李想 孔令俊 鄧葉龍 陳杰 張金磊 韓升龍 孟漢杰 王植帥
【摘 要】 椎間盤退變是臨床上常見的脊柱關(guān)節(jié)慢性退行性改變,亦是多種脊柱疾病發(fā)生的病理基礎(chǔ)。近年來(lái)研究發(fā)現(xiàn),高糖生態(tài)位是椎間盤退變發(fā)生的重要危險(xiǎn)因素。闡述高糖對(duì)椎間盤中髓核、纖維環(huán)、軟骨終板的影響及抑制高糖藥物對(duì)椎間盤退變的的保護(hù)作用,旨在為今后進(jìn)一步開展臨床研究提供參考。
【關(guān)鍵詞】 椎間盤退變;糖尿?。桓咛?;作用機(jī)制;研究進(jìn)展;綜述
椎間盤退變(intervertebral disc degeneration,
IDD)是一種廣泛的肌肉骨骼疾病,也是腰痛發(fā)生的主要原因,全球多達(dá)80%的人會(huì)受到與IDD相關(guān)腰背部疼痛的影響,僅在美國(guó),每年治療花費(fèi)超過(guò)1000億美元,造成嚴(yán)重的社會(huì)經(jīng)濟(jì)負(fù)擔(dān)[1]。
椎間盤主要由中央髓核(NP)、外周纖維環(huán)(AF)和上下軟骨終板(CEP)共同組成[2]。糖尿病(diabetes mellitus,DM)可分為1型糖尿病(T1DM)和2型糖尿?。═2DM)。研究發(fā)現(xiàn),IDD的發(fā)生、發(fā)展與DM密切相關(guān),T1DM是IDD發(fā)生的危險(xiǎn)因素,并與IDD的嚴(yán)重程度呈正相關(guān)[3]。T2DM病程越長(zhǎng),風(fēng)險(xiǎn)越大,病程 < 10年和血糖控制較好的T2DM患者與單純IDD患者無(wú)明顯差異,病程 > 10年且血糖控制不佳是IDD的危險(xiǎn)因素[4],但目前對(duì)其確切機(jī)制尚不明確。隨著對(duì)兩者研究的不斷深入,發(fā)現(xiàn)DM患者的高糖生態(tài)位可分別通過(guò)影響椎間盤中NP、AF和CEP等組織促進(jìn)IDD進(jìn)程。本文主要圍繞高糖調(diào)控IDD的作用機(jī)制及抑制高糖藥物對(duì)椎間盤保護(hù)作用展開綜述,以期為后續(xù)治療和研究提供參考。
1 高糖對(duì)NP的影響
1.1 高糖對(duì)NP細(xì)胞的影響 高糖可加速椎間盤組織中NP細(xì)胞自噬、衰老和凋亡,而自噬本質(zhì)上是一個(gè)重要的細(xì)胞內(nèi)降解過(guò)程,它可以清除受損的細(xì)胞器、錯(cuò)誤折疊的蛋白質(zhì)和細(xì)胞內(nèi)病原體,并為細(xì)胞所需的能量和功能回收降解成分[5]。同時(shí),自噬在IDD中發(fā)揮著重要作用,它既能通過(guò)促進(jìn)NP細(xì)胞代謝延緩IDD,也能加速NP細(xì)胞的凋亡,進(jìn)而推動(dòng)IDD進(jìn)程[6]。KONG等[7]研究發(fā)現(xiàn),高糖以濃度和時(shí)間依賴的方式顯著上調(diào)成年大鼠NP細(xì)胞中Beclin-1、LC3-Ⅱ、Atg3、Atg5、Atg7和Atg12等相關(guān)自噬標(biāo)志物的表達(dá),引起NP自噬水平升高,導(dǎo)致NP細(xì)胞自噬死亡。KONG等[8]發(fā)現(xiàn),高糖處理過(guò)的成年大鼠NP細(xì)胞與對(duì)照組相比,SA-β-gal(細(xì)胞衰老的重要標(biāo)志物)陽(yáng)性染色率更高和p16-pRB(應(yīng)激性衰老相關(guān)蛋白)的表達(dá)上調(diào),高糖誘導(dǎo)的成年NP細(xì)胞加速衰老可能是DM患者IDD發(fā)生的危險(xiǎn)因素。FENG等[9]發(fā)現(xiàn),高糖可導(dǎo)致葡萄糖轉(zhuǎn)運(yùn)蛋白GLUT1和GLUT4在大鼠NP中顯著積累,它們的過(guò)表達(dá)增加了葡萄糖的細(xì)胞內(nèi)運(yùn)輸,導(dǎo)致ChREBP轉(zhuǎn)錄因子的激活;而ChREBP結(jié)合p300與BAX和Puma的啟動(dòng)子結(jié)合,激活這兩個(gè)促凋亡基因的表達(dá),從而誘導(dǎo)NP細(xì)胞凋亡,促進(jìn)IDD進(jìn)程。
1.2 高糖對(duì)脊索細(xì)胞的影響 脊索細(xì)胞在人類發(fā)育早期對(duì)椎間盤發(fā)揮重要調(diào)控作用,可出現(xiàn)在早期NP中,自青春期開始減少,主要通過(guò)Fas介導(dǎo)的細(xì)胞凋亡逐漸消失,同時(shí)被類軟骨樣細(xì)胞(NP細(xì)胞)所代替,脊索細(xì)胞從NP中消失被認(rèn)為是IDD發(fā)生的起點(diǎn)[10]。WON等[11]研究發(fā)現(xiàn),DM大鼠NP組織中Fas表達(dá)程度較對(duì)照組大鼠明顯升高,表明Fas介導(dǎo)的脊索細(xì)胞凋亡在DM大鼠NP中比正常大鼠NP中發(fā)生得更早,從而加速了脊索NP向纖維軟骨NP的轉(zhuǎn)變。PARK等[12]研究發(fā)現(xiàn),高糖可引起大鼠脊索細(xì)胞線粒體損傷(表現(xiàn)為線粒體跨膜電位的破壞增強(qiáng))誘導(dǎo)其凋亡,并通過(guò)釋放過(guò)多的活性氧(ROS)引起B(yǎng)eclin-Ⅰ、LC3-Ⅱ、Agt3、Agt5、Agt7和Agt12等自噬相關(guān)基因的表達(dá)上調(diào),最終導(dǎo)致脊索細(xì)胞過(guò)度自噬。PARK等[13]發(fā)現(xiàn),高糖釋放過(guò)多的ROS還可引起大鼠脊索細(xì)胞中SA-β-gal、p16-pRB的表達(dá)增加,加速脊索細(xì)胞衰老,促進(jìn)IDD進(jìn)程。因此,高糖可通過(guò)提前脊索細(xì)胞向NP細(xì)胞的轉(zhuǎn)變、上調(diào)脊索細(xì)胞自噬和加速脊索細(xì)胞衰老促進(jìn)IDD進(jìn)程。
1.3 高糖對(duì)間充質(zhì)干細(xì)胞的影響 間充質(zhì)干細(xì)胞主要來(lái)源于骨髓、脂肪組織和臍帶血等,可用于治療多種退行性疾?。?4]。間充質(zhì)干細(xì)胞可直接分化為NP細(xì)胞,用以補(bǔ)充IDD引起的NP細(xì)胞過(guò)度凋亡;同時(shí),當(dāng)間充質(zhì)干細(xì)胞被周圍微環(huán)境刺激時(shí),可以通過(guò)分泌外泌體、細(xì)胞因子和細(xì)胞外囊泡等改善周圍微環(huán)境,促進(jìn)內(nèi)源性細(xì)胞增殖,抑制細(xì)胞外基質(zhì)降解和剩余NP細(xì)胞凋亡[15]。LIAO等[16]研究發(fā)現(xiàn),高糖濃度處理過(guò)的間充質(zhì)干細(xì)胞增殖和遷移能力減弱,Caspase-3表達(dá)增加、SA-β-gal細(xì)胞陽(yáng)性率升高,SIRT1(促進(jìn)細(xì)胞自噬從而減少其凋亡)、SIRT6(防止細(xì)胞凋亡和應(yīng)激誘導(dǎo)的過(guò)早衰老)、缺氧誘導(dǎo)因子-1α(通過(guò)抗炎、調(diào)控細(xì)胞外基質(zhì)代謝平衡、組織修復(fù)等過(guò)程保護(hù)椎間盤)和GLUT-1(延緩IDD)的mRNA和蛋白表達(dá)量顯著降低,抑制間充質(zhì)干細(xì)胞功能,促進(jìn)IDD進(jìn)程。
2 高糖對(duì)AF的影響
AF是椎間盤重要的組成部分之一,可參與到完整的IDD進(jìn)程之中。當(dāng)AF組織發(fā)生退變時(shí),突出的NP可壓迫相關(guān)神經(jīng)組織[17],這與腰痛的發(fā)生關(guān)系密切。PANG等[18]研究發(fā)現(xiàn),高糖培養(yǎng)可顯著提升大鼠AF細(xì)胞凋亡率和Caspase-3/9活性,上調(diào)Bax、Caspase-3/cleaved Caspase-3的mRNA/蛋白表達(dá),下調(diào)Bcl-2的mRNA/蛋白表達(dá),同時(shí)高糖還可顯著增加CHOP、ATF-6和GRP78的表達(dá),表明高糖可誘導(dǎo)AF細(xì)胞內(nèi)質(zhì)網(wǎng)應(yīng)激;當(dāng)抑制內(nèi)質(zhì)網(wǎng)應(yīng)激時(shí),CHOP、ATF-6和GRP78的表達(dá)降低,AF細(xì)胞凋亡也相應(yīng)減弱,表明高糖主要通過(guò)誘導(dǎo)內(nèi)質(zhì)網(wǎng)應(yīng)激促進(jìn)AF細(xì)胞凋亡。SHAN等[19]研究發(fā)現(xiàn),MAPK通路在細(xì)胞增殖、衰老等多種生物活動(dòng)中發(fā)揮著重要作用;而高糖可通過(guò)激活大鼠AF細(xì)胞中JNK和p38 MAPK信號(hào)通路促進(jìn)AF細(xì)胞凋亡,進(jìn)一步加速IDD進(jìn)程。
3 高糖對(duì)CEP的影響
CEP上的毛細(xì)血管是IVD中營(yíng)養(yǎng)物質(zhì)交換的主要通道。CEP組織變性可導(dǎo)致IVD營(yíng)養(yǎng)物質(zhì)供應(yīng)不足,是IDD發(fā)生的重要因素[20];而CEP細(xì)胞異常凋亡、血管侵犯和炎癥被認(rèn)為是CEP變性的重要標(biāo)志。QUAN等[21]研究發(fā)現(xiàn),DM組小鼠與對(duì)照組相比CEP鈣化范圍更為廣泛,CD31(一種血管內(nèi)皮標(biāo)記物)表達(dá)明顯上調(diào),白細(xì)胞介素(IL)-1β和腫瘤壞死因子-α(TNF-α)表達(dá)水平升高,單核/巨噬細(xì)胞細(xì)胞器更活躍,CEP膠原纖維破壞嚴(yán)重,線粒體損傷明顯,表明DM主要通過(guò)血管侵犯、單核/巨噬細(xì)胞浸潤(rùn)和炎癥促進(jìn)小鼠CEP變性。JIANG等[22]研究發(fā)現(xiàn),高糖以濃度和時(shí)間依賴的方式致大鼠CEP中cleaved Caspase-3、cleaved Caspase-9、Bax表達(dá)上調(diào),Bcl-2表達(dá)下調(diào),細(xì)胞凋亡明顯增加;高糖可誘導(dǎo)大鼠CEP細(xì)胞產(chǎn)生過(guò)量ROS致CEP細(xì)胞線粒體損傷(線粒體膜電位的降低),予以α硫辛酸(線粒體呼吸酶的重要輔助因子)后CEP細(xì)胞凋亡率減低。表明高糖誘導(dǎo)產(chǎn)生過(guò)量ROS通過(guò)線粒體損傷促進(jìn)大鼠CEP細(xì)胞凋亡。
4 抑制高糖藥物對(duì)IDD的保護(hù)作用
4.1 利拉魯肽與IDD 胰高血糖素樣肽-1(GLP-1)
是腸內(nèi)L細(xì)胞分泌的一種關(guān)鍵腸促胰島素激素,可用于調(diào)節(jié)葡萄糖和能量穩(wěn)態(tài),目前被認(rèn)為是T2DM的有效治療選擇[23]。GLP-1除了對(duì)血糖有較好的調(diào)控作用外,還被報(bào)道在多種組織中發(fā)揮調(diào)節(jié)細(xì)胞增殖、分化和凋亡等功能。利拉魯肽是一種長(zhǎng)效GLP-1類似物,作用與其相似,在臨床上可廣泛用于治療T2DM[24]。YAO等[25]研究發(fā)現(xiàn),高糖處理組NP細(xì)胞中Caspase-3的表達(dá)水平、ROS生成顯著高于對(duì)照組,經(jīng)利拉魯肽處理后PI3K/Akt通路活性和ROS生成發(fā)生相反變化;此外,siRNA抑制利拉魯肽受體可阻斷PI3K/AKT通路的激活,表明下游信號(hào)通路是通過(guò)利拉魯肽受體介導(dǎo)的;抑制AKT和利拉魯肽受體沉默都抵消了利拉魯肽對(duì)高糖誘導(dǎo)的NP細(xì)胞凋亡的保護(hù)作用,說(shuō)明利拉魯肽通過(guò)與其受體結(jié)合激活PI3K/AKT/Caspase-3信號(hào)通路防止NP細(xì)胞凋亡,達(dá)到保護(hù)椎間盤的目的。
4.2 二甲雙胍與IDD 二甲雙胍是臨床治療T2DM的口服降糖藥,研究發(fā)現(xiàn)其對(duì)IDD有一定的保護(hù)作用[26]。LIAO等[27]研究發(fā)現(xiàn),二甲雙胍處理的大鼠間充質(zhì)干細(xì)胞可依賴細(xì)胞自身的自噬反應(yīng)釋放過(guò)多的細(xì)胞外囊泡(調(diào)節(jié)椎間盤中髓核、軟骨終板、纖維環(huán)功能,維持細(xì)胞外基質(zhì)穩(wěn)態(tài),減輕炎癥反應(yīng))用以減少ROS的過(guò)多積累而改善NP細(xì)胞衰老,延緩IDD進(jìn)程。TISHERMAN等[28]
認(rèn)為,可通過(guò)抑制核轉(zhuǎn)錄因子-κB(NF-κB)抑制椎間盤的炎癥反應(yīng)和分解代謝因子的產(chǎn)生。RAMANATHAN等[29]研究發(fā)現(xiàn),二甲雙胍可通過(guò)抑制大鼠椎間盤細(xì)胞中NF-κB信號(hào)通路調(diào)控環(huán)氧合酶-2表達(dá)抑制炎癥反應(yīng),對(duì)椎間盤發(fā)揮保護(hù)作用。REN等[30]研究發(fā)現(xiàn),IDD過(guò)程中NP細(xì)胞凋亡相關(guān)蛋白P16、P21和P53的表達(dá)、SA-β-gal陽(yáng)性染色率、γ-H2AX(DNA損傷標(biāo)記物)升高,cGAS-STING信號(hào)通路激活,予以二甲雙胍處理后NP細(xì)胞自噬升高、γ-H2AX(DNA損傷標(biāo)記物)的表達(dá)得到改善、cGAS-STING信號(hào)通路受到抑制,表明二甲雙胍處理后,自噬被激活,降解受損DNA片段,下調(diào)γ-H2AX的表達(dá),從而抑制cGAS-STING信號(hào)通路的激活和下游促炎反應(yīng)的發(fā)生,炎癥因子釋放的減少抑制衰老相關(guān)分泌性,最終抑制髓核細(xì)胞衰老,保護(hù)椎間盤。
4.3 吡格列酮與IDD 吡格列酮是唯一可用的胰島素增敏劑,廣泛應(yīng)用于糖尿病的治療,對(duì)于胰島β細(xì)胞發(fā)揮作用具有很大幫助[31]。研究表明,IL-17通過(guò)調(diào)節(jié)促炎基因表達(dá)在IDD中發(fā)揮核心作用,IL-17與其他細(xì)胞因子合作可誘導(dǎo)出強(qiáng)大的協(xié)同效應(yīng),特別是與TNF-α[32]。LIU等[33]研究發(fā)現(xiàn),IDD患者血液中IL-17水平明顯高于健康患者,而IL-17可通過(guò)激活NF-κB、MAPKs和CCAAT/增強(qiáng)子結(jié)合蛋白(C/ebp)信號(hào)通路上調(diào)多種促炎趨化因子和細(xì)胞因子水平,進(jìn)一步促進(jìn)IDD發(fā)生、發(fā)展[34];予以吡格列酮后可抑制IL-17聯(lián)合TNF-α誘導(dǎo)的膠原蛋白-2和聚蛋白水平降低,還可通過(guò)抑制IL-17或IL-17聯(lián)合TNF-α誘導(dǎo)的NF-κB通路的激活,發(fā)揮抗炎作用,達(dá)到延緩IDD進(jìn)程的目的。
4.4 槲皮素與IDD 槲皮素是天然黃酮類藥物,具有抗炎、抗氧化應(yīng)激和抗凋亡等功能,在改善胰島素敏感性、抑制高糖等方面發(fā)揮重要作用[35]。ZHANG等[36]研究發(fā)現(xiàn),槲皮素可抑制NP細(xì)胞ROS生成過(guò)多,進(jìn)而抑制p38 MAPK和mTOR信號(hào)通路的磷酸化水平,上調(diào)NP細(xì)胞自噬抑制其凋亡和細(xì)胞外基質(zhì)降解。SHAO等[37]體外實(shí)驗(yàn)研究發(fā)現(xiàn),槲皮素主要以劑量依賴的方式降低IL-1β誘導(dǎo)的基質(zhì)金屬蛋白酶(MMP)-13、MMP-3、IL-6和IL-8等細(xì)胞因子水平的升高,并通過(guò)激活Nrf2信號(hào)通路抑制IL-1β所誘導(dǎo)NF-κB信號(hào)通路(促進(jìn)IDD進(jìn)程)的活化,發(fā)揮保護(hù)椎間盤的作用。WANG等[38]研究發(fā)現(xiàn),自噬抑制劑3-甲基ladenine(3-MA)逆轉(zhuǎn)了槲皮素對(duì)大鼠NP細(xì)胞凋亡和細(xì)胞外基質(zhì)變性的保護(hù)作用;此外,SIRT1酶活性抑制劑EX527抑制了槲皮素誘導(dǎo)的自噬和對(duì)NP細(xì)胞的保護(hù)作用,表明槲皮素通過(guò)SIRT1-自噬途徑保護(hù)NP細(xì)胞,防止細(xì)胞外基質(zhì)退變。
4.5 黃芪甲苷與IDD 黃芪甲苷是從中藥黃芪中分離的化合物,具有抗炎、抗胰島素抵抗、抗腫瘤和神經(jīng)保護(hù)等功能,可對(duì)DM患者的高血糖起到一定的抑制作用[39]。研究表明,端粒磨損和端粒酶下調(diào)是導(dǎo)致細(xì)胞衰老和凋亡的主要原因,而黃芪甲苷是有效的端粒酶激活劑,可抗端??s短[40]。HONG等[41]研究發(fā)現(xiàn),高糖濃度下NP細(xì)胞中端粒酶逆轉(zhuǎn)錄酶(在NP細(xì)胞中過(guò)度表達(dá)可通過(guò)延長(zhǎng)其復(fù)制能力來(lái)防止細(xì)胞周期停滯,抑制NP細(xì)胞衰老和凋亡)在mRNA和蛋白水平上的表達(dá)均顯著降低,端粒長(zhǎng)度縮短,提示高血糖可降低TERT蛋白表達(dá),誘導(dǎo)端粒磨損,促進(jìn)IDD進(jìn)程。予以黃芪甲苷后NP細(xì)胞中TERT表達(dá)和端粒長(zhǎng)度均增加,表明黃芪甲苷通過(guò)增加TERT表達(dá)和端粒延長(zhǎng)抑制NP細(xì)胞衰老及凋亡,從而對(duì)IDD起到保護(hù)作用。
綜上所述,利拉魯肽、二甲雙胍、吡格列酮、槲皮素和黃芪甲苷等作為常用抑制高糖藥物均可從不同途徑對(duì)椎間盤發(fā)揮保護(hù)作用,有望為治療DM誘導(dǎo)的IDD提供新選擇。
5 小結(jié)與展望
DM和IDD均是中老年人群的常見慢性疾病。DM是IDD的重要危險(xiǎn)因素,兩者在發(fā)生、發(fā)展過(guò)程中有密切聯(lián)系。IDD的發(fā)生、發(fā)展是多重致病因素共同作用的結(jié)果,DM只是其中之一。研究發(fā)現(xiàn),高糖可分別通過(guò)影響椎間盤中NP、AF、CEP加速IDD進(jìn)程,同時(shí)在基礎(chǔ)研究中應(yīng)用相關(guān)抑制高糖藥物可從不同角度和途徑發(fā)揮保護(hù)椎間盤的作用,在一定程度上證明了DM患者高糖生態(tài)位與IDD聯(lián)系的必然性。然而,高糖和IDD關(guān)系復(fù)雜,其確切機(jī)制尚未闡明,今后還需在兩者共同預(yù)防、治療以及作用機(jī)制等方面開展更多高質(zhì)量研究,以期為進(jìn)一步的臨床應(yīng)用提供新思路、新方法。
參考文獻(xiàn)
[1] GORTH DJ,SHAPIRO IM,RISBUD MV.A new understanding of the role of IL-1 in age-related intervertebral disc degeneration in a murine model[J].J Bone Miner Res,2019,34(8):1531-1542.
[2] KIRNAZ S,CAPADONA C,WONG T,et al.Fundam-entals of Intervertebral Disc Degeneration[J].World?Neurosurg,2022,157(1):264-273.
[3] CHEN R,LIANG X,HUANG T,et al.Effects of type 1 diabetes mellitus on lumbar disc degeneration:a retrospective study of 118 patients[J].J Orthop Surg Res,2020,15(1):280-286.
[4] KAKADIYA G,GANDBHIR V,SONI Y,et al.Diabetes mellitus-a risk factor for the development of lumbar disc degeneration:a retrospective study of an indian population[J].Global Spine J,2022,12(2):215-220.
[5] ONORATI AV,DYCZYNSKI M,OJHA RK,et al.Targeting autophagy in cancer[J].Cancer,2018,124(16):3307-3318.
[6] KRITSCHIL R,SCOTT M,SOWA G,et al.Role of autophagy in intervertebral disc degeneration[J].J Cell Physiol,2022,237(2):1266-1284.
[7] KONG CG,PARK JB,KIM MS,et al.High glucose accelerates autophagy in adult rat intervertebral disc cells[J].Asian Spine J,2014,8(5):543-548.
[8] KONG JG,PARK JB,LEE DH,et al.Effect of high glucose on stress-induced senescence of nucleus pulposus cells of adult rats[J].Asian Spine J,2015,9(2):155-161.
[9] FENG Y,WANG HT,CHEN Z,et al.High glucose mediates the ChREBP/p300 transcriptional complex to activate proapoptotic genes Puma and BAX and contributes to intervertebral disc degeneration[J].Bone,2021,153(1):116164-116169.
[10] BACH FC,PORAMBA-LIYANAGE DW,RIEMERS FM,et al.Notochordal cell-based treatment strategies and their potential in intervertebral disc regeneration[J].Front Cell Dev Biol,2022,9(1):780749-780771.
[11] WON HY,PARK JB,PARK EY,et al.Effect of hyperglycemia on apoptosis of notochordal cells and intervertebral disc degeneration in diabetic rats[J].J Neurosurg Spine,2009,11(6):741-748.
[12] PARK EY,PARK JB.High glucose-induced oxidative stress promotes autophagy through mitochondrial damage in rat notochordal cells[J].Int Orthop,2013,37(12):2507-2514.
[13] PARK JB,BYUN CH,PARK EY.Rat notochordal cells undergo premature stress-induced senescence by high glucose[J].Asian Spine J,2015,9(4):495-502.
[14] JI K,DING L,CHEN X,et al.Mesenchymal stem cells differentiation:mitochondria matter in osteogenesis or adipogenesis direction[J].Curr Stem Cell Res Ther,2020,15(7):602-606.
[15] WIDJAJA G,JALIL AT,BUDI HS,et al.Mesenchymal stromal/stem cells and their exosomes application in the treatment of intervertebral disc disease:a promising frontier[J].Int Immunopharmacol,2022,105(1):108537-108546.
[16] LIAO ZW,LUO RJ,LI GC,et al.Exosomes from mesenchymal stem cells modulate endoplasmic reticulum stress to protect against nucleus pulposus cell death and ameliorate intervertebral disc degeneration in vivo[J].Theranostics,2019,9(14):4084-4100.
[17] YAZICI A,YERLIKAYA T.The relationship between the degeneration and asymmetry of the lumbar multifidus and erector spinae muscles in patients with lumbar disc herniation with and without root compression[J].J Orthop Surg Res,2022,17(1):541-553.
[18] PANG L,LYANG KS,ZHANG Z.High-glucose environment accelerates annulus fibrosus cell apoptosis by regulating endoplasmic reticulum stress[J].Biosci Rep,2020,40(7):1-13.
[19] SHAN LZ,YANG D,ZHU DJ,et al.High glucose promotes annulus fibrosus cell apoptosis through activating the JNK and p38 MAPK pathways[J].Biosci Rep,2019,39(7):1-8.
[20] KANG L,LIU SW,LI JC,et al.Parkin and Nrf2 prevent oxidative stress-induced apoptosis in intervertebral endplate chondrocytes via inducing mitophagy and anti-oxidant defenses[J].Life Sci,2020,243(1):117244-117249.
[21] QUAN HL,ZUO XS,HUAN Y,et al.A systematic morphology study on the effect of high glucose on intervertebral disc endplate degeneration in mice[J].Heliyon,2023,9(2):e13295-e13299.
[22] JIANG ZX,LU W,ZENGM Q,et al.High glucose-induced excessive reactive oxygen species promote apoptosis through mitochondrial damage in rat cartilage endplate cells[J].J Orthop Res,2018,36(9):2476-2483.
[23] DRUCKER DJ.Mechanisms of action and therapeutic application of glucagon-like peptide-1[J].Cell Metab,2018,27(4):740-756.
[24] SHAMAN AM,BAIN SC,BAKRIS GL,et al.Effect of the glucagon-like peptide-1 receptor agonists semaglutide and liraglutide on kidney outcomes in patients with type 2 diabetes:pooled analysis of sustain 6 and leader[J].Circulation,2022,145(8):575-585.
[25] YAO MY,ZHANG J,LI ZH,et al.Liraglutide protects nucleus pulposus cells against high-glucose induced apoptosis by activating PI3K/AKT/ mTOR/Caspase-3 and PI3K/AKT/GSK 3β/Caspase-3 signaling path-ways[J].Front Med(Lausanne),2021,8(1):630962-630972.
[26] LAMOIA TE,SHULMAN GI.Cellular and molecular mechanisms of metformin action[J].Endocr Rev,2021,42(1):77-96.
[27] LIAO ZW,LI S,LU SD,et al.Metformin facilitates mesenchymal stem cell-derived extracellular nanove-sicles release and optimizes therapeutic efficacy in intervertebral disc degeneration[J].Biomaterials,2021,274(1):120850-120861.
[28] TISHERMAN R,COELHO P,PHILLIBERT D,et al.NF-κB signaling pathway in controlling intervertebral disk cell response to inflammatory and mechanical?stressors[J].Phys Ther,2016,96(5):704-711.
[29] RAMANATHAN R,F(xiàn)IRDOUS A,DONG Q,et al.
Investigation into the anti-inflammatory properties of metformin in intervertebral disc cells[J].JOR Spine,2022,5(2):e1197-e1203.
[30] REN CH,JIN J,LI CC,et al.Metformin inactivates the cGAS-STING pathway through autophagy and suppresses senescence in nucleus pulposus cells[J].
J Cell Sci,2022,135(15):259738-259746.
[31] HU YQ,TAO RY,CHEN L,et al.Exosomes derived from pioglitazone-pretreated MSCs accelerate diabetic wound healing through enhancing angiogenesis[J].
J Nanobiotechnology,2021,19(1):150-166.
[32] LIU XG,HOU HW,LIU YL.Expression levels of IL-17
and TNF-α in degenerated lumbar intervertebral discs and their correlation[J].Exp Ther Med,2016,11(6):2333-2340.
[33] LIU Y,QU Y,LIU L,et al.PPAR-γ agonist pioglitazone
protects against IL-17 induced intervertebral disc inflamm-
ation and degeneration via suppression of NF-κB signaling pathway[J].Int Immunopharmacol,2019,72(1):138-147.
[34] ZHU S,QIAN YC.IL-17/IL-17 receptor system in autoimmune disease:mechanisms and therapeutic potential[J].Clin Sci(Lond),2012,122(11):487-511.
[35] YAN L,VAGHARI-TABARI M,MALAKOTI F,et al.
Quercetin:an effective polyphenol in alleviating diabetes and diabetic complications[J].Crit Rev Food Sci Nutr,2022,63(28):9163-9186.
[36] ZHANG SW,LIANG WD,ABULIZI Y,et al.Quercetin alleviates intervertebral disc degeneration by modulating p38 MAPK-mediated autophagy[J].Biomed Res Int,2021,11(1):1-15.
[37] SHAO Z,WANG B,SHI Y,et al.Senolytic agent Quercetin ameliorates intervertebral disc degeneration via the Nrf2/NF-κB axis[J].Osteoarthritis Cartilage,
2021,29(3):413-422.
[38] WANG D,HE X,WANG D,et al.Quercetin suppresses apoptosis and attenuates intervertebral disc degeneration via the SIRT1-autophagy pathway[J].Front Cell Dev Biol,2020,8(1):613006-613020.
[39] ZHANG JQ,WU CX,GAO L,et al.AstragalosideⅣ derived from astragalus membranaceus:a research review on the pharmacological effects[J].Adv Pharmacol,2020,87(1):89-112.
[40] TIAN YY,CHU X,HUANG Q,et al.Astragaloside Ⅳ attenuates IL-1β-induced intervertebral disc degeneration through inhibition of the NF-κB path-
way[J].J Orthop Surg Res,2022,17(1):545-555.
[41] HONG HF,XIAO J,GUO QQ,et al.Cycloastragenol and astragalosideⅣ activate telomerase and protect nucleus pulposus cells against high glucose-induced senescence and apoptosis[J].Exp Ther Med,2021,22(5):1326-1336.
收稿日期:2023-10-19;修回日期:2023-11-28