国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

SIRT1對阿爾茨海默病及其相關(guān)復(fù)雜性疾病的調(diào)控機制

2013-01-26 05:22葛玉霞伍文彬
中國老年學(xué)雜志 2013年2期
關(guān)鍵詞:激活劑乙?;?/a>調(diào)節(jié)

葛玉霞 李 斌 王 飛 伍文彬

(成都中醫(yī)藥大學(xué),四川 成都 610075)

SIRT1是沉默信息調(diào)節(jié)因子-2(SIR-2)在哺乳動物的同源基因,定位于10q21.3,無剪接變異,保守性強,位于細胞核內(nèi),為煙酰胺腺嘌呤二核苷酸(NAD)依賴性〔1〕。SIR2/SIRTl被NAD激活后,脫乙?;?,產(chǎn)生 O-乙?;?ADP核糖和煙酰胺(NAM),其激活劑為白藜蘆醇(RES)、漆樹黃酮、紫鉚因等〔2〕。脫乙酰化的SIRT1通過與不同的組蛋白和非組蛋白相互作用來完成不同的功能,SIRT1可脫乙?;恍┺D(zhuǎn)錄因子如叉頭轉(zhuǎn)錄因子(FOXOs)、P53和NF-KB等。SIRT1的其他重要底物有Ku70、過氧化物酶增殖子激活受體γ(PPARγ)、過氧化物酶增殖子激活受體 γ的共活化物-1α(PGc-1α)、肝臟的 X受體(LXR)和組蛋白H1、H3和H4,通過去乙酰化酶作用導(dǎo)致基因沉默〔3~6〕。目前已有研究證明 SIRT1與新陳代謝、衰老、細胞凋亡、氧化應(yīng)激、內(nèi)分泌信號、腫瘤發(fā)生和神經(jīng)保護等密切相關(guān)〔7〕。通過激活SIRT1誘導(dǎo)的能量限制可延長壽命,并在阿爾茨海默病(AD)大鼠的動物模型中已被證明可降低Aβ蛋白、tau蛋白的沉積和改善認知功能〔8〕。在尸檢AD人大腦皮質(zhì)中的SIRT1丟失與Aβ蛋白和tau蛋白的沉積密切相關(guān)〔9〕。它還參與了體內(nèi)許多生理功能的調(diào)節(jié),包括眾多基因轉(zhuǎn)錄、能量代謝以及細胞衰老過程的調(diào)節(jié)等,尤其在糖代謝、脂代謝、調(diào)節(jié)胰島素分泌中發(fā)揮著重要的作用〔7〕。

1 SIRT1與AD相關(guān)的病理機制調(diào)節(jié)

1.1 SIRT1與Aβ的沉積 Aβ是老年斑(SP)的主要成分,由β淀粉樣前體蛋白(APP)經(jīng)分泌酶剪切而成。Aβ有兩種主要的C端變異體,即含40(Aβ-40)和42(Aβ-42)的兩個氨基酸的多肽,Aβ-42最先沉積于腦中且毒性更大。SIRT1與Aβ(Aβ-42)蛋白的沉積相關(guān)性,已經(jīng)在松鼠猴和AD患者的腦中的到證實〔10〕。NF-κB 是一個重要的轉(zhuǎn)錄因子,Yeung 等〔11〕發(fā)現(xiàn),NF-κB活性受 SIRT1調(diào)節(jié),SIRT1將 NF-κB的 P65亞基第310位氨基酸殘基去乙?;?。AD過程中的Aβ蛋白可通過TNF-1受體或AGE受體誘導(dǎo)小膠質(zhì)細胞NF-κB活性,而SIRT1過表達可抑制NF-κB活性,從而拮抗Aβ42蛋白誘導(dǎo)的小膠質(zhì)蛋白死亡,故誘導(dǎo)激活或給予SIRT1激活劑白藜蘆醇等,可使NF-κB 信號明顯減弱,這表明〔12,13〕SIRT1 能通過抑制小膠質(zhì)細胞NF-κB信號減輕β淀粉樣蛋白的神經(jīng)毒性作用,在神經(jīng)元與支持細胞的共同體中,利用慢性病毒超級抑制因子靶入小膠質(zhì)細胞持續(xù)阻斷NF-κB活化,可阻止Aβ42蛋白誘導(dǎo)的神經(jīng)毒性。另有研究表明,用CR的激動劑白藜蘆醇能通過激活5'-磷酸腺苷激活的蛋白激酶(AMPK)通路減輕Aβ誘導(dǎo)的神經(jīng)退行性疾病〔14〕。因而SIRT1可能通過調(diào)節(jié)多種機制減少Aβ的沉積,降低神經(jīng)毒性,從而延緩AD的進展。

1.2 SIRT1與p-tau蛋白 神經(jīng)原纖維纏結(jié)(NFTs)是AD的特征性病理學(xué)特征之一,NFTs主要是由成對的螺旋絲(PHF)組成,而構(gòu)成PHF的主要蛋白組分是過度磷酸化的微管相關(guān)蛋白tau(p-tau)。在海馬區(qū)的CA1、CA3亞區(qū),我們發(fā)現(xiàn)SIRT1轉(zhuǎn)錄減少,CA1、CA3亞區(qū)是內(nèi)嗅皮質(zhì)神經(jīng)突觸的位置,而內(nèi)嗅皮質(zhì)神經(jīng)突觸是AD首先發(fā)生神經(jīng)纖維纏結(jié)的地方〔15~17〕,所以,SIRT1的減少可能是神經(jīng)纖維纏結(jié)發(fā)生的起因。相關(guān)研究證明p-tau蛋白與SIRT1呈很強的負相關(guān),不容的PHF形式與AD認知障礙相關(guān)性很大〔18~23〕,可溶的tau蛋白轉(zhuǎn)變?yōu)椴蝗莸腜HF與AD的SIRT1減少共用一個通路,但具體調(diào)節(jié)通路還未明確。

1.3 SIRT1與能量限制 動物模型研究表明〔24〕,能量限制(CR)對AD的神經(jīng)變性有保護作用。針對人病理學(xué)特征建立的相關(guān)經(jīng)CR處理的AD實驗?zāi)P妥C實,人保持低熱量飲食可降低AD的風(fēng)險。據(jù)報道,CR也能刺激神經(jīng)元生長和提高突觸適應(yīng)性,增強大腦抵抗認知下降的能力〔25〕,在實驗大鼠中,Qin等〔26〕證實了CR激活了RIST1去乙?;饔?,通過調(diào)節(jié)轉(zhuǎn)錄因子作用于Rho相關(guān)激酶(ROCK1),通過下調(diào)ROCK1表達促進α-分泌酶活性,進而減少了Aβ沉積。Sirt1脫乙?;{(diào)節(jié)許多轉(zhuǎn)錄因子如FOXOs、P53和NF-κB等,均扮演重要角色,其中CR顯著增加了小鼠動脈中的SIRT1水平,降低細胞衰老標志分子P53和P21表達水平被周爽等證實〔27〕。

2 SIRT1與AD相關(guān)疾病的機制調(diào)節(jié)

2.1 SIRT1與代謝性疾病 AD患者腦中的SIRT1的減少限制了乙酰輔酶A合成酶合成乙酰輔酶A(Co-A),而乙酰輔酶A是細胞代謝的重要分子。研究顯示,AD患者中涉及記憶和認知功能的大腦區(qū)域的葡萄糖利用能力遭到損失〔28〕。而且在患者未出現(xiàn)AD早期癥狀和未能檢測出結(jié)構(gòu)性變化之前,就已經(jīng)明顯表現(xiàn)出大腦葡萄糖代謝異常現(xiàn)象。

2.1.1 糖代謝 SIRT1增強肝臟糖異生,研究顯示,實驗動物禁食后肝細胞SIRT1基因轉(zhuǎn)錄水平雖無明顯變化,但蛋白表達水平顯著增高,重新進食后,SIRT1蛋白表達量下降,禁食后過氧化物酶體增殖物活化受體協(xié)同刺激因子1α(PGC-1α)及糖異生基因磷酸烯醇式丙酮酸羧激酶(PEPCK)的轉(zhuǎn)錄水平上調(diào),SIRT1可與PGC-1α及肝細胞核因子4α(HNF4α)結(jié)合成一種蛋白復(fù)合物,在NAD+的參與下將乙?;腜GC-1α去乙?;M而激活HNF4α,調(diào)控糖異生相關(guān)基因的轉(zhuǎn)錄,參與調(diào)節(jié)糖異生、糖酵解途徑。其作用途徑可能來自兩方面:(1)SIRT1參與了PGC-1α對糖異生相關(guān)基因轉(zhuǎn)錄的調(diào)控。(2)禁食狀態(tài)下丙酮酸促進糖異生、阻斷糖酵解效應(yīng)是通過上調(diào)SIRT1實現(xiàn)的〔29〕。

2.1.2 脂代謝 SIRT1降低脂質(zhì)積累,改善高脂飲食導(dǎo)致的血管功能損傷〔30〕。Picard 等〔31,32〕研究顯示 Sirt1 可以抑制過氧化物酶體增殖物激活受體γ(PPAR-γ)活性,下調(diào)脂肪儲存相關(guān)基因的轉(zhuǎn)錄,抑制前體脂肪細胞分化并促進脂肪動員。在3T3-L1細胞模型中,添加SIRT1的激活劑白藜蘆醇,可以觀察到細胞內(nèi)脂肪含量明顯減少,檢測發(fā)現(xiàn)甘油三酯含量下降,游離脂肪酸釋放增多。然而在SIRT1敲除鼠中無此現(xiàn)象。染色質(zhì)免疫沉淀分析顯示,SIRT1可與PPARγ的共因子核受體共抑制子和維甲酸及甲狀腺受體的沉默調(diào)節(jié)子結(jié)合,抑制PPARγ活性,降低脂肪特異脂肪酸結(jié)合蛋白的表達水平,抑制脂肪細胞分化,降低脂肪沉積。

2.1.3 氨基酸代謝 食物中n3-PUFA的攝入在AD的進展中扮演一個重要的角色。n3-PUFA的主要成分為DHA、EPA分別于SIRT1成正相關(guān)和負相關(guān),是一個可以控制的風(fēng)險因素或可作為 AD 的治療目標〔33~38〕。

2.2 SIRT1與2型糖尿病(T2DM)相關(guān)胰島β細胞調(diào)節(jié)機制近年來胰島素敏感性與AD的關(guān)系逐步被肯定,在糖尿病老鼠模型中,激活SIRT1防止高血糖誘導(dǎo)的血管細胞的衰老〔39〕,可改善糖尿病患者的認知功能〔40~42〕,SIRT1對哺乳動物β細胞的胰島素分泌有正向調(diào)節(jié)作用〔43〕。

SIRT1通過抑制解偶聯(lián)蛋白2(Ucp2,一種線粒體內(nèi)的膜蛋白),促進胰島β細胞分泌胰島素應(yīng)答葡萄糖〔44〕。SIRT1可以直接結(jié)合到UCP-2的啟動子上,抑制其轉(zhuǎn)錄。另外Ucp2具有解離呼吸鏈氧化磷酸化耦聯(lián)的功能,減弱β細胞將葡萄糖轉(zhuǎn)化為ATP的能力,并將ATP的能量轉(zhuǎn)化為熱量。SIRT1對胰島β細胞功能的調(diào)控是一個復(fù)雜的過程,也可能存在著UCP-2非依賴途徑,因為利用氯化鉀將過表達SIRT1的β細胞去極化可以進一步增加此細胞的胰島素分泌量。利用SIRT1的激活劑(RE)及抑制劑(NIC)對β細胞NIT-1進行刺激,發(fā)現(xiàn)RE誘導(dǎo)的SIRT1高表達可使高糖刺激下的NIT-1細胞的胰島素mRNA水平表達上升,同時分泌更多的胰島素(即糖耐量增強),而且延長細胞倍增時間。相反,NIC誘導(dǎo)的SIRT1低表達可使高糖刺激下的NIT-1細胞分泌的胰島素mRNA水平表達下降,同時分泌的胰島素減少(即糖耐量降低),而且縮短細胞倍增時間〔45〕。研究發(fā)現(xiàn),在INS/IGF-1信號通路中,INS/IGF-1的刺激下,PI3K被胰島素受體底物(IRS)磷酸化而激活,合成特異P1、P2和P3〔46,47〕,后兩者再激活 AKT使之與細胞膜結(jié)合,然后被3-磷酸肌醇依賴性蛋白激酶1(PDKI)完全激活,活化的AKT(即P-AKT)則從細胞膜上釋放,磷酸化SIRT1下游因子,如FOXO,其被磷酸化后,導(dǎo)致活性失活,通過多種機制從細胞核轉(zhuǎn)移到細胞質(zhì),說明SIRT1又可通過參與INS/IGF-1通路調(diào)節(jié)胰島β細胞分泌。SIRT1影響胰島β細胞分泌可能是多通路的,其上下游因子多參與其中,機制相對復(fù)雜。在新藥研究中,有望通過SIRT1的激活劑在T2DM的治療中有新突破。

3 總結(jié)與展望

SIRT1與AD及其相關(guān)的多種復(fù)雜性疾病之間存在諸多聯(lián)系,可分別通過減少Aβ沉積、神經(jīng)纖維纏結(jié),改善能量代謝等方面延緩AD進展。在AD相關(guān)的代謝性疾病,可通過調(diào)節(jié)多種機制改善糖代謝、脂代謝及氨基酸等。改善胰島β細胞功能治療T2DM。是否可通過激活劑刺激SIRT1,進而調(diào)節(jié)多種復(fù)雜機制,有望使AD病人的藥物療效上一個臺階。SIRT1亦可能為T2DM患者帶來福音。已有研究表明中藥在神經(jīng)保護上起一定作用,是否可通過中藥改善患者多種復(fù)雜性疾病基礎(chǔ)體質(zhì),刺激SIRT1通過多靶點治療AD,尚需進一步研究。

1 Dryden SC,Nahhas FA,Nowak JE,et al.Role for human SIRT2 NAD-dependent deacetylase in control of mitotic exit in the cell cycle〔J〕.Mol Cell Biol,2003;23(9):3173-85.

2 Eric van der Veer,Zengxuan Nong,Caroline O'Neil,et al.Pre-B-cell colony-enhancing factor regulates NAD+-dependent protein deacetylase activity and promotes vascular smooth muscle cell maturation〔J〕.Circ Res,2005;97(1):25-34.

3 Anekonda TS,Reddy PH.Neuronal protection by sirtuins in Alzheimer's disease〔J〕.Neurochem,2006;96(2):305-13.

4 Gan L,Mucke L.Paths of convergence:sirtuins in aging and neurodegeneration〔J〕.Neuron,2008;58(1):10-4.

5 Dali-Youcef N,Lagouge M,F(xiàn)roelich S,et al.Sirtuins:the'magnificent seven',function,metabolism and longevity〔J〕.Ann Med,2007;39(5):335-45.

6 Guarente L,Picard F.Calorie restriction-the SIR2 connection〔J〕.Cell,2005;120(4):473-82.

7 Haigis MC,Guarente LP.Mammalian sirtuins——emerging roles in physiology,aging and calorie restriction〔J〕.Genes Dev,2008;20(21):2913-21.

8 Halagappa VKM,Guo Z,Pearson M,et al.Intermittent fasting and caloric restriction ameliorate age related behavioral deficits in the triple-transgenic mouse model of Alzheimer's disease〔J〕.Neurobiol Dis,2007;26(1):212-20.

9 Carl Julien,Cyntia Tremblay,Vincent Emond,et al.SIRT1 decrease parallels the accumulation of tau in Alzheimer disease〔J〕.J Neuropathol Exp Neurol,2009;68(1):48.

10 Qin W,Chachich M,Lane M,et al.Calorie restriction attenuates Alzheimer's disease type brain amyloidosis in Squirrel monkeys(Saimiri sciureus)〔J〕.JAlzheimer Dis,2006;10(4):417-22.

11 Yeung F,Hoberg JE,Ramsey CS,et al.Modulation of NF-KB dependent transcription and cell survival by the SIRT1 Deacetyalse〔J〕.Embo J,2004;23(5):2369-80.

12 Chen J,Zhou Y,Mueller-Steiner S,et al.SIRT1 protects against microglia-dependent amyloid-βtoxicity through inhibiting NF-KB signaling〔J〕.JBiol Chem,2005;280:40354-74.

13 Juan D,Yun X.Neuroprotective mechanisms of SIRT1〔J〕.Cerebrovasc Dis,2009;17(2):144-8.

14 Calon F,Lim GP,Yang F,et al.Docosahexaenoic acid protects from dendritic pathology in an Alzheimer's disease mouse model〔J〕.Neuron,2004;43(5):633-45.

15 Gómez-Isla T,Price JL,McKeel DW,et al.Profound loss of layer IIentorhinal cortex neurons occurs in very mild Alzheimer's disease〔J〕.J Neurosci,1996;16(14):4491-500.

16 Hyman BT,Van Hoesen GW,Damasio AR,et al.Alzheimer's disease:cell-specific pathology isolates the hippocampal formation〔J〕.Science,1984;225(4667):1168-70.

17 Hyman BT,Van Hoesen GW,Kromer LJ,et al.Performant pathway changes and the memory impairment of Alzheimer's disease〔J〕.Ann Neurol,1986;20(4):472-81.

18 Tremblay C,Pilote M,Phivilay A,et al.Biochemical characterization of abeta and tau pathologies in mild cognitive impairment and Alzheimer's disease〔J〕.J Alzheimers Dis,2007;12(4):377-90.

19 Bennett DA,Schneider JA,Wilson RS,et al.Neurofibrillary tangles mediate the association of amyloid load with clinical Alzheimer disease and level of cognitive function〔J〕.Arch Neurol,2004;61(3):378-84.

20 Arriagada PV,Growdon JH,Hedley-Whyte ET,et al.Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease〔J〕.Neurology,1992;42(3):631-9.

21 Giannakopoulos P,Herrmann FR,Bussière T,et al.Tangle and neuron numbers,but not amyloid load,predict cognitive status in Alzheimer's disease〔J〕.Neurology,2003;60(9):1495-500.

22 Nagy Z,Esiri MM,Jobst KA,et al.Relative roles of plaques and tangles in the dementia of Alzheimer's disease:correlations using three sets of neuropathological criteria〔J〕.Dementia,1995;6(1):21-31.

23 Naslund J,Haroutunian V,Mohs R,et al.Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline〔J〕.JAMA,2000;283(12):1571-7.

24 Patel NV,Gordon MN,Comor KE,et al.Caloric restriction attenuates Aβ-deposition in Alzheimer transgenic models〔J〕.Neurobiol Aging,2005;26(7):995-1000.

25 Mattson MP,Duan W,Guo Z.Meal size and frequency affect neuronal plasticity and vulnerability to disease:cellular and molecular mechanisms〔J〕.J Neurochem,2003;84(3):417-31.

26 Qin W,Yang T.Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction〔J〕.Bio Chem,2006;281(31):21745-54.

27 周 爽,陳厚早,萬言珍,等.長期能量限制增加去乙?;窼IRT1表達和降低小鼠血管的衰老〔J〕.基礎(chǔ)醫(yī)學(xué)與臨床,2010;30(11):1158-61.

28 Hallows WC,Lee S,Denu JM.Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases〔J〕.Proc Natl Acad Sci USA,2006;103(27):10230-5.

29 Rodgers JT,Lerin C,Haas W,et al.Nutrient control of glucose homeostasis through a complex of PGC-1 alpha and Sirt1〔J〕.Nature,2005;434(3):113-8.

30 ZhangQJ,Wang Z,Chen HZ,et al.Endothelium-specific overexpression of classⅢdeacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice〔J〕.Cardiovasc Res,2008;80(2):191-9.

31 Picard F,Kurtev M,Chung N,et al.Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma〔J〕.Nature,2004;429(6993):771-6.

32 Picard F,Guarente L.Molecular links between aging and adipose tissue〔J〕.Int JObes(Lond),2005;29(1):36-9.

33 Wu A,Ying Z,Gomez-Pinilla F.Omega-3 fatty acids supplementation restores mechanisms that maintain brain homeostasis in traumatic brain injury〔J〕.JNeurotrauma,2007;24(10):1587-95.

34 Patel NV,Gordon MN,Connor KE,et al.Caloric restriction attenuates A beta-deposition in Alzheimer transgenic models〔J〕.Neurobiol Aging,2005;26(7):995-1000.

35 Barberger-Gateau P,Raffaitin C,Letenneur L,et al.Dietary patterns and risk of dementia:the Three-City cohort study〔J〕.Neurology,2007;69(20):1921-30.

36 Calon F,Cole G.Neuroprotective action of omega-3 polyunsaturated fatty acids against neurodegenerative diseases:evidence from animal studies〔J〕.Pros Leuk Essent Fatty Acids,2007;77(5-6):287-93.

37 Morris MC,Evans DA,Bienias JL,et al.Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease〔J〕.Arch Neurol,2003;60(7):940-6.

38 Schaefer EJ,Bongard V,Beiser AS,et al.Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease:the Framingham Heart Study〔J〕.Arch Neurol,2006;63(11):1545-50.

39 Orimo M,Minamino T,Miyauchi H,et al.Protective role of sirt1 in diabetic vascular dysfunction〔J〕.Arterioscler Thromb Vasc Biol,2009;29(6):889-94.

40 Bums JM,Donnelly JE,Anderson HS,et al.Peripheral insulin and brain structure in early Alzheimer disease〔J〕.Neurology,2007;69(11):1094-104.

41 Alvarez A,Cacabelos R,Sanpedro C,et al.Serum TNF-alpha levels an increased and correlate negatively with free IGF-1 in Alzheimer disease〔J〕.Neurobiol Aging,2007;28(4):533-6.

42 司俊霞,談 躍.胰島素水平與輕度認知障礙關(guān)系的臨床研究〔J〕.中國糖尿病雜志,2008;16(7):418-20.

43 Moynihan KA,Grimm AA,Plueger MM,et al.Increased dosage of mammalian SIR2 in pancreatic beta cells enhances glucose stimulated insulin secretion in mice〔J〕.Cell Metab,2005;2(2):105-17.

44 Bordone L,Motta MC,Picard F.et al.Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells〔J〕.PLoS Biol,2006;4(2):e31.

45 楊杰華,陳慎仁,傅玉才,等.SIRT1與INS/IGF-1通路的關(guān)系及對NIT-1細胞胰島素分泌的影響〔J〕.中華臨床醫(yī)師雜志(電子版),2008;2(6):668-78.

46 Moreira PI,Santos MS,Moreno AM,et al.Increased vulnerability of brain mitochondria in diabetic(Goto-Kakizaki)rats with aging and amyloid-beta exposure〔J〕.Diabetes,2003;52(6):1449-56.

47 Sakamoto J,Miura T,Shimamoto K,et al.Predominant expression of Sir2α,an NAD-dependent histone deacetylase,in the embryonic mouse heart and brain〔J〕.FEBSLETT,2004;556(1-3):281-6.

猜你喜歡
激活劑乙酰化調(diào)節(jié)
方便調(diào)節(jié)的課桌
抑癌蛋白p53乙酰化修飾的調(diào)控網(wǎng)絡(luò)
2016年奔馳E260L主駕駛座椅不能調(diào)節(jié)
乙酰化修飾對天然免疫調(diào)節(jié)機制研究取得進展
勝利油田沾3區(qū)塊油藏中Geobacillus菌的激活研究
替羅非班與纖溶酶原激活劑治療PCI合并慢血流急性STEMI的臨床療效
探討組蛋白乙酰化酶對心臟發(fā)育基因NKX2.5的動態(tài)調(diào)控作用
免疫激活劑勾畫綠色農(nóng)業(yè)藍圖
組蛋白去乙酰化酶6與神經(jīng)變性疾病
汽油機質(zhì)調(diào)節(jié)
大丰市| 龙州县| 江达县| 博客| 深州市| 武清区| 秭归县| 阳谷县| 化隆| 边坝县| 安远县| 凤凰县| 曲麻莱县| 淮北市| 水富县| 海宁市| 兴业县| 仁怀市| 白银市| 正蓝旗| 呼伦贝尔市| 黄平县| 若尔盖县| 淳化县| 临桂县| 余干县| 赞皇县| 佛冈县| 沁源县| 合山市| 通河县| 田林县| 荃湾区| 临湘市| 临猗县| 广水市| 太白县| 内丘县| 福海县| 贺兰县| 聂拉木县|