国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

集約束下的變分不等式:像空間分析法

2024-06-01 02:49:16孫怡賀越劉丹陽
關鍵詞:鞍點

孫怡 賀越 劉丹陽

摘要:變分不等式是一種數(shù)學模型,屬于平衡問題的一類,常應用于交通均衡問題、經(jīng)濟均衡問題以及生態(tài)產(chǎn)業(yè)鏈問題。像空間分析法(ISA)是研究最優(yōu)問題與平衡問題非常重要的工具之一。為了豐富ISA在變分不等式問題上的研究,在集約束的假設下,利用ISA研究了在歐氏空間中經(jīng)典變分不等式問題。首先,驗證了問題的線性分離性。然后,通過拉格朗日型函數(shù)得到了拉格朗日型鞍點條件。最后,給出了變分不等式的最優(yōu)性條件。

關鍵詞:集約束;變分不等式;像空間分析法;線性分離性;鞍點;最優(yōu)性條件

中圖分類號:O224文獻標志碼:A文章編號:16735072(2024)03025407變分不等式問題(VI) 在優(yōu)化問題、均衡問題、經(jīng)濟學中有著廣泛的應用。錐約束VI廣泛應用于交通網(wǎng)絡均衡問題、經(jīng)濟平衡均衡問題、電力交通耦合網(wǎng)絡均衡狀態(tài)。Hartman和Stampacchia提出有限維VI[1],Kinderlehrer和Stampacchia提出了無窮維VI[2]。VI豐富了非線性分析和光滑凸規(guī)劃問題的最優(yōu)性條件理論,有利于這些應用中算法的發(fā)展。

像空間分析法(Image Space Analysic,ISA)由Giannessi [3]正式提出,該方法如今已經(jīng)被廣泛用于研究VI[410]、約束極值問題[11]和優(yōu)化問題[12]的線性分離性、鞍點定理、拉格朗日型最優(yōu)性條件[1314]。這些問題的任何含參系統(tǒng)不可行形式可退化表示為ISA中兩個適當子集不相交。通過證明這兩個不相交子集位于某個分離泛函的兩個子水平集中就可以得到該系統(tǒng)的不可能性。如果分離泛函是線性的,則這兩個子集是線性分離的。

本文利用ISA研究集約束下的VI。首先回顧了一些本文所需要的基礎知識,再描述了在集約束下VI的ISA,接著討論了VI的線性分離性,最后證明了拉格朗日型鞍點條件和拉格朗日型最優(yōu)性條件。

猜你喜歡
鞍點
非可微r-不變凸函數(shù)的η-鞍點條件
求解無約束函數(shù)局部鞍點的數(shù)值算法
實值函數(shù)近似鞍點集的連續(xù)性
一種廣義松弛正定反預處理求解非Hermitian鞍點問題
鞍點在FC-度量空間中新不動點定理中的運用
高考·中(2019年10期)2019-09-10 17:12:58
貿(mào)易戰(zhàn)背景下的中美貿(mào)易研究
含有二階冪零鞍點的雙同宿環(huán)附近的極限環(huán)分支
SKT不變凸非線性規(guī)劃的鞍點特征研究
一種改進的基于二階統(tǒng)計量的盲源抽取算法*
改進的復制動態(tài)方程及其穩(wěn)定性分析
曲松县| 扶风县| 衡阳市| 湘阴县| 无为县| 太保市| 韶关市| 宁蒗| 瑞金市| 略阳县| 澎湖县| 铁力市| 博兴县| 六枝特区| 许昌县| 潞西市| 台中市| 两当县| 临潭县| 宜宾县| 天全县| 富宁县| 梧州市| 孟津县| 嘉兴市| SHOW| 延安市| 华蓥市| 辽宁省| 县级市| 河源市| 井冈山市| 乳源| 武穴市| 墨脱县| 滨海县| 莱阳市| 海口市| 萍乡市| 南陵县| 庆安县|