郭明,楊麗霞,周曉斌
充血性心力衰竭(congestive heart Failure, CHF,心衰),是各種心臟疾病發(fā)展的終末階段,嚴(yán)重影響著患者的預(yù)后和生存質(zhì)量。隨著循證醫(yī)學(xué)證據(jù)的不斷涌現(xiàn),臨床上對(duì)CHF的治療模式已由以往的心-腎模式轉(zhuǎn)換為神經(jīng)-內(nèi)分泌綜合調(diào)控模式。血管緊張素Ⅱ受體拮抗劑(angiotensin Ⅱreceptor blockade,ARB)可有效阻斷腎素-血管緊張素-醛固酮系統(tǒng),從而改善心臟功能,降低心衰患者的住院率和死亡率。因此ARB在CHF治療中的地位已提升至Ⅰ類推薦。以往基礎(chǔ)研究認(rèn)為,ARB治療心衰可能與避免或改善血管收縮、水鈉潴留、組織增生、膠原沉淀、細(xì)胞壞死和凋亡等有關(guān),但至今對(duì)ARB治療心衰的確切機(jī)制仍不完全所知。本文對(duì)近年來ARB在CHF治療中的研究進(jìn)展作一綜述。
1.1 ARB治療心衰的臨床研究 導(dǎo)致心力衰竭(HF)發(fā)生與發(fā)展的基本機(jī)制是心肌重構(gòu),而腎素-血管緊張素-醛固酮(RAAS)系統(tǒng)的激活是引起心肌重構(gòu)的重要因素。ARB類藥物通過選擇性阻斷血管緊張素受體Ⅰ(AngⅠ)發(fā)揮抗RAAS系統(tǒng)的效應(yīng),在臨床治療HF中受到廣泛重視,目前該領(lǐng)域一共有3大臨床研究。ELITE研究[1]發(fā)現(xiàn)氯沙坦較卡托普利可明顯降低老年心衰患者的死亡率,但后續(xù)研究[2]認(rèn)為,與卡托普利相比,氯沙坦并不能降低老年HF患者的全因死亡率,因此僅在患者不能耐受卡托普利時(shí)才選擇氯沙坦。Val-HeFT的亞組試驗(yàn)結(jié)果證明,在ACEI治療的基礎(chǔ)上聯(lián)合應(yīng)用ARB可以明顯延緩左心室重構(gòu)的發(fā)展[3]。迄今規(guī)模最大的以ARB治療HF的臨床試驗(yàn)CHARM-Added[4]和CHARM-Alternative也顯示,坎地沙坦可降低HF的發(fā)病率和死亡率[5]。
1.2 ARB與ACEI聯(lián)合運(yùn)用的現(xiàn)狀 目前血管緊張素轉(zhuǎn)換酶抑制劑(ACEI)仍然是治療HF的基石,但其并不能完全阻斷腎素-血管緊張素(RAS)系統(tǒng)。ACEI和ARB的聯(lián)合治療能更完全地阻斷RAS系統(tǒng),較單獨(dú)用藥能更有效地減少血漿中醛固酮腦鈉尿肽[6-8]。因此,在ACEI治療的基礎(chǔ)上加用ARB可更有效地減少左心室重構(gòu)[9],降低HF的發(fā)生率與死亡率。
最近一項(xiàng)Meta分析[10]討論了ACEI和ARB的聯(lián)合運(yùn)用與ACEI單獨(dú)運(yùn)用的利與弊。該分析共納入了8項(xiàng)實(shí)驗(yàn),18061名患者。聯(lián)合終點(diǎn)包括總死亡率,心衰住院人數(shù)、全因住院人數(shù);副作用包括腎功能惡化、有癥狀性低血壓、高鉀血癥、咳嗽、皮疹、血管性水腫等。結(jié)果顯示,與單獨(dú)運(yùn)用ACEI相比,聯(lián)合用藥可降低HF的住院率,但不能降低總死亡率和全因住院率,還會(huì)導(dǎo)致諸如腎功能惡化、低血壓和高血鉀傾向等副作用。然而基于目前的證據(jù),聯(lián)合治療仍然是單獨(dú)運(yùn)用ACEI效果欠佳的替補(bǔ)方法,但要密切關(guān)注副作用的發(fā)生。
2.1 改善心臟重構(gòu) 血管緊張素Ⅱ(Ang Ⅱ)在心血管系統(tǒng)內(nèi)可誘導(dǎo)產(chǎn)生NADPH氧化酶[11],其超氧化作用可激活基質(zhì)金屬蛋白酶(MMPs)[12]和組織蛋白酶,參與心臟重構(gòu)過程,而ARB可通過調(diào)節(jié)MMPs改善心臟重構(gòu)[13]。
此外,Ahmed等[14]證明ARB可阻止HF大鼠心肌二聚糖的表達(dá),延緩心肌間質(zhì)的纖維化進(jìn)程,從而改善心肌重構(gòu)。也有實(shí)驗(yàn)證明,AngⅡ的主要產(chǎn)物之一,TGF-β與COL1A1,1A2和3A1 mRNA的3’-未翻譯區(qū)相互協(xié)同,激活異源性核糖核蛋白A1,E1和K的合成,從而促進(jìn)心肌成纖維細(xì)胞合成Ⅰ、Ⅲ型膠原,加速心肌重構(gòu)[15]。Hiroyuki等在大鼠HF模型上證實(shí),AngⅠ受體抑制劑(L-158809)可明顯減輕大鼠心肌纖維化。有研究發(fā)現(xiàn)通過用AT1受體抑制劑阻斷G蛋白信號(hào)途徑,也可抑制HF大鼠心肌的異常增生與纖維化,最終改善心功能并延緩心肌重構(gòu)[16]。近年研究顯示,HF和心肌細(xì)胞肥大均與促分裂原活化蛋白激酶(MAPKs)信號(hào)途徑激活有關(guān)[17,18],而ARB則可通過抑制這一途徑發(fā)揮改善心肌肥厚、延緩HF的作用[19]。
2.2 阻斷RAAS系統(tǒng) HF的一個(gè)重要機(jī)制是心臟交感神經(jīng)興奮性(CSNA)增加。在HF初期其代償性增加血液量可使患者獲益;但隨著病情進(jìn)展,持續(xù)而強(qiáng)烈交感神經(jīng)興奮不僅會(huì)阻礙HF的恢復(fù),同時(shí)也是猝死和其它并發(fā)癥的危險(xiǎn)因素,而AT1受體拮抗劑(纈沙坦)可使CSNA恢復(fù)正常[20]。
此外,在HF的發(fā)生過程中,化學(xué)感受器和壓力感受器均具有一定作用,心衰時(shí)動(dòng)脈內(nèi)的壓力感受反射受抑制,而化學(xué)感受反射加強(qiáng)。HF引起的組織缺氧可上調(diào)頸動(dòng)脈體內(nèi)化學(xué)感受器中的AT1受體,增加球細(xì)胞對(duì)AngⅡ的敏感性,AngⅡ還可通過增加Kv通道對(duì)缺氧的敏感性參與頸動(dòng)脈體調(diào)節(jié)[21]。Wang等通過向雙側(cè)孤束核部位注射氯沙坦,發(fā)現(xiàn)其可降低心衰動(dòng)物的基礎(chǔ)交感神經(jīng)活性,同時(shí)還可阻斷心交感傳入刺激引起的化學(xué)感受器反射[22]。除化學(xué)感受器外,ARB對(duì)壓力感受器也有作用,Ramchandra等證實(shí)厄貝沙坦可左移CSNA的壓力反射曲線,減少壓力反射引起的交感神經(jīng)興奮,但這一現(xiàn)象僅在外周AngⅡ刺激下有效,而對(duì)中樞AngⅡ升高引起的壓力反射并無明顯的抑制作用[23]。
HF與水鈉潴留密切相關(guān),在左心室功能降低的情況下,機(jī)體通過激活精氨酸加壓素、神經(jīng)激素、RAAS系統(tǒng)和心房鈉尿肽導(dǎo)致水鈉潴留,以維持心輸出量和血壓。但是一旦發(fā)生水鈉潴留失代償則反而會(huì)增加HF的發(fā)病率和死亡率。Lutken的試驗(yàn)[24]證明,ARB可以逆轉(zhuǎn)AQP2、NKCC2 和NHE3、ENaC亞基和11-HSD2的表達(dá),從而改善水鈉潴留的惡性循環(huán)。
2.3 調(diào)節(jié)一氧化氮(NO)的舒血管活性 一氧化氮合酶(NOS)有3種亞型:nNOS、iNOS 和eNOS,其中eNOS對(duì)心功能的作用尤為顯著。HF發(fā)生后,eNOS減少可致內(nèi)皮依賴性血管舒張障礙。用L-硝基-精氨酸甲脂(LZ)抑制NO后,會(huì)導(dǎo)致與心臟間質(zhì)纖維化有關(guān)炎癥反應(yīng)上調(diào),心肌肥厚和血管平滑肌細(xì)胞增生。而Liu發(fā)現(xiàn),在eNOS基因敲除的小鼠中,AngⅠ受體拮抗劑對(duì)心臟的保護(hù)作用幾乎消失[16],提示NO有可能是AT1受體拮抗劑發(fā)揮保護(hù)HF作用的重要環(huán)節(jié)。ARB治療可阻斷AngⅡ介導(dǎo)的信號(hào)途徑,通過防止LZ+磷酸化肌球蛋白磷酸酶靶亞基1(MYPT1)表達(dá)的減少和削弱p42/44 MAPK信號(hào)級(jí)聯(lián)反應(yīng)的活化,來維持NO調(diào)節(jié)血管舒張的正常敏感度。
2.4 減輕超氧化應(yīng)激 有過去的幾年里,活性氧簇(reactive oxygen species,ROS)在HF中的作用受到密切關(guān)注[25]。氯沙坦可阻斷Ang II誘導(dǎo)ROS的形成[26],而坎地沙坦則可保護(hù)RyR2的蛋白激酶A磷酸化,從而降低肌漿網(wǎng)對(duì)氧化應(yīng)激的耐受程度,減少Ca2+外漏的可能性[27]。
2.5 抑制炎癥反應(yīng) 有研究發(fā)現(xiàn),在HF患者的循環(huán)血中促炎細(xì)胞因子普遍增高,如腫瘤壞死因子-α(TNF-α)、白細(xì)胞介素-1β(IL-1β)和 IL-6;且增高的程度與HF 的程度呈正相關(guān),提示炎性細(xì)胞因子增加和交感神經(jīng)興奮可導(dǎo)致嚴(yán)重的室性心律失常,這也是HF病死率升高的主要原因之一。交感神經(jīng)興奮可調(diào)節(jié)中樞TNF-α和 IL-1β的表達(dá)增加,刺激ROS的產(chǎn)生,ROS又加強(qiáng)交感神經(jīng)興奮性,形成惡性循環(huán)導(dǎo)致HF加重。細(xì)胞因子的拮抗劑己酮可可堿(PTX)能夠大量減少HF大鼠中ROS的生成,直接或間接地減弱腎交感神經(jīng)活性[28,29],從而降低氧化應(yīng)激反應(yīng)。AngⅡ可導(dǎo)致離體心臟標(biāo)本中TNF-α水平升高[30],經(jīng)氯沙坦干預(yù)后可見TNF-α合成下降[31],提示AngII與細(xì)胞因子在外周存在明顯的相互作用,而HF與TNF-α及IL-β明顯相關(guān),細(xì)胞因子和RAS間同樣存在交互對(duì)話[32],提示ARB可能通過交互對(duì)話抑制炎癥反應(yīng)來發(fā)揮抗HF的作用。深入研究發(fā)現(xiàn),NF-κB也可調(diào)節(jié)RAS與促炎細(xì)胞因子之間的交互對(duì)話[33],也為研究ARB調(diào)控兩者對(duì)話的機(jī)制提供了新的視角。
綜上所述,通過對(duì)近年來ARB治療CHF的相關(guān)臨床和基礎(chǔ)試驗(yàn)進(jìn)行總結(jié),并從心室重構(gòu),RAAS系統(tǒng),NO的舒血管活性,超氧化應(yīng)激,炎癥反應(yīng)與AngII的交互對(duì)話等方面深入探討了ARB類藥物對(duì)治療CHF的可能機(jī)制,為ARB治療CHF的作用及其機(jī)制提供了更多的實(shí)驗(yàn)資料支持。
[1]Pitt B, Segal R,Martinez FA,et al. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE)[J]. Lancet,1997,349(9054):747-52.
[2]Pitt B,Poole-Wilson PA,Segal R,et al. Effect of losartan compared with captopril on mortality in patients with symptomatic heart failure:randomised trial--the Losartan Heart Failure Survival Study ELITE II[J]. Lancet, 2000,355(9215): 1582-7.
[3]Cohn JN,Tognoni G. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure[J]. N Engl J Med,2001,345(23): 1667-75.
[4]McMurray JJ,Ostergren J,Swedberg K,et al. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function taking angiotensin-converting-enzyme inhibitors:the CHARM-Added trial[J]. Lancet,2003,362(9386):767-71.
[5]Granger CB,McMurray JJ,Yusuf S,et al. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function intolerant to angiotensin-converting-enzyme inhibitors:the CHARM-Alternative trial[J]. Lancet,2003,362(9386):772-6.
[6]Latini R,Masson S,Anand I,et al. Effects of valsartan on circulating brain natriuretic peptide and norepinephrine in symptomatic chronic heart failure:the Valsartan Heart Failure Trial (Val-HeFT)[J].Circulation, 2002,106(19):2454-8.
[7]Cohn JN,Anand IS,Latini R,et al. Sustained reduction of aldosterone in response to the angiotensin receptor blocker valsartan in patients with chronic heart failure: results from the Valsartan Heart Failure Trial[J]. Circulation, 2003,108(11): 1306-9.
[8]White M,Rouleau JL,Afzal R,et al. Effects of enalapril,candesartan or both on neurohumoral activation and LV volumes and function in patients with heart failure not treated with a beta-blocker[J]. Ther Adv Cardiovasc Dis,2009,3(2):113-21.
[9]Wong M,Staszewsky L,Latini R,et al. Valsartan benefits left ventricular structure and function in heart failure:Val-HeFT echocardiographic study[J]. J Am Coll Cardiol,2002,40(5):970-5.
[10]Kuenzli A,Bucher HC,Anand I,et al. Meta-analysis of combined therapy with angiotensin receptor antagonists versus ACE inhibitors alone in patients with heart failure[J]. PLoS One,2010,5(4):e9946.
[11]Doerries C,Grote K,Hilfiker-Kleiner D,et al. Critical role of the NAD(P)H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction[J]. Circ Res,2007,100(6):894-903.
[12]Luchtefeld M,Grote K,Grothusen C,et al. Angiotensin II induces MMP-2 in a p47phox-dependent manner[J]. Biochem Biophys Res Commun, 2005,328(1):183-8.
[13]Patel VB,Bodiga S,Fan D,et al. Cardioprotective effects mediated by angiotensin II type 1 receptor blockade and enhancing angiotensin 1-7 in experimental heart failure in angiotensin-converting enzyme 2-null mice[J]. Hypertension,2012,59(6):1195-203.
[14]Ahmed MS,Oie E,Vinge LE,et al. Induction of myocardial biglycan in heart failure in rats--an extracellular matrix component targeted by AT(1) receptor antagonism[J]. Cardiovasc Res,2003,60(3):557-68.
[15]Thiele BJ,Doller A,Kahne T,et al. RNA-binding proteins heterogeneous nuclear ribonucleoprotein A1,E1,and K are involved in post-transcriptional control of collagen I and III synthesis[J]. Circ Res,2004,95(11):1058-66.
[16]Liu YH,Xu J,Yang XP,et al. Effect of ACE inhibitors and angiotensin II type 1 receptor antagonists on endothelial NO synthase knockout mice with heart failure[J]. Hypertension,2002,39(2 Pt 2):375-81.
[17]Wang N,Guan P,Zhang JP,et al. Fasudil hydrochloride hydrate,a Rhokinase inhibitor,suppresses isoproterenol-induced heart failure in rats via JNK and ERK1/2 pathways[J]. J Cell Biochem,2011,112(7):1920-9.
[18]Xuan W,Liao Y,Chen B,et al. Detrimental effect of fractalkine on myocardial ischaemia and heart failure[J]. Cardiovasc Res,2011,92(3):385-93.
[19]Zhang GX,Kimura S,Murao K,et al. Effects of angiotensin type I receptor blockade on the cardiac Raf/MEK/ERK cascade activated via adrenergic receptors[J]. J Pharmacol Sci,2010,113(3): 224-33.
[20]Kleiber AC,Zheng H,Sharma NM,et al. Chronic AT1 receptor blockade normalizes NMDA-mediated changes in renal sympathetic nerve activity and NR1 expression within the PVN in rats with heart failure[J]. Am J Physiol Heart Circ Physiol, 2010,298(5): H1546-55.
[21]Li YL,Schultz HD. Enhanced sensitivity of Kv channels to hypoxia in the rabbit carotid body in heart failure: role of angiotensin II[J]. J Physiol,2006,575(Pt 1):215-27.
[22]Wang WZ,Gao L,Wang HJ,et al. Interaction between cardiac sympathetic afferent reflex and chemoreflex is mediated by the NTS AT1 receptors in heart failure[J]. Am J Physiol Heart Circ Physiol,2008,295(3):H1216-H26.
[23]Ramchandra R,Watson AM,Hood SG,et al. Response of cardiac sympathetic nerve activity to intravenous irbesartan in heart failure[J]. Am J Physiol Regul Integr Comp Physiol,2010,298(4):R1056-60.
[24]Lutken SC,Kim SW,Jonassen T,et al. Changes of renal AQP2,ENaC,and NHE3 in experimentally induced heart failure:response to angiotensin II AT1 receptor blockade[J]. Am J Physiol Renal Physiol,2009,297(6):F1678-88.
[25]Deo SH,Fisher JP,Vianna LC,et al. Statin therapy lowers muscle sympathetic nerve activity and oxidative stress in patients with heart failure[J]. Am J Physiol Heart Circ Physiol,2012,303(3):H377-85.
[26]Kazama K,Anrather J,Zhou P,et al. Angiotensin II impairs neurovascular coupling in neocortex through NADPH oxidasederived radicals[J]. Circ Res,2004;95(10):1019-26.
[27]Tokuhisa T,Yano M,Obayashi M,et al. AT1 receptor antagonist restores cardiac ryanodine receptor function,rendering isoproterenolinduced failing heart less susceptible to Ca2+-leak induced by oxidative stress[J]. Circ J,2006;70(6):777-86.
[28]Guggilam A,Haque M,Kerut EK,et al. TNF-alpha blockade decreases oxidative stress in the paraventricular nucleus and attenuates sympathoexcitation in heart failure rats[J]. Am J Physiol Heart Circ Physiol,2007,293(1):H599-609.
[29]Kang YM,Zhang ZH,Johnson RF,et al. Novel effect of mineralocorticoid receptor antagonism to reduce proinflammatory cytokines and hypothalamic activation in rats with ischemia-induced heart failure[J]. Circ Res,2006,99(7):758-66.
[30]Frolkis I,Gurevitch J,Yuhas Y,et al. Interaction between paracrine tumor necrosis factor-alpha and paracrine angiotensin II during myocardial ischemia[J]. J Am Coll Cardiol,2001,37(1):316-22.
[31]Gurlek A,Kilickap M,Dincer I,et al. Effect of losartan on circulating TNFalpha levels and left ventricular systolic performance in patients with heart failure[J]. J Cardiovasc Risk,2001,8(5):279-82.
[32]Guggilam A,Patel KP,Haque M,et al. Cytokine blockade attenuates sympathoexcitation in heart failure:cross-talk between nNOS,AT-1R and cytokines in the hypothalamic paraventricular nucleus[J]. Eur J Heart Fail,2008,10(7):625-34.
[33]Kang YM,Ma Y,Elks C,et al. Cross-talk between cytokines and renin-angiotensin in hypothalamic paraventricular nucleus in heart failure: role of nuclear factor-kappaB[J]. Cardiovasc Res,2008;79(4):671-8.