)性肝癌和結(jié)直腸肝轉(zhuǎn)移癌的隊(duì)列研究中得到了驗(yàn)證[30,35]。

射頻誘導(dǎo)的T細(xì)胞應(yīng)答具有抗原特異性,在原發(fā)性肝癌病人體內(nèi)存在針對(duì)MAGE-1、NY-ESO-1、GPC3抗原的CD8+T細(xì)胞應(yīng)答,在射頻治療前可檢測(cè)到上述抗原的特異性免疫應(yīng)答,而在射頻治療后約50%病人出現(xiàn)了抗原特異性免疫應(yīng)答的上調(diào)[36]。在射頻消融后腫瘤特異性T細(xì)胞免疫活化的原發(fā)性肝癌病人局部和遠(yuǎn)處部位的腫瘤復(fù)發(fā)率類似,但是腫瘤抗原特異性T細(xì)胞比例與原發(fā)性肝癌無(wú)病生存率呈正相關(guān)[30,36]。

冷凍消融對(duì)特異性抗腫瘤免疫的調(diào)節(jié)作用尚無(wú)明確結(jié)論,以往的研究認(rèn)為,冷凍消融引發(fā)機(jī)體免疫抑制,盡管外周血循環(huán)中的免疫效應(yīng)細(xì)胞增加但卻不具有明顯的殺傷腫瘤細(xì)胞的作用,冷凍消融有可能通過(guò)誘導(dǎo)Treg細(xì)胞或通過(guò)延遲抗腫瘤免疫來(lái)發(fā)揮負(fù)調(diào)節(jié)作用[37-38]。與上述結(jié)論相反,有研究認(rèn)為,接受冷凍治療的實(shí)驗(yàn)動(dòng)物存在免疫激活的現(xiàn)象,對(duì)負(fù)荷淋巴瘤的小鼠進(jìn)行冷凍治療時(shí)可發(fā)現(xiàn)外周血淋巴細(xì)胞和脾細(xì)胞殺傷活性增加[39]。在小鼠結(jié)腸癌模型冷凍消融后7 d發(fā)現(xiàn)腫瘤特異性殺傷性T淋巴細(xì)胞活性增加,但這一效應(yīng)僅在消融單個(gè)腫瘤結(jié)節(jié)時(shí)出現(xiàn),而在消融多個(gè)結(jié)節(jié)后這一免疫激活效應(yīng)反而減退,提示冷凍消融組織的范圍可能對(duì)消融后機(jī)體免疫活化或抑制具有重要影響[40]。

4 熱消融聯(lián)合局部注射免疫佐劑、單克隆抗體可增強(qiáng)抗腫瘤免疫

在小鼠肝腫瘤模型中2只(共10只)小鼠在微波消融后對(duì)再次種植的腫瘤產(chǎn)生抑制,提示微波消融后機(jī)體出現(xiàn)保護(hù)性抗腫瘤免疫,這一保護(hù)性作用在瘤內(nèi)注射負(fù)載GMCSF的微球后大大提高,腹腔內(nèi)CTLA-4封閉效果更為明顯,三者的聯(lián)合應(yīng)用對(duì)遠(yuǎn)處轉(zhuǎn)移的腫瘤也具有抑制作用[41]。此外從處理組小鼠體內(nèi)分離到的脾細(xì)胞能夠在體外殺死肝腫瘤細(xì)胞。體外單克隆抗體封閉實(shí)驗(yàn)證實(shí)這種殺傷作用是由T細(xì)胞(CD4+和CD8+)及NK細(xì)胞介導(dǎo)的,而多種方法的聯(lián)合應(yīng)用能夠發(fā)揮更強(qiáng)大的作用[41]。

冷凍消融聯(lián)合瘤內(nèi)注射未成熟樹(shù)突細(xì)胞能夠誘導(dǎo)活化CD4+CD8+殺傷性T細(xì)胞[42]。冷凍治療前應(yīng)用抗CD4或CD25單克隆抗體進(jìn)行Treg耗竭能夠增強(qiáng)這一協(xié)同效應(yīng)[43]。聯(lián)合治療雖然能夠延緩腫瘤的生長(zhǎng),但與單獨(dú)冷凍消融相比,生存率并沒(méi)有顯著差異。冷凍消融前1 d向結(jié)腸癌小鼠注射環(huán)磷酰胺可以促進(jìn)腫瘤特異性CD4+T細(xì)胞生成IFN-γ,并提高小鼠的生存率甚至完全治愈腫瘤,對(duì)治愈小鼠再次種植腫瘤小鼠仍可存活,而過(guò)繼性移植存活小鼠的淋巴結(jié)細(xì)胞能夠提高其他荷瘤小鼠的生存率,CD8+效應(yīng)T細(xì)胞在其中發(fā)揮了重要的清除腫瘤作用,提示小鼠體內(nèi)已建立了抗腫瘤免疫記憶。

臨床應(yīng)用方面有冷凍消融聯(lián)合GM-CSF注射治療前列腺癌的文獻(xiàn)報(bào)道,T細(xì)胞對(duì)自體腫瘤抗原的活性在治療后輕度增加,但是免疫應(yīng)答與臨床血清中前列腺特異性抗原水平無(wú)相關(guān)性[20]。在接受冷凍消融和GM-CSF注射聯(lián)合治療的部分腎癌病人中殺傷性T細(xì)胞活性和血清中抗腫瘤抗體的增加都與較好療效存在相關(guān)性。

5 熱消融聯(lián)合過(guò)繼性免疫治療可預(yù)防消融后肝癌復(fù)發(fā)

我們的前期研究發(fā)現(xiàn),在微波消融1個(gè)月后10例脾亢病人出現(xiàn)短暫的外周血T輔助細(xì)胞(CD3+CD4+)和B淋巴細(xì)胞數(shù)量的增加[44]。在另外一項(xiàng)大樣本的肝癌患者隊(duì)列研究中,我們將微波消融前及微波消融后各時(shí)間點(diǎn)(3 ~ 30 d)的穿刺組織的免疫細(xì)胞浸潤(rùn)情況進(jìn)行了分析,發(fā)現(xiàn)在微波消融區(qū)內(nèi)、消融區(qū)、正常肝組織邊緣以及遠(yuǎn)處未消融病灶內(nèi)淋巴細(xì)胞(主要是CD3+T細(xì)胞,CD56+NK細(xì)胞和巨噬細(xì)胞)有明顯的局部浸潤(rùn),且淋巴細(xì)胞、巨噬細(xì)胞和CD56+NK細(xì)胞浸潤(rùn)入微波消融區(qū)內(nèi)的數(shù)量與局部復(fù)發(fā)風(fēng)險(xiǎn)呈負(fù)相關(guān)[45]。隨后10例原發(fā)性肝癌患者在微波消融后當(dāng)日、微波消融后11 d、微波消融后100 d接受Ⅰ期臨床過(guò)繼性免疫治療。將自身腫瘤抗原特異性的樹(shù)突細(xì)胞在超聲引導(dǎo)下分別注射入消融區(qū)與正常肝組織的邊緣、腹股溝淋巴結(jié)內(nèi)、體外活化的淋巴細(xì)胞。治療后1個(gè)月進(jìn)行外周T淋巴細(xì)胞亞群檢測(cè)發(fā)現(xiàn)Treg(CD4+CD25+)細(xì)胞比例降低,而CD8+T細(xì)胞(CD8+CD28-)細(xì)胞比例升高,部分病人還出現(xiàn)乙肝病毒復(fù)制量的降低[46]。聯(lián)合應(yīng)用免疫治療有可能在一定程度上增強(qiáng)微波消融在局部的免疫激活作用,起到預(yù)防原發(fā)性肝癌微波消融后復(fù)發(fā)的作用。

6 結(jié)語(yǔ)

近20年來(lái)熱消融技術(shù)以其微創(chuàng)性和不遜于外科手術(shù)的療效等優(yōu)點(diǎn)逐漸被腫瘤患者認(rèn)識(shí)和接受,除了較好的局部腫瘤控制效果,熱消融治療還可以增強(qiáng)機(jī)體抗腫瘤免疫進(jìn)而控制腫瘤進(jìn)展。目前的研究認(rèn)為,可能的機(jī)制包括: 1)熱消融治療后局部腫瘤組織壞死可以引起炎癥反應(yīng)和危險(xiǎn)信號(hào)如熱休克蛋白的釋放; 2)促進(jìn)壞死腫瘤組織內(nèi)和附近微環(huán)境內(nèi)樹(shù)突細(xì)胞的募集和活化; 3)激活特異性抗腫瘤免疫,包括CD4+T細(xì)胞、CD8+T細(xì)胞的活化以及抗體的產(chǎn)生,進(jìn)而促進(jìn)局部腫瘤細(xì)胞的清除,控制遠(yuǎn)處的腫瘤微小轉(zhuǎn)移灶和建立長(zhǎng)期的抗腫瘤免疫記憶[18,37-39]。熱消融同時(shí)也清除了局部的Treg,解除了局部的抑制性免疫狀態(tài),使得局部的免疫平衡趨向于抗腫瘤免疫[40,42-43]。然而熱消融自身對(duì)免疫系統(tǒng)的調(diào)節(jié)作用仍較為微弱,其單一療法不足以為機(jī)體提供全面的抗腫瘤保護(hù)作用[39,41]。熱消融治療對(duì)單發(fā)小病灶的療效遠(yuǎn)優(yōu)于晚期腫瘤,而聯(lián)合其他提高機(jī)體抗腫瘤免疫的療法有較好的應(yīng)用前景,例如抗CTLA-4抗體、Treg耗竭等方法以及應(yīng)用免疫佐劑(白介素、趨化因子、GM-CSF和TLR激動(dòng)劑),但是上述聯(lián)合治療方案尚未廣泛應(yīng)用于臨床。

機(jī)體自身免疫能夠消滅較小的和亞臨床階段的腫瘤,而熱消融治療能夠同時(shí)激活和提升機(jī)體自身的免疫狀態(tài)。通過(guò)誘導(dǎo)機(jī)體自身的應(yīng)激反應(yīng),熱消融治療能夠打破機(jī)體的免疫耐受并活化機(jī)體的天然免疫和特異性抗腫瘤免疫,與其他方法如化療、免疫調(diào)節(jié)療法協(xié)同應(yīng)用則可發(fā)揮更為強(qiáng)大的抗腫瘤作用。針對(duì)病人的個(gè)體化選擇的微創(chuàng)熱消融技術(shù)以及合理聯(lián)用免疫療法,將是未來(lái)治療各種惡性腫瘤的必然趨勢(shì)。

1 Pereira PL. Actual role of radiofrequency ablation of liver metastases[J]. Eur Radiol, 2007, 17(8):2062-2070.

2 Clasen S, Krober SM, Kosan B, et al. Pathomorphologic evaluation of pulmonary radiofrequency ablation: proof of cell death is characterized by DNA fragmentation and apoptotic bodies[J].Cancer, 2008, 113(11):3121-3129.

3 Matzinger P. Tolerance, danger, and the extended family[J]. Annu Rev Immunol, 1994, 12 :991-1045.

4 Matzinger P. The danger model: a renewed sense of self[J].Science, 2002, 296(5566):301-305.

5 Sabel MS. Cryo-immunology: a review of the literature and proposed mechanisms for stimulatory versus suppressive immune responses[J] . Cryobiology, 2009, 58(1): 1-11.

6 Sabel MS, Su G, Griffith KA, et al. Rate of freeze alters the immunologic response after cryoablation of breast cancer[J]. Ann Surg Oncol, 2010, 17(4):1187-1193.

7 Ali MY, Grimm CF, Ritter M, et al. Activation of dendritic cells by local ablation of hepatocellular carcinoma[J]. J Hepatol, 2005, 43(5): 817-822.

8 Fietta AM, Morosini M, Passadore I, et al. Systemic inflammatoryresponse and downmodulation of peripheral CD25+Foxp3+ T-regulatory cells in patients undergoing radiofrequency thermal ablation for lung Cancer[J]. Hum Immunol, 2009, 70(7): 477-486.

9 Jansen MC, van Wanrooy S, van Hillegersberg R, et al. Assessment of systemic inflammatory response (SIR) in patients undergoing radiofrequency ablation or partial liver resection for liver tumors[J].Eur J Surg Oncol, 2008, 34(6): 662-667.

10 Schell SR, Wessels FJ, Abouhamze A, et al. Pro- and antiinflammatory cytokine production after radiofrequency ablation of unresectable hepatic tumors[J]. J Am Coll Surg, 2002, 195(6):774-781.

11 Sch?lte G, Henzler D, Waning C, et al. Case study of hepatic radiofrequency ablation causing a systemic inflammatory response under total intravenous anesthesia[J]. Korean J Radiol, 2010, 11(6): 640-647.

12 Seifert JK, Morris DL. World survey on the complications of hepatic and prostate cryotherapy[J]. World J Surg, 1999, 23(2):109-113.

13 Weaver ML, Atkinson D, Zemel R. Hepatic cryosurgery in treating colorectal metastases[J]. Cancer, 1995, 76(2):210-214.

14 Seifert JK, France MP, Zhao J, et al. Large volume hepatic freezing :association with significant release of the cytokines interleukin-6 and tumor necrosis factor a in a rat model[J]. World J Surg, 2002, 26(11):1333-1341.

15 Chapman WC, Debelak JP, Blackwell TS, et al. Hepatic cryoablation-induced acute lung injury: pulmonary hemodynamic and permeability effects in a sheep model[J]. Arch Surg, 2000,135(6):667-672.

16 Jansen MC, van Hillegersberg R, Schoots IG, et al. Cryoablation induces greater inflammatory and coagulative responses than radiofrequency ablation or laser induced thermotherapy in a rat liver model[J]. Surgery, 2010, 147(5): 686-695.

17 Gravante G, Sconocchia G, Ong SL, et al. Immunoregulatory effects of liver ablation therapies for the treatment of primary and metastatic liver malignancies[J]. Liver Int, 2009, 29(1): 18-24.

18 Sabel MS, Nehs MA, Su G, et al. Immunologic response to cryoablation of breast cancer[J]. Breast Cancer Res Treat, 2005,90(1):97-104.

19 Osada S, Imai H, Tomita H, et al. Serum cytokine levels in response to hepatic cryoablation[J]. J Surg Oncol, 2007, 95(6): 491-498.

20 Si T, Guo Z, Hao X. Immunologic response to primary cryoablation of high-risk prostate Cancer[J]. Cryobiology, 2008, 57(1): 66-71.

21 Yang WL, Nair DG, Makizumi R, et al. Heat shock protein 70 is induced in mouse human colon tumor xenografts after sublethal radiofrequency ablation[J]. Ann Surg Oncol, 2004, 11(4):399-406.

22 Schueller G, Kettenbach J, Sedivy R, et al. Expression of heat shock proteins in human hepatocellular carcinoma after radiofrequency ablation in an animal model[J]. Oncol Rep, 2004, 12(3):495-499.

23 Liu Q, Zhai B, Yang W, et al. Abrogation of local Cancer recurrence after radiofrequency ablation by dendritic cell-based hyperthermic tumor vaccine[J]. Mol Ther, 2009, 17(12): 2049-2057.

24 Rai R, Richardson C, Flecknell P, et al. Study of apoptosis and heat shock protein (HSP) expression in hepatocytes following radiofrequency ablation (RFA)[J]. J Surg Res, 2005, 129(1):147-151.

25 Solazzo SA, Ahmed M, Schor-Bardach R, et al. Liposomal doxorubicin increases radiofrequency ablation-induced tumor destruction by increasing cellular oxidative and nitrative stress and accelerating apoptotic pathways[J]. Radiology, 2010, 255(1):62-74.

26 Schueller G, Kettenbach J, Sedivy R, et al. Heat shock protein expression induced by percutaneous radiofrequency ablation of hepatocellular carcinoma in vivo[J]. Int J Oncol, 2004, 24(3):609-613.

27 Bhardwaj N, Dormer J, Ahmad F, et al. Heat shock protein 70 expression following hepatic radiofrequency ablation is affected by adjacent vasculature[J]. J Surg Res, 2012, 173(2): 249-257.

28 Ahmad F, Gravante G, Bhardwaj N, et al. Renal effects of microwave ablation compared with radiofrequency, cryotherapy and surgical resection at different volumes of the liver treated[J]. Liver Int,2010, 30(9):1305-1314.

29 Haen SP, Gouttefangeas C, Schmidt D, et al. Elevated serum levels of heat shock protein 70 can be detected after radiofrequency ablation[J]. Cell Stress Chaperones, 2011, 16(5):495-504.

30 Zerbini A, Pilli M, Penna A, et al. Radiofrequency thermal ablation of hepatocellular carcinoma liver nodules can activate and enhance tumor-specific T-cell responses[J]. Cancer Res, 2006, 66(2):1139-1146.

31 Zerbini A, Pilli M, Laccabue D, et al. Radiofrequency thermal ablation for hepatocellular carcinoma stimulates autologous NK-cell response[J]. Gastroenterology, 2010, 138(5): 1931-1942.

32 Dromi SA, Walsh MP, Herby S, et al. Radiofrequency ablation induces antigen-presenting cell infiltration and amplification of weak tumor-induced immunity[J]. Radiology, 2009, 251(1):58-66.

33 H?nsler J, Neureiter D, Strobel D, et al. Cellular and vascular reactions in the liver to radio-frequency thermo-ablation with wet needle applicators. Study on juvenile domestic pigs[J]. Eur Surg Res, 2002, 34(5):357-363.

34 Wissniowski TT, H?nsler J, Neureiter D, et al. Activation of tumor-specific T lymphocytes by radio-frequency ablation of the VX2 hepatoma in rabbits[J]. Cancer Res, 2003, 63(19):6496-6500.

35 Hansler J, Wissniowski TT, Schuppan D, et al. Activation and dramatically increased cytolytic activity of tumor specific T lymphocytes after radio-frequency ablation in patients with hepatocellular carcinoma and colorectal liver metastases[J]. World J Gastroenterol, 2006, 12(23):3716-3721.

36 Hiroishi K, Eguchi J, Baba T, et al. Strong CD8(+) T-cell responses against tumor-associated antigens prolong the recurrencefree interval after tumor treatment in patients with hepatocellular carcinoma[J]. J Gastroenterol, 2010, 45(4): 451-458.

37 Den Brok MH, Sutmuller RP, Nierkens S, et al. Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity[J]. Br J Cancer, 2006, 95(7):896-905.

38 Den Brok MH, Sutmuller RP, Van der Voort R, et al. In situ tumor ablation creates an antigen source for the generation of antitumor immunity[J]. Cancer Res, 2004, 64(11):4024-4029.

39 Levy MY, Sidana A, Chowdhury WH, et al. Cyclophosphamide unmasks an antimetastatic effect of local tumor cryoablation[J]. J Pharmacol Exp Ther, 2009, 330(2):596-601.

40 Todorova VK, Klimberg VS, Hennings L, et al. Immunomodulatory effects of radiofrequency ablation in a breast cancer model[J].Immunol Invest, 2010, 39(1):74-92.

41 Chen Z, Shen S, Peng B, et al. Intratumoural GM-CSF microspheres and CTLA-4 blockade enhance the antitumour immunity induced by thermal ablation in a subcutaneous murine hepatoma model[J]. Int J Hyperthermia, 2009, 25(5):374-382.

42 Udagawa M, Kudo-Saito C, Hasegawa G, et al. Enhancement of immunologic tumor regression by intratumoral administration of dendritic cells in combination with cryoablative tumor pretreatment and Bacillus Calmette-Guerin cell wall skeleton stimulation[J].Clin Cancer Res, 2006, 12(24):7465-7475.

43 Zhou L, Fu JL, Lu YY, et al. Regulatory T cells are associated with post-cryoablation prognosis in patients with hepatitis B virus-related hepatocellular carcinoma[J]. J Gastroenterol, 2010, 45(9):968-978.

44 Duan YQ, Gao YY, Ni XX, et al. Changes in peripheral lymphocyte subsets in patients after partial microwave ablation of the spleen for secondary splenomegaly and hypersplenism: a preliminary study[J].Int J Hyperthermia, 2007, 23(5):467-472.

45 Dong BW, Zhang J, Liang P, et al. Sequential pathological and immunologic analysis of percutaneous microwave coagulation therapy of hepatocellular carcinoma[J]. Int J Hyperthermia, 2003, 19(2):119-133.

46 Zhou P, Liang P, Dong B, et al. Phase Ⅰ clinical study of combination therapy with microwave ablation and cellular immunotherapy in hepatocellular carcinoma[J]. Cancer Biol Ther,2011, 11(5):450-456.

Advances in thermal ablation therapy for regulating anti-tumor immunity

LIN Yan, LIANG Ping
Department of Intervention Ultrasound, Chinese PLA General Hospital, Beijing 100853, China
Corresponding author: LIANG Ping. Email: liangping301@hotmail.com

Image-guided thermal ablation technique plays an important role in treatment of hepatic and renal tumors. Thermal ablation technique can activate the anti-tumor immunity in vivo. However, the immune response of patients to them cannot completely eliminate the tumor or prevent its relapse. Thermal ablation should therefore be applied in combination with other immune-regulating therapies in order to bring its effect into full play.

thermal ablation; immuneregulation; antigen; immunotherapy

R 445.1

A

2095-5227(2014)05-0509-04

10.3969/j.issn.2095-5227.2014.05.031

時(shí)間:2014-02-13 10:13

http://www.cnki.net/kcms/detail/11.3275.R.20140213.1013.003.html

2013-11-18

國(guó)家科技部國(guó)際科技合作項(xiàng)目(2012DFG32070)

Supported by International S&T Cooperation Program of China(2012DFG 32070)

林燕,女,在讀博士。研究方向:肝癌熱消融與腫瘤免疫。Email: linyan_911@hotmail.com

梁萍,女,主任醫(yī)師,教授,博士生導(dǎo)師,主任。Email:liangping301@hotmail.com

猜你喜歡
消融射頻特異性
消融
輕音樂(lè)(2022年9期)2022-09-21 01:54:44
5G OTA射頻測(cè)試系統(tǒng)
關(guān)于射頻前端芯片研發(fā)與管理模式的思考
百味消融小釜中
精確制導(dǎo) 特異性溶栓
ALLESS轉(zhuǎn)動(dòng)天線射頻旋轉(zhuǎn)維護(hù)與改造
電子制作(2016年1期)2016-11-07 08:42:54
腹腔鏡射頻消融治療肝血管瘤
超聲引導(dǎo)微波消融治療老年肝癌及并發(fā)癥防范
BOPIM-dma作為BSA Site Ⅰ特異性探針的研究及其應(yīng)用
重復(fù)周圍磁刺激治療慢性非特異性下腰痛的臨床效果
京山县| 黄冈市| 白河县| 河北区| 青海省| 蓬溪县| 宜黄县| 武威市| 湟中县| 临颍县| 临沧市| 达日县| 镇沅| 屏边| 唐海县| 乌拉特前旗| 博白县| 白朗县| 墨竹工卡县| 台安县| 甘南县| 额济纳旗| 阿克陶县| 屯昌县| 永嘉县| 西乡县| 临清市| 三江| 蓝山县| 井陉县| 临桂县| 吴忠市| 光泽县| 永登县| 西乌珠穆沁旗| 日喀则市| 文水县| 济宁市| 邵阳市| 射阳县| 临猗县|