【摘 要】 探討沉默信息調(diào)節(jié)因子2相關(guān)酶1(SIRT 1)在骨關(guān)節(jié)炎中潛在的調(diào)控機(jī)制,為今后研發(fā)骨關(guān)節(jié)炎靶向藥物提供理論依據(jù)。SIRT 1是一種依賴(lài)于煙酰胺腺嘌呤二核苷酸蛋白質(zhì)脫乙酰酶,通過(guò)調(diào)控核轉(zhuǎn)錄因子-κB、叉頭盒O家族成員蛋白、過(guò)氧化物酶體增殖物激活受體γ共激活劑1α、SRY-Box轉(zhuǎn)錄因子9、矮小相關(guān)轉(zhuǎn)錄因子2去乙酰化及相關(guān)通路蛋白,緩解骨關(guān)節(jié)炎軟骨細(xì)胞中的炎癥反應(yīng)、線(xiàn)粒體功能障礙、細(xì)胞外基質(zhì)降解和細(xì)胞凋亡及衰老,有助于預(yù)防骨關(guān)節(jié)炎的軟骨損傷并促進(jìn)軟骨組織的修復(fù)。
【關(guān)鍵詞】 骨關(guān)節(jié)炎;沉默信息調(diào)節(jié)因子2相關(guān)酶1;軟骨細(xì)胞;作用機(jī)制
骨關(guān)節(jié)炎(osteoarthritis,OA)是一種慢性關(guān)節(jié)軟骨退行性疾病,危害全球超過(guò)5億多人。OA被認(rèn)為是由關(guān)節(jié)軟骨長(zhǎng)期壓力磨損引起軟骨侵蝕,導(dǎo)致軟骨組織學(xué)和結(jié)構(gòu)變化,最終整個(gè)關(guān)節(jié)功能障
礙[1-2]。目前尚無(wú)治愈OA方法,部分原因是對(duì)本病的發(fā)病機(jī)制認(rèn)識(shí)不足,因此了解與OA發(fā)病相關(guān)病理信號(hào)通路和關(guān)鍵分子對(duì)于治療靶點(diǎn)設(shè)計(jì)和藥物開(kāi)發(fā)至關(guān)重要。沉默信息調(diào)節(jié)因子2相關(guān)酶1
(SIRT 1)主要與年齡相關(guān)的疾病進(jìn)展有關(guān),如OA、肥胖、心血管疾病、2型糖尿病、骨質(zhì)疏松癥等[3]。老年人正常軟骨樣本中的SIRT 1水平低于年輕人,OA患者樣本中的SIRT 1水平低于健康人[4]。本文就SIRT 1在OA關(guān)節(jié)軟骨保護(hù)中的作用機(jī)制進(jìn)行綜述。
1 SIRT特點(diǎn)與分布
SIRT 1是一種依賴(lài)于煙酰胺腺嘌呤二核苷酸(NAD)蛋白質(zhì)脫乙酰酶。人類(lèi)SIRT 1基因位于10號(hào)染色體,SIRT 1基因并編碼一個(gè)含有747個(gè)氨基酸的蛋白質(zhì),在N末端有一個(gè)核定位信號(hào)和一個(gè)保守的催化去乙?;诵慕Y(jié)構(gòu)。催化結(jié)構(gòu)域包含一個(gè)羅斯曼折疊結(jié)構(gòu)域,這是NAD+/NADH結(jié)合的部位。SIRT 1切割NAD的煙酰胺核糖基鍵,并將乙酰基從蛋白質(zhì)轉(zhuǎn)移到NAD+,從而產(chǎn)生代謝物2'和3'-O-乙?;?ADP-核糖和煙酰胺,增加細(xì)胞NAD+水平激活SIRT 1,而高煙酰胺水平抑制其活性[5]。蛋白質(zhì)脫乙酰酶通過(guò)去除賴(lài)氨酸殘基中的乙酰基抵消乙酰轉(zhuǎn)移酶的作用,這種龐大的酶家族通常被稱(chēng)為組蛋白脫乙酰酶,在哺乳動(dòng)物Ⅲ類(lèi)組蛋白脫乙酰酶中的sirtuin家族有7位成員,SIRT 1位于細(xì)胞核和細(xì)胞質(zhì)中,SIRT 2位于細(xì)胞質(zhì)中,SIRT 3、SIRT 4和SIRT 5位于線(xiàn)粒體中,SIRT 6和SIRT 7位于細(xì)胞核中[6]。SIRT 1催化組蛋白和非組蛋白底物[包括核轉(zhuǎn)錄因子-κB(NF-κB)]、叉頭盒O家族成員蛋白(FoxOs)、過(guò)氧化物酶體增殖物激活受體γ、過(guò)氧化物酶體增殖物激活受體γ共激活劑1α(PGC-1α)中的賴(lài)氨酸殘基脫乙酰化。并通過(guò)改變其底物的乙?;癄顟B(tài)調(diào)節(jié)轉(zhuǎn)錄活性和蛋白質(zhì)表達(dá)水平,參與OA抗炎、抗氧化和抗凋亡作用[7]。
2 SIRT 1抑制OA炎癥反應(yīng)
滑膜炎是OA病理特征的重要焦點(diǎn)。正?;び袃蓪樱阂粚邮莾?nèi)膜襯層,含有巨噬細(xì)胞和成纖維樣滑膜細(xì)胞(FLS);另一層是滑膜下襯層,由散在的血管和成纖維細(xì)胞組成少量淋巴細(xì)胞或巨噬細(xì)胞?;ぱ椎闹饕螒B(tài)學(xué)特征是滑膜內(nèi)巨噬細(xì)胞系的積累并釋放促炎因子[8],此外,OA炎癥環(huán)境還驅(qū)動(dòng)關(guān)節(jié)軟骨的退變和纖維化,促炎因子白細(xì)胞介素(IL)-1β和腫瘤壞死因子-α(TNF-α)等通過(guò)增強(qiáng)炎癥反應(yīng)并誘導(dǎo)軟骨細(xì)胞中基質(zhì)金屬蛋白酶(MMPs)等軟骨降解酶的表達(dá),破壞軟骨細(xì)胞[9]。最近研究證明,將插入SIRT 1基因的羊膜間充質(zhì)干細(xì)胞注射在膠原蛋白誘導(dǎo)的關(guān)節(jié)炎小鼠模型中,能夠顯著降低促炎因子[10]。FLS等其他非免疫細(xì)胞也參與促炎細(xì)胞因子和MMPs的產(chǎn)生,炎癥還與骨贅形成和組織纖維化過(guò)程有關(guān)[11]。
NF-κB調(diào)節(jié)炎癥反應(yīng)等多種生物過(guò)程,NF-κB的持續(xù)激活與OA密切相關(guān)。NF-κB翻譯后修飾乙?;?,已被證明可以在體內(nèi)外動(dòng)態(tài)調(diào)節(jié)NF-κB,NF-κB p65在多個(gè)賴(lài)氨酸殘基處被乙?;?。研究表明,SIRT 1使NF-κB的p65亞基去乙?;?,下調(diào)各種促炎細(xì)胞因子的表達(dá),具有抗炎作用[12]。NF-κB信號(hào)通路在誘導(dǎo)軟骨細(xì)胞衰老、凋亡和增強(qiáng)基質(zhì)降解酶的活性,以及調(diào)節(jié)OA炎癥反應(yīng)中具有重要作用,影響不同細(xì)胞凋亡相關(guān)基因(ARG、Bax、Bcl-2),炎癥相關(guān)基因和分解代謝基因(MMP-3、MMP-13和ADAMTS)的轉(zhuǎn)錄,從而減緩人軟骨細(xì)胞炎癥的發(fā)生和發(fā)展,因此,SIRT 1/
NF-κB是調(diào)節(jié)軟骨正常發(fā)育和病理破壞的關(guān)鍵信號(hào)通路[13]。研究發(fā)現(xiàn),沉默TNF-α誘導(dǎo)的軟骨細(xì)胞中Angptl4的表達(dá),通過(guò)調(diào)節(jié)SIRT 1/NF-κB抑制促炎因子、細(xì)胞外基質(zhì)(ECM)降解和軟骨細(xì)胞凋亡[14]?;罨?'-單磷酸腺苷激活蛋白激酶(AMPK)激活下游SIRT 1減輕炎癥反應(yīng),角蕊苷通過(guò)促進(jìn)線(xiàn)粒體功能激活A(yù)MPK/SIRT 1/NF-κB通路對(duì)人類(lèi)風(fēng)濕關(guān)節(jié)炎FLS發(fā)揮抗炎作用[15]。
浸潤(rùn)性單核細(xì)胞和巨噬細(xì)胞被認(rèn)為是OA相關(guān)滑膜炎中的主要炎癥細(xì)胞。SIRT 1促進(jìn)巨噬細(xì)胞從M1表型向M2表型的極化,M1極化巨噬細(xì)胞通過(guò)促炎細(xì)胞因子下調(diào)Ⅱ型膠原蛋白α1鏈(COL2A1)和聚集蛋白聚糖(ACAN)加速OA進(jìn)展,而M2表型有利于軟骨形成并延緩OA的進(jìn)展[16]。此外,在誘導(dǎo)OA后,OA滑液中Th17細(xì)胞產(chǎn)物IL-17水平增加,通過(guò)激活SIRT 1/mTOR可預(yù)防Th17[17];滑膜浸潤(rùn)C(jī)D4+ T細(xì)胞表達(dá)水平升高,而SIRT 1是T細(xì)胞免疫的關(guān)鍵抑制劑[18],從而減輕促炎細(xì)胞因子(包括IL-6、IL-17、TNF-α、IL-1β)的表達(dá)。這些細(xì)胞可以分泌大量的神經(jīng)營(yíng)養(yǎng)因子、細(xì)胞因子(如環(huán)氧合酶2和前列腺素D2)和趨化因子(如CCR5、CXCR3)引起局部神經(jīng)元萌芽、刺激傷害感受和敏化神經(jīng)元,在疼痛中發(fā)揮作用。IL-17被認(rèn)為是局部(滑膜)和中樞(大腦)水平的疼痛介質(zhì)[19]。SIRT 1可通過(guò)調(diào)節(jié)神經(jīng)營(yíng)養(yǎng)因子、炎癥反應(yīng)、免疫調(diào)節(jié)和線(xiàn)粒體功能障礙、非編碼RNA不同程度地緩解疼痛[20],但其機(jī)制有待研究。
miRNA、lncRNA和circRNA是非蛋白編碼RNA,參與細(xì)胞增殖、分化、炎癥和凋亡等許多生物過(guò)程,lncRNA MCM3AP-AS1吸附miR-138-5p以調(diào)節(jié)SIRT 1抑制OA炎癥反應(yīng)[21],circ-0001103通過(guò)調(diào)節(jié)miR-375/SIRT 1緩解軟骨細(xì)胞的炎癥反應(yīng)[22]。因此,SIRT 1對(duì)OA的保護(hù)作用與其抗炎機(jī)制密不可分。
3 SIRT 1對(duì)軟骨細(xì)胞中線(xiàn)粒體的保護(hù)
越來(lái)越多的證據(jù)表明,線(xiàn)粒體功能障礙可能在衰老和退行性疾?。ㄈ鏞A)中發(fā)揮作用[6]。線(xiàn)粒體廣泛分布于軟骨細(xì)胞中,在提供三磷酸腺苷同時(shí)也產(chǎn)生活性氧(ROS)。在終末期OA軟骨細(xì)胞中常顯示線(xiàn)粒體功能障礙并增加ROS,引發(fā)軟骨細(xì)胞氧化還原失衡[23],然而通過(guò)線(xiàn)粒體生物發(fā)生、線(xiàn)粒體自噬、線(xiàn)粒體氧化還原等參與ROS的清除并緩解線(xiàn)粒體功能障礙。SIRT 1使PGC-1α
脫乙?;M(jìn)而激活核呼吸因子(NRF)-1和NRF-2的轉(zhuǎn)錄,調(diào)節(jié)TFAM的轉(zhuǎn)錄并易位到線(xiàn)粒體基質(zhì),刺激線(xiàn)粒體DNA復(fù)制和基因表達(dá),促進(jìn)線(xiàn)粒體生物發(fā)生;SIRT 1對(duì)FoxO1活性的調(diào)節(jié)可以通過(guò)細(xì)胞核中的基因表達(dá)影響線(xiàn)粒體功能[24]。褪黑激素通過(guò)靶向MT2受體激活SIRT 1信號(hào)通路使PGC-1α和FoxO1脫乙?;黾泳€(xiàn)粒體的抗氧化酶SOD2的活性,保護(hù)軟骨細(xì)胞[25]。研究證實(shí),人膝OA軟骨細(xì)胞線(xiàn)粒體生物發(fā)生能力降低,與AMPKα活性降低,SIRT-1、PGC-1α、線(xiàn)粒體轉(zhuǎn)錄因子A(TFAM)、NRF-1和NRF-2降低有關(guān),TFAM介導(dǎo)的AMPK/SIRT-1/PGC-1α通路激活逆轉(zhuǎn)了這些作用[26]。
線(xiàn)粒體自噬是一種選擇性自噬,通過(guò)自噬-溶酶體系統(tǒng)中的降解功能缺失的線(xiàn)粒體,OA患者關(guān)節(jié)軟骨中軟骨細(xì)胞的線(xiàn)粒體自噬功能減弱,并加速軟骨細(xì)胞的凋亡[27]。SIRT 1通過(guò)線(xiàn)粒體自噬在不同細(xì)胞中通過(guò)不同途徑調(diào)節(jié)線(xiàn)粒體功能,線(xiàn)粒體自噬依賴(lài)于磷酸酶和張力同系物(PTEN)誘導(dǎo)的推定激酶1(PINK1)和E3泛素連接酶Parkin,在感知線(xiàn)粒體功能方面起作用[28]。已發(fā)現(xiàn),自噬和線(xiàn)粒體自噬相關(guān)蛋白(LC3B、SQSTM1、PINK1、TOM20和Hsp60)在OA患者的軟骨和OA嚙齒動(dòng)物模型中高度表達(dá)[29],白藜蘆醇是SIRT 1天然激活劑,介導(dǎo)成骨細(xì)胞線(xiàn)粒體自噬蛋白TOM20和Hsp60的表達(dá)[30]。但SIRT 1對(duì)OA軟骨細(xì)胞中線(xiàn)粒體自噬調(diào)控的潛在機(jī)制尚不完全清楚。此外,SIRT 1介導(dǎo)AMPK抑制mTOR促進(jìn)自噬,17β-雌二醇通過(guò)SIRT 1/AMPK/mTOR促進(jìn)軟骨細(xì)胞中LC3等表達(dá),從而保護(hù)軟骨細(xì)胞[31]。SIRT 1介導(dǎo)PTEN失活,從而活化軟骨細(xì)胞自噬[32]。SIRT 1通過(guò)改善線(xiàn)粒體的功能、自噬等相關(guān)機(jī)制,起到對(duì)緩解OA病理進(jìn)展的保護(hù)作用。
4 SIRT 1減輕ECM分解代謝
關(guān)節(jié)軟骨和軟骨下骨在OA發(fā)生、發(fā)展中起著關(guān)鍵作用。關(guān)節(jié)軟骨為關(guān)節(jié)表面厚度2~4 mm透明軟骨,由致密的ECM、軟骨細(xì)胞和水組成。軟骨細(xì)胞是靜止細(xì)胞,可合成膠原蛋白、透明質(zhì)酸、糖蛋白,以及蛋白聚糖。軟骨細(xì)胞僅占軟骨組織總體積的1%~5%,軟骨是一種無(wú)血管和無(wú)淋巴組織,因此軟骨細(xì)胞依賴(lài)于營(yíng)養(yǎng)物質(zhì)從關(guān)節(jié)表面擴(kuò)散[33]。鑒于此,軟骨內(nèi)層保持低氧環(huán)境,軟骨細(xì)胞更新率低,對(duì)ECM保護(hù)要求更高。在OA早期階段,MMP-13和具有凝血酶反應(yīng)蛋白基序的去整合素樣和金屬蛋白酶-5(ADAMTS-5)等導(dǎo)致ECM分解加速OA的進(jìn)展[13]。SIRT 1可以通過(guò)修飾組蛋白以及各種轉(zhuǎn)錄因子調(diào)節(jié)軟骨基因表達(dá),如抑制OA樣基因COL10A1、MMP-13和ADAMTS-5表達(dá),促進(jìn)軟骨生成標(biāo)志物SRY-Box轉(zhuǎn)錄因子9(SOX9)和COL2A1、ACAN表達(dá)[34]。
姜黃素通過(guò)增加SIRT 1表達(dá)緩解OA大鼠模型進(jìn)展,表明其激活可減少軟骨破壞[35]。SIRT 1是驅(qū)動(dòng)軟骨細(xì)胞分化關(guān)鍵因素并確定為促生存和代謝因子,驅(qū)動(dòng)軟骨形成的主要轉(zhuǎn)錄因子SOX9是SIRT 1的去乙?;袠?biāo),使其易位到細(xì)胞核,增加COL2A1表達(dá),促進(jìn)軟骨形成[36],并在SIRT 1-/-
敲除小鼠表現(xiàn)出骨骼和軟骨基質(zhì)缺陷,表明其在關(guān)節(jié)軟骨穩(wěn)態(tài)中的積極作用[37]。BAR等[38]證明,用SIRT 1輔因子NAD處理的原代軟骨細(xì)胞中SOX9的核定位增加,抑制SIRT 1使SOX9保持在細(xì)胞質(zhì)中,去乙?;龠M(jìn)SOX9核轉(zhuǎn)位,從而促進(jìn)其激活A(yù)CAN的能力。在使用人類(lèi)胚胎干細(xì)胞研究SIRT 1在軟骨細(xì)胞發(fā)育的作用中發(fā)現(xiàn),激活SIRT 1導(dǎo)致COL2A1、ACAN,以及軟骨轉(zhuǎn)錄因子SOX5、ARID5B表達(dá)顯著增加,而從中胚層過(guò)渡到軟骨祖細(xì)胞不需要SIRT 1活性;還證明,激活的SIRT 1協(xié)同作用有助于在3D環(huán)境中形成軟骨表型[39]。軟骨細(xì)胞肥大通常是指細(xì)胞大小和體積的增加,軟骨的彈性降低并逐漸鈣化變硬。軟骨細(xì)胞肥大主要表現(xiàn)為X型膠原、矮小相關(guān)轉(zhuǎn)錄因子2(Runx2)和MMP-13的表達(dá)增加,而COL2A1、ACAN和SOX9表達(dá)減少。轉(zhuǎn)錄因子Runx2是肥大軟骨細(xì)胞分化的主要轉(zhuǎn)錄因子,還是參與基質(zhì)降解酶表達(dá)的重要轉(zhuǎn)錄因子。Runx2在OA上調(diào),Runx2活性在軟骨細(xì)胞中受到SIRT 1的負(fù)調(diào)控,因此,Runx2是OA治療的潛在治療靶點(diǎn)[40]。隨著機(jī)械負(fù)荷過(guò)大導(dǎo)致OA的進(jìn)展及加速關(guān)節(jié)軟骨組織退化。有研究指出,在機(jī)械應(yīng)力軟骨細(xì)胞組和非應(yīng)力軟骨細(xì)胞組之間沒(méi)有觀(guān)察到軟骨細(xì)胞在生產(chǎn)關(guān)節(jié)軟骨成分、COL2A1和ACAN方面顯著差異,軟骨細(xì)胞可能具有一定程度的機(jī)械應(yīng)力耐受性,仍然需要進(jìn)一步的研究驗(yàn)證軟骨細(xì)胞在機(jī)械應(yīng)力中的反應(yīng)[41]。OA晚期糖基化終產(chǎn)物(AGEs)是通過(guò)非酶促反應(yīng)從蛋白質(zhì)、脂質(zhì)或核酸的還原糖和游離氨基產(chǎn)生的,AGEs過(guò)度積累會(huì)抑制COL2A1表達(dá),增加MMPs和ADAMTS的表達(dá),還增加膠原蛋白交聯(lián),減弱軟骨組織彈性。通過(guò)SIRT 1/NF-κB/MAPK緩解AGE誘導(dǎo)的炎癥以及COL2A1和ACAN的降解[42]。SIRT 1直接調(diào)控或通過(guò)轉(zhuǎn)錄因子間接調(diào)控ECM,均能對(duì)軟骨細(xì)胞起到保護(hù)作用。
軟骨下骨是指鈣化軟骨遠(yuǎn)端的骨成分,可分為軟骨下骨板和軟骨下骨小梁兩部分,軟骨下骨的改變是OA疾病活躍的表現(xiàn),且與OA的嚴(yán)重程度密切相關(guān)。SIRT 1信號(hào)轉(zhuǎn)導(dǎo)機(jī)制對(duì)于維持關(guān)節(jié)軟骨和軟骨下骨之間穩(wěn)定表型、ECM合成和骨重塑很重要。早期OA中軟骨下骨周轉(zhuǎn)率增強(qiáng),軟骨下骨板變得更薄和多孔,并伴有軟骨下小梁惡化和變性。此外,血管和神經(jīng)從軟骨下骨生長(zhǎng)到軟骨;OA晚期,嚴(yán)重侵蝕的關(guān)節(jié)軟骨區(qū)域出現(xiàn)鈣化軟骨和軟骨下骨板增厚,而硬化性軟骨下小梁破壞導(dǎo)致骨囊腫樣病變[43]。OA患者的軟骨下骨骨樣基質(zhì)增加但礦化不足、成骨細(xì)胞表型異常,包括堿性磷酸酶水平升高、骨鈣素和轉(zhuǎn)化生長(zhǎng)因子-β1(TGF-β1)釋放增加。SIRT 1表達(dá)在OA軟骨下骨組織中降低,刺激SIRT 1活性可降低成骨細(xì)胞TGF-β1的表達(dá),促進(jìn)骨的形成;而沉默SIRT 1會(huì)導(dǎo)致骨礦化延遲。SIRT 1的過(guò)度表達(dá)會(huì)激活Wnt/β-catenin通路,在成骨細(xì)胞的合成和代謝中發(fā)揮作用;還對(duì)維持成熟的關(guān)節(jié)軟骨,促進(jìn)軟骨細(xì)胞存活時(shí)間延長(zhǎng)且無(wú)肥大分化[44]。銀杏葉內(nèi)酯通過(guò)上調(diào)AMPK-SIRT 1
信號(hào)通路增強(qiáng)合成代謝和抑制分解代謝調(diào)節(jié)軟骨ECM代謝平衡并發(fā)揮抗關(guān)節(jié)炎作用,減輕軟骨下骨硬化和骨贅的形成,并抑制軟骨下骨中H型血管生成,從而緩解軟骨細(xì)胞肥大和軟骨破壞[45]。SIRT 1對(duì)軟骨下骨的保護(hù)機(jī)制研究相對(duì)缺乏,有待進(jìn)一步研究補(bǔ)充。
5 SIRT 1緩解軟骨細(xì)胞凋亡和衰老
OA的典型特征是關(guān)節(jié)表面明顯破壞和軟骨細(xì)胞凋亡,細(xì)胞凋亡是一個(gè)受基因調(diào)節(jié)并最終導(dǎo)致細(xì)胞死亡的過(guò)程[46]。介導(dǎo)細(xì)胞凋亡途徑包括外源性細(xì)胞凋亡途徑,線(xiàn)粒體和內(nèi)質(zhì)網(wǎng)應(yīng)激(ERS)介導(dǎo)的內(nèi)源性細(xì)胞凋亡途徑[47]。SIRT 1被認(rèn)為是一種長(zhǎng)壽因子,可以緩解衰老和退行性疾病的進(jìn)展,保護(hù)軟骨細(xì)胞免受輻射誘導(dǎo)的衰老和抑制體外人軟骨細(xì)胞細(xì)胞凋亡,SIRT 1下調(diào)促進(jìn)軟骨細(xì)胞細(xì)胞凋亡的基因表達(dá)[48]。SIRT 1在OA早期表達(dá)增加,晚期逐漸減少,在應(yīng)力條件下SIRT 1-CKO小鼠的加速OA進(jìn)展,研究表明,SIRT 1在預(yù)防細(xì)胞凋亡中起著關(guān)鍵作用。人參皂苷通過(guò)激活SIRT 1/
PGC-3α/SIRT 3途徑抑制TNF-α誘導(dǎo)的乙?;H環(huán)蛋白D,從而減少線(xiàn)粒體功能障礙,改善TNF-α誘發(fā)的細(xì)胞凋亡;抑制p38 MAPK/NF-κB信號(hào)傳導(dǎo),減少I(mǎi)L-8和MMP-9產(chǎn)生,減少TUNEL陽(yáng)性細(xì)胞[49]。OA長(zhǎng)期慢性炎癥和內(nèi)質(zhì)網(wǎng)應(yīng)激激活軟骨細(xì)胞未折疊蛋白質(zhì)反應(yīng)可導(dǎo)致ER跨膜蛋白IRE1α磷酸化,IRE1α-X-box結(jié)合蛋白1(XBP1)的剪接,從而導(dǎo)致包括C/EBP同源蛋白(CHOP)在內(nèi)的下游促凋亡蛋白[如裂解半胱天冬酶-3、Bax、CHOP、ER伴侶葡萄糖調(diào)節(jié)蛋白78、磷酸肌醇需求激酶1α(P-IRE1α)和剪接X(jué)-box結(jié)合蛋白1(XBP1S)]的激活[50]。體內(nèi)外實(shí)驗(yàn)證明,褪黑激素通過(guò)促進(jìn)SIRT 1表達(dá)抑制IRE1α-XBP1S-CHOP,以減少ERS介導(dǎo)的人軟骨細(xì)胞凋亡,SIRT 1抑制劑EX57則起相反作用[47]。
衰老相關(guān)分泌表型(SASP)是衰老細(xì)胞分泌的炎性細(xì)胞因子和生長(zhǎng)因子。已在OA組織或滑液中發(fā)現(xiàn),SASP會(huì)影響軟骨組織的微環(huán)境最終導(dǎo)致鄰近細(xì)胞衰老[51]。白藜蘆醇通過(guò)SIRT 1減少SASP的分泌從而緩解細(xì)胞的衰老[52]。在OA期間,軟骨細(xì)胞中SIRT 1易被組織蛋白酶B切割成無(wú)活性的n-末端(nT)多肽、c-末端(cT)片段,以及75 kD片段,在小鼠模型和人類(lèi)樣本中因衰老或關(guān)節(jié)創(chuàng)傷導(dǎo)致的OA中都觀(guān)察到,衰老細(xì)胞分泌SASP,致使NT片段從軟骨細(xì)胞中釋放到血清中,表明血清中NT/CT比率可能是OA發(fā)病程度的有效標(biāo)志物[53]。有研究發(fā)現(xiàn),75 kD片段能夠與線(xiàn)粒體膜相互作用,并阻斷細(xì)胞色素C從線(xiàn)粒體釋放,以及隨后與凋亡體復(fù)合物的組裝,從而提高軟骨細(xì)胞存活率。轉(zhuǎn)染SIRT 1的間充質(zhì)干細(xì)胞挽救了1α(OH)ase-/-小鼠的OA表型,1,25(OH)2D3通過(guò)VDR介導(dǎo)SIRT 1基因轉(zhuǎn)錄下調(diào)p16/p21,在預(yù)防OA衰老和SASP發(fā)生中發(fā)揮關(guān)鍵作用[54]。
成纖維細(xì)胞生長(zhǎng)因子21可以通過(guò)激活SIRT 1-mTOR信號(hào)通路促進(jìn)TFEB的核易位,通過(guò)上調(diào)自噬通量保護(hù)軟骨細(xì)胞免受細(xì)胞凋亡和ECM分解代謝,顯著降低p16INK4a和p21WAF1衰老的典型調(diào)節(jié)因子的表達(dá),并減輕體內(nèi)OA的進(jìn)展[55]。
6 小 結(jié)
OA主要表現(xiàn)為關(guān)節(jié)軟骨的進(jìn)行性破壞,炎癥反應(yīng)、ECM穩(wěn)態(tài)的破壞、線(xiàn)粒體功能障礙、自噬、衰老和凋亡等都是OA發(fā)展的關(guān)鍵因素。OA期間SIRT 1水平明顯降低,并與OA的病理機(jī)制密切相關(guān),SIRT 1通過(guò)調(diào)節(jié)滑膜中免疫細(xì)胞和滑膜細(xì)胞介導(dǎo)炎癥反應(yīng)的NF-κB等通路機(jī)制和相關(guān)炎癥因子表達(dá)發(fā)揮抗炎作用,SIRT 1使PGC-1α和FoxO1脫乙?;?,促進(jìn)線(xiàn)粒體生物發(fā)生,改善線(xiàn)粒體功能,從而保護(hù)軟骨細(xì)胞,還通過(guò)調(diào)控SOX9等轉(zhuǎn)錄因子和ECM降解酶抑制ECM降解,并減輕軟骨下骨硬化和骨贅的形成,還調(diào)節(jié)外源性軟骨細(xì)胞凋亡及線(xiàn)粒體和ERS介導(dǎo)的內(nèi)源性軟骨細(xì)胞凋亡,抑制衰老相關(guān)分泌表型和衰老相關(guān)因子等機(jī)制對(duì)OA病理進(jìn)展,起到保護(hù)軟骨細(xì)胞作用。SIRT 1通過(guò)多種途徑對(duì)OA起作用的機(jī)制,有待進(jìn)一步研究SIRT 1與OA之間不同機(jī)制的作用程度。SIRT 1有望成為監(jiān)測(cè)OA的敏感性生物標(biāo)志物以及潛在治療靶向機(jī)制。
但研究表明,SIRT 1在OA的不同病理階段有不同的反應(yīng)。在OA的早期和晚期階段,SIRT 1如何起到保護(hù)軟骨細(xì)胞作用及其機(jī)制尚未明確[40]。雖然,SIRT 1激動(dòng)劑具有一定的治療作用,但其活性須依賴(lài)于細(xì)胞NAD水平,被反應(yīng)產(chǎn)物煙酰胺的抑制,并受到細(xì)胞代謝和氧化還原狀態(tài)的影響。因此,SIRT 1相關(guān)藥物的開(kāi)發(fā)應(yīng)考慮與其相關(guān)的代謝平衡。目前,SIRT 1天然激活物對(duì)OA的治療已有廣泛的研究,但是對(duì)天然產(chǎn)物的應(yīng)用還存在許多問(wèn)題,如藥物的劑量、吸收率、代謝、毒性等問(wèn)題,應(yīng)用臨床還需多次驗(yàn)證。如果問(wèn)題得到有效解決,必將推動(dòng)中醫(yī)藥的發(fā)展。SIRT是多家族成員,未來(lái)的研究除繼續(xù)著重探索SIRT 1對(duì)OA調(diào)控機(jī)制外,還應(yīng)闡明SIRT 1與其他家族成員關(guān)聯(lián)性研究[6],明確其在機(jī)體衰老關(guān)鍵過(guò)程的最佳治療靶點(diǎn)。
參考文獻(xiàn)
[1] YAO Q,WU X,TAO C,et al.Osteoarthritis:pathogenic signaling pathways and therapeutic targets[J].Signal Transduct Target Ther,2023,8(1):56-86.
[2] HUNTER DJ,BIERMA-ZEINSTRA S.Osteoarthritis[J].Lancet(London,England),2019,393(10182):1745-1759.
[3] MORRIS BJ.Seven sirtuins for seven deadly diseases of aging[J].Free Radic Biol Med,2013,56(1):133-171.
[4] SACITHARAN PK,BOU-GHARIOS G,EDWARDS JR.SIRT1 directly activates autophagy in human chondrocytes[J].Cell Death Discov,2020,29(6):41-48.
[5] XIE J,ZHANG X,ZHANG L.Negative regulation of inflammation by SIRT1[J].Pharmacol Res,2013,67(1):60-67.
[6] SUN K,WU Y,ZENG Y,et al.The role of the sirtuin family in cartilage and osteoarthritis:molecular mechanisms and therapeutic targets[J].Arthritis Res Ther,2022,24(1):286-295.
[7] SUN C,BAI S,LIANG Y,et al.The role of sirtuin 1 and its activators in age-related lung disease[J].Biomed Pharmacother,2023,162(1):114573-114586.
[8] XUE C,TIAN J,CUI Z,et al.Reactive oxygen species (ROS)-mediated M1 macrophage-dependent nanomedicine remodels inflammatory microenvironment for osteoarthritis recession[J].Bioact Mater,2024,33(8):545-561.
[9] 徐進(jìn),羅超,朱振國(guó),等.MSC來(lái)源的外泌體在OA中潛在的免疫調(diào)節(jié)及抗炎作用[J].中國(guó)細(xì)胞生物學(xué)學(xué)報(bào),2019,41(6):1158-1164.
[10] CHAE DS,HAN S,LEE MK,et al.Genome edited sirt1-overexpressing human mesenchymal stem cells exhibit therapeutic effects in treating collagen-induced arthritis[J].Mol Cells,2021,44(4):245-253.
[11] HAN D,F(xiàn)ANG Y,TAN X,et al.The emerging role of fibroblast-like synoviocytes-mediated synovitis in osteoarthritis:an update[J].J cell mol med,2020,24(17):9518-9532.
[12] WU Y,YUAN Q,MA Y,et al.Dietary intervention with the gut microbial metabolite Urolithin A attenuhe9O6cpzL41I8ar/fpJCkIU3WHHpGb5odUsMvIUcwhs=ates Lipopolysaccharide-induced neuroinflammation and cognitive deficits via the Sirt1/acetyl-NF-κB signalling pathway[J].Mol Nutr Food Res,2023,67(13):e2200401-e2200412.
[13] JIANG L,XU K,LI J,et al.Nesfatin-1 suppresses interleukin-1β-induced inflammation,apoptosis,and cartilage matrix destruction in chondrocytes and ameliorates osteoarthritis in rats[J].Aging,2020,12(2):1760-1777.
[14] JIA C,LI X,PAN J,et al.Silencing of angiopoietin-like protein 4(Angptl4)decreases inflammation,extracellular matrix degradation,and apoptosis in osteoarthritis via the sirtuin 1/NF-κB pathway[J].Oxid Med Cell Longev,2022,27(1):1135827-1135844.
[15] BAI J,XIE N,HOU Y,et al.The enhanced mitochondrial dysfunction by cantleyoside confines inflammatory response and promotes apoptosis of human HFLS-RA cell line via AMPK/Sirt 1/NF-κB pathway activation[J].Biomed Pharmacother,2022,149(1):112847-112856.
[16] LI Y,MENG L,LI B,et al.Isoginkgetin attenuates endoplasmic reticulum stress-induced autophagy of brain after ischemic reperfusion injury[J].Bioengineered,2022,13(6):14889-14902.
[17] WANG S,DENG W,LI F,et al.Treatment with butyrate alleviates dextran sulfate sodium and Clostridium difficile-induced colitis by preventing activity of Th17 cells via regulation of SIRT1/mTOR in mice[J].J Nutr Biochem,2023,24(1):109155-109163.
[18] XU YJ,CHEN FP,CHEN Y,et al.A possible reason to induce acute graft-vs.-host disease after hematopoietic stem cell transplantation:lack of sirtuin-1 in CD4+ T cells[J].Front immunol,2018,21(9):3078-3087.
[19] VAN DEN BOSCH MHJ,BLOM AB,VAN DER KRAAN PM.Inflammation in osteoarthritis:our view on its presence and involvement in disease development over the years[J].Osteoarthritis cartilage,2024,32(4):355-364.
[20] O'BRIEN J,NIEHAUS P,REMARK J,et al.Skin keratinocyte-derived SIRT1 and BDNF modulate mechanical allodynia in mouse models of diabetic neuropathy[J].Brain,2024,30(1):100-108.
[21] SHI J,CAO F,CHANG Y,et al.Long non-coding RNA MCM3AP-AS1 protects chondrocytes ATDC5 and CHON-001 from IL-1β-induced inflammation via regulating miR-138-5p/SIRT1[J].Bioengineered,2021,12(1):1445-1456.
[22] ZHANG M,MOU L,LIU S,et al.Circ_0001103 alleviates IL-1β-induced chondrocyte cell injuries by upregulating SIRT1 via targeting miR-375[J].Clin Immunol,2021,227(1):108718-108726.
[23] ZHENG L,ZHANG Z,SHENG P,et al.The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis[J].Ageing Res Rev,2021,66(29):101249-101258.
[24] TANG BL.Sirt1 and the mitochondria[J].Mol cells,2016,39(2):87-95.
[25] ZHANG Y,HOU M,LIU Y,et al.Recharge of chondrocyte mitochondria by sustained release of melatonin protects cartilage matrix homeostasis in osteoarthritis[J].
J Pineal Res,2022,73(2):e12815-e12823.
[26] KATZ JN,ARANT KR,LOESER RF.Diagnosis and treatment of hip and knee osteoarthritis:a review[J].JAMA,2021,325(6):568-578.
[27] ROCKEL JS,KAPOOR M.Autophagy:controlling cell fate in rheumatic diseases[J].Nat Rev Rheumatol,2016,12(9):517-531.
[28] EIYAMA A,OKAMOTO K.PINK1/Parkin-mediated mitophagy in mammalian cells[J].Curr Opin Cell Biol,2015,33(17):95-101.
[29] SHIN HJ,PARK H,SHIN N,et al.Pink1-mediated chondrocytic mitophagy contributes to cartilage degeneration in osteoarthritis[J].J Clin Med,2019,8(11):1849-1861.
[30] 王帆,王鵬皓.白藜蘆醇介導(dǎo)SIRT1干預(yù)地塞米松誘導(dǎo)成骨細(xì)胞線(xiàn)粒體自噬的研究[J].中國(guó)醫(yī)科大學(xué)學(xué)報(bào),2023,52(2):97-102.
[31] MEI R,LOU P,YOU G,et al.17β-estradiol induces mitophagy upregulation to protect chondrocytes via the SIRT1-mediated AMPK/mTOR signaling pathway[J].Front Endocrinol,2020,11(3):615250-615261.
[32] LU Q,LIU P,MIAO Z,et al.SIRT1 restoration enhances chondrocyte autophagy in osteoarthritis through PTEN-mediated EGFR ubiquitination[J].Cell Death Discov,2022,8(1):203-214.
[33] RIM YA,NAM Y,JU JH.The role of chondrocyte hypertrophy and senescence in osteoarthritis initiation and progression[J].Int J Mol Sci,2020,21(7):2358-2372.
[34] MA ZX,XU H,XIANG W,et al.Deacetylation of FOXO4 by Sirt1 stabilizes chondrocyte extracellular matrix upon activating SOX9[J].Eur Rev Med Pharmacol Sci,2021,25(2):626-635.
[35] FENG K,GE Y,CHEN Z,et al.Curcumin inhibits the PERK-eIF2α-CHOP pathway through promoting SIRT1 expression in oxidative stress-induced rat chondrocytes and ameliorates osteoarthritis progression in a rat model[J].
Oxid Med Cell longev,2019,16(1):8574386-8574395.
[36] ELAYYAN J,LEE EJ,GABAY O,et al.LEF1-mediated MMP13 gene expression is repressed by SIRT1 in human chondrocytes[J].Faseb J,2017,31(7):3116-3125.
[37] SIMIC P,ZAINABADI K,BELL E,et al.SIRT1 regulates differentiation of mesenchymal stem cells by deacetylating β-catenin[J].EMBO Mol Med,2013,5(3):430-440.
[38] BAR OZM,KUMAR A,ELAYYAN J,et al.Acetylation reduces SOX9 nuclear entry and ACAN gene transactivation in human chondrocytes[J].Aging Cell,2016,15(3):499-508.
[39] SMITH CA,HUMPHREYS PA,BATES N,et al.SIRT1 activity orchestrates ECM expression during hESC-chondrogenic differentiation[J].FASEB J,2022,36(5):e22314-e22323.
[40] TERAUCHI K,KOBAYASHI H,YATABE K,et al.The NAD-dependent deacetylase sirtuin-1 regulates the expression of osteogenic transcriptional activator runt-related transcription factor 2(runx2)and production of matrix metalloproteinase(MMP)-13 in chondrocytes in osteoarthritis[J].Int J Mol Sci,2016,17(7):1019-1032.
[41] SOMEMURA S,KUMAI T,YATABE K,et al.Physiologic mechanical stress directly induces bone formation by activating glucose transporter 1(Glut 1)in osteoblasts,inducing signaling via NAD+ -dependent deacetylase(sirtuin 1)and runt-related transcription factor 2 (Runx2)[J].Int J Mol Sci,2021,22(16):9070-9079.
[42] ZHOU Y,LI J,WANG C,et al.Fumitremorgin C alleviates advanced glycation end products(AGE)-induced chondrocyte inflammation and collagen Ⅱ and aggrecan degradation through sirtuin-1(SIRT1)/nuclear factor (NF)-κB/mitogen-activated protein kinase (MAPK)[J].
Bioengineered,2022,13(2):3867-3876.
[43] LUO P,YUAN QL,YANG M,et al.The role of cells and signal pathways in subchondral bone in osteoarthritis[J].
Bone Joint Res,2023,12(9):536-545.
[44] ABED é,DELALANDRE A,LAJEUNESSE D.Beneficial effect of resveratrol on phenotypic features and activity of osteoarthritic osteoblasts[J].Arthritis Res Ther,2017,19(1):151-158.
[45] ZHAO Z,LIU Y,LU Y,et al.Gingko biloba-inspired lactone prevents osteoarthritis by activating the AMPK-SIRT1 signaling pathway[J].Arthritis Res Ther,2022,24(1):197-209.
[46] D'ARCY MS.Cell death:a review of the major forms of apoptosis,necrosis and autophagy[J].Cell Biol Int,2019,43(6):582-592.
[47] QIN K,TANG H,REN Y,et al.Melatonin promotes sirtuin 1 expression and inhibits IRE1α-XBP1S-CHOP to reduce endoplasmic reticulum stress-mediated apoptosis in chondrocytes[J].Front Pharmacol,2022,11(13):940629-940637.
[48] MA CH,CHIUA YC,WU CH,et al.Homocysteine causes dysfunction of chondrocytes and oxidative stress through repression of SIRT1/AMPK pathway:a possible link between hyperhomocysteinemia and osteoart-
hritis[J].Redox Biol,2018,15(3):504-512.
[49] MA CH,CHOU WC,WU CH,et al.Ginsenoside Rg3 attenuates TNF-α-induced damage in chondrocytes through regulating SIRT1-mediated anti-apoptotic and anti-inflammatory mechanisms[J].Antioxidants(Basel),2021,10(12):1972-1986.
[50] SEPULVEDA D,ROJAS-RIVERA D,RODRíGUEZ DA,et al.Interactome screening identifies the ER luminal chaperone Hsp47 as a regulator of the unfolded protein response transducer IRE1α[J].Mol Cell,2018,69(2):238-252.
[51] REN X,ZHUANG H,JIANG F,et al.Ceria nanoparticles alleviated osteoarthritis through attenuating senescence and senescence-associated secretory phenotype in synoviocytes[J].Int J Mol Sci,2023,24(5):5056-5069.
[52] MATACCHIONE G,GURU F,SILVESTRINI A,et al.
Anti-SASP and anti-inflammatory activity of resveratrol,curcumin and β-caryophyllene association on human endothelial and monocytic cells[J].Biogerontology,2021,22(3):297-313.
[53] BATSHON G,ELAYYAN J,QIQ O,et al.Serum NT/CT SIRT1 ratio reflects early osteoarthritis and chondrosenescence[J].Ann Rheum Dis,2020,79(10):1370-1380.
[54] CHEN J,ZHANG J,LI J,et al.1,25-Dihydroxyvitamin D deficiency accelerates aging-related osteoarthritis via downregulation of sirt1 in mice[J].Int J Biol Sci,2023,19(2):610-624.
[55] LU H,JIA C,WU D,et al.Fibroblast growth factor 21 (FGF21)alleviates senescence,apoptosis,and extracellular matrix degradation in osteoarthritis via the SIRT1-mTOR signaling pathway[J].Cell Death Dis,2021,12(10):865-876.
收稿日期:2024-04-06;修回日期:2024-05-28