項(xiàng)舒琪 盧業(yè)虎
摘要:為分析熱防護(hù)材料領(lǐng)域研究現(xiàn)狀和未來(lái)發(fā)展趨勢(shì),文章采用信息可視化、網(wǎng)絡(luò)分析的研究方法,以Web of Science(WOS)數(shù)據(jù)庫(kù)及中國(guó)知網(wǎng)(CNKI)數(shù)據(jù)庫(kù)中近30年(1993年1月—2023年6月)熱防護(hù)材料相關(guān)的文獻(xiàn)作為數(shù)據(jù)來(lái)源繪制可視化信息圖譜,對(duì)發(fā)文量、發(fā)文國(guó)家/地區(qū)和機(jī)構(gòu)、研究方向、核心作者、關(guān)鍵詞等元素逐一進(jìn)行分析,剖析熱防護(hù)材料研究領(lǐng)域的發(fā)展動(dòng)態(tài)、研究熱點(diǎn)及前沿趨勢(shì)。結(jié)果顯示,美國(guó)、中國(guó)為主要研究國(guó)家,在該領(lǐng)域居重要地位;LI J(Li Jun)、SONG G W(Song Guowen)、SU Y(Su Yun)、LU Y H(Lu Yehu)、王云儀、朱方龍等作者為該領(lǐng)域的核心作者,在熱應(yīng)激、熱防護(hù)服的研究中具有重要影響力;熱防護(hù)服的熱防護(hù)性與傳熱機(jī)制、人體的熱生理與熱舒適為活躍的研究主題與研究熱點(diǎn);相變材料、氣凝膠、形狀記憶織物、蜂窩夾芯織物、三維間隔織物為當(dāng)前的研究熱點(diǎn)材料,新型熱防護(hù)材料的研發(fā)、服裝內(nèi)部結(jié)構(gòu)的優(yōu)化是未來(lái)研究中有效應(yīng)對(duì)熱應(yīng)激的解決方法,是兼顧熱防護(hù)服的熱防護(hù)與熱舒適平衡的重要途徑。
關(guān)鍵詞:熱防護(hù)材料;CiteSpace;可視化分析;熱應(yīng)激;熱舒適;熱防護(hù)性
中圖分類號(hào):TS941.73
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):10017003(2024)02009511
DOI:10.3969/j.issn.1001-7003.2024.02.011
收稿日期:20230725;
修回日期:20231219
基金項(xiàng)目:江蘇省高等學(xué)?;A(chǔ)科學(xué)(自然科學(xué))重大項(xiàng)目(21KJA540004);蘇州市科技計(jì)劃項(xiàng)目(SS202147)
作者簡(jiǎn)介:項(xiàng)舒琪(2000),女,碩士研究生,研究方向?yàn)榉b舒適性。通信作者:盧業(yè)虎,教授,博導(dǎo),yhlu@suda.edu.cn。
在工業(yè)、消防、應(yīng)急救援等領(lǐng)域,作業(yè)人員經(jīng)常遭受火焰、高溫液體、輻射熱、高壓蒸汽等熱災(zāi)害威脅,需要穿著特定的熱防護(hù)服來(lái)應(yīng)對(duì)這些危害。環(huán)境中的熱量通過(guò)傳導(dǎo)、對(duì)流、輻射三種形式在“人體服裝環(huán)境”系統(tǒng)中傳遞。以火場(chǎng)為例,火場(chǎng)溫度通??蛇_(dá)到400~2500 ℃,熱對(duì)流和熱輻射是主要的傳熱方式,導(dǎo)致人體產(chǎn)生熱應(yīng)激、皮膚燒傷甚至死亡。熱防護(hù)服作為保護(hù)作業(yè)人員生命安全的有效屏障,開(kāi)發(fā)高性能熱防護(hù)材料及服裝具有重要的意義。
歐美國(guó)家早在20世紀(jì)50年代對(duì)熱防護(hù)服領(lǐng)域開(kāi)展系統(tǒng)化研究,中國(guó)在熱防護(hù)領(lǐng)域的探索起步相對(duì)較晚。早期熱防護(hù)服的研究側(cè)重于對(duì)服裝熱防護(hù)性能的測(cè)評(píng),旨在提高服裝的熱防護(hù)性能,但對(duì)其舒適性的關(guān)注較少。根據(jù)現(xiàn)行的行業(yè)標(biāo)準(zhǔn)GA 10—2014《消防員滅火防火服》,傳統(tǒng)的熱防護(hù)服由四層結(jié)構(gòu)組成,分別是防護(hù)外層、防水透氣層、隔熱層、舒適層(圖1),各層發(fā)揮著不同的作用。盡管傳統(tǒng)的熱防護(hù)服已具備良好的熱防護(hù)性,但其過(guò)于厚重,人體在運(yùn)動(dòng)過(guò)程中,熱防護(hù)服內(nèi)部會(huì)蓄積熱量和水分,穿著時(shí)間較長(zhǎng)會(huì)出現(xiàn)體溫升高、心率加快等生理反應(yīng),增加作業(yè)人員的生理熱負(fù)荷和熱應(yīng)激,對(duì)人體生命安全造成危害。因此,在保證熱防護(hù)性能的基礎(chǔ)上提高熱濕舒適性是目前該領(lǐng)域重點(diǎn)關(guān)注的研究方向。
熱防護(hù)性能指標(biāo)有熱防護(hù)性能(Thermal Protective Performance, TPP)、二度燒傷時(shí)間t、三度燒傷時(shí)間t等,用于評(píng)定熱防護(hù)服的熱防護(hù)性能。熱防護(hù)服的防護(hù)性與舒適性與其使用的材料密切相關(guān),熱防護(hù)服材料朝著輕質(zhì)化方向發(fā)展。當(dāng)前有較多國(guó)內(nèi)外學(xué)者從事熱防護(hù)材料方面的研究,有關(guān)熱防護(hù)材料的成果數(shù)量與日俱增,但鮮有研究從文獻(xiàn)計(jì)量學(xué)角度對(duì)其研究方向和進(jìn)展進(jìn)行系統(tǒng)總結(jié)。本文采用信息可視化分析軟件CiteSpace對(duì)熱防護(hù)材料的研究熱點(diǎn)進(jìn)行分析,深入了解新型熱防護(hù)材料的研究進(jìn)展和動(dòng)態(tài)前沿,探討各類新型熱防護(hù)材料的研究現(xiàn)狀與未來(lái)發(fā)展趨勢(shì),以期為后續(xù)的研究提供基礎(chǔ)。
1 數(shù)據(jù)來(lái)源與研究方法
1.1 數(shù)據(jù)來(lái)源
本文通過(guò)對(duì)Web of Science(WOS)核心合集數(shù)據(jù)庫(kù)及中
國(guó)知網(wǎng)(CNKI)數(shù)據(jù)庫(kù)進(jìn)行文獻(xiàn)檢索,以熱防護(hù)材料為檢索主題,設(shè)置時(shí)間跨度為1993—2023年(2023年6月12日)。檢索過(guò)程中關(guān)鍵參數(shù)設(shè)置及文獻(xiàn)數(shù)量如表1所示,共獲得文獻(xiàn)1 683篇(WOS共1 388篇、CNKI共295篇)。用CiteSpace中的數(shù)據(jù)處理工具對(duì)所下載的數(shù)據(jù)進(jìn)行除重,文獻(xiàn)檢索中最終過(guò)濾出文獻(xiàn)1 265篇(WOS共1 017篇、CNKI共248篇)。
1.2 研究方法
將檢索獲得的數(shù)據(jù)記錄導(dǎo)入信息可視化軟件CiteSpace V 6.2.R5中,時(shí)間參數(shù)設(shè)置為1993年1月—2023年6月,時(shí)間切片為3年,主題詞來(lái)源使用軟件默認(rèn)全選,選擇標(biāo)準(zhǔn)g-index默認(rèn)值k=25,閾值選擇系統(tǒng)默認(rèn)值Top 50,默認(rèn)選擇不剪枝,節(jié)點(diǎn)類型依次選擇作者、機(jī)構(gòu)、國(guó)家、關(guān)鍵詞、被引作者等進(jìn)行多維度分析。軟件生成的圖譜中的節(jié)點(diǎn)大小和連線顏色表示發(fā)文量和所屬集群,節(jié)點(diǎn)表示所選擇的作者、機(jī)構(gòu)、關(guān)鍵詞、國(guó)家等元素,連線兩端元素具有合作關(guān)系。
2 文獻(xiàn)統(tǒng)計(jì)
查看WOS核心合集數(shù)據(jù)庫(kù)的“引文報(bào)告”分析1 017篇所選文獻(xiàn),獲得2 893篇施引文獻(xiàn)(去除自引),被引頻次達(dá)15 002次(去除自引),平均每篇被引頻次為18.43次,年度被引頻次和發(fā)文量如圖2所示。1993—2023年,WOS中熱防護(hù)材料相關(guān)文獻(xiàn)被引頻次和發(fā)文數(shù)量呈增長(zhǎng)態(tài)勢(shì)。在1993—2007年處于平緩發(fā)展期,對(duì)熱防護(hù)服材料的研究仍處于起步階段,研究成果較少;在2007年之后研究成果急劇增加,雖在2018—2019年出現(xiàn)較大幅度的下降,但總體上發(fā)文量和被引頻次仍處于增長(zhǎng)狀態(tài)。
查看CNKI的“計(jì)量可視化分析”分析248篇所選文獻(xiàn),被引頻次達(dá)2 170次(去除自引),年度發(fā)文量如圖3所示。1993—2023年,CNKI中有關(guān)熱防護(hù)材料的相關(guān)文獻(xiàn)數(shù)量不斷攀升。在1993—2006年趨于平緩,在2007年之后迅速增加,與WOS發(fā)文量的趨勢(shì)相似。根據(jù)以上兩大數(shù)據(jù)庫(kù)的文獻(xiàn)統(tǒng)計(jì),表明學(xué)術(shù)界對(duì)熱防護(hù)材料的關(guān)注度不斷攀升,作業(yè)人員的安全和生命健康問(wèn)題受到廣泛關(guān)注。
WOS檢索結(jié)果分析顯示,熱防護(hù)材料的研究領(lǐng)域廣泛,其中排名前三的研究方向?yàn)椴牧峡茖W(xué)(47.59%)、工程學(xué)(23.30%)、公共環(huán)境職業(yè)健康(13.47%)。由此可見(jiàn),熱防護(hù)材料的研究在多個(gè)領(lǐng)域具有廣泛應(yīng)用,運(yùn)用材料科學(xué)和工程學(xué)的研究方法在改善公共環(huán)境職業(yè)健康方面具有重要作用。
3 共引網(wǎng)絡(luò)分析
3.1 國(guó)家、機(jī)構(gòu)合作網(wǎng)絡(luò)分析
節(jié)點(diǎn)的中心性表示各國(guó)/地區(qū)之間的合作強(qiáng)度與影響力,使用CiteSpace軟件對(duì)各國(guó)/地區(qū)之間熱防護(hù)材料研究的合作網(wǎng)絡(luò)進(jìn)行分析(圖4),中心性從強(qiáng)到弱的國(guó)家依次為美國(guó)(0.50,202篇,1993年)、澳大利亞(0.15,63篇,1994年)、英國(guó)(0.15,40篇,1996年)、中國(guó)(0.14,275篇,2006年),在熱防護(hù)材料領(lǐng)域有重要影響力。
使用CiteSpace軟件分別對(duì)WOS數(shù)據(jù)庫(kù)和CNKI數(shù)據(jù)庫(kù)的發(fā)文機(jī)構(gòu)進(jìn)行分析。在WOS數(shù)據(jù)庫(kù)中,熱防護(hù)材料的主要發(fā)文機(jī)構(gòu)為東華大學(xué)(0.24,121篇,中國(guó))、中央勞動(dòng)保護(hù)研究所(0.02,37篇,波蘭)、瑞士聯(lián)邦技術(shù)研究所(0.04,37篇,瑞士)、瑞士聯(lián)邦材料科學(xué)與技術(shù)研究所(0.04,34篇,瑞士)、阿爾伯特大學(xué)(0.06,33篇,加拿大)、北卡羅萊納州立大學(xué)(0.04,27篇,美國(guó)),中心性最強(qiáng)的發(fā)文機(jī)構(gòu)東華大學(xué)(中心性0.24)與其他發(fā)文機(jī)構(gòu)的學(xué)術(shù)交流密切,合作關(guān)系良好。在CNKI數(shù)據(jù)庫(kù)中,熱防護(hù)材料高產(chǎn)機(jī)構(gòu)有東華大學(xué)(58篇)、天津工業(yè)大學(xué)(33篇)、中原工學(xué)院(21篇)、蘇州大學(xué)(14篇)、浙江理工大學(xué)(13篇),其中東華大學(xué)發(fā)文量最高,影響力最大。
3.2 核心作者分析
3.2.1 發(fā)文作者
使用CiteSpace軟件對(duì)WOS數(shù)據(jù)庫(kù)的發(fā)文作者進(jìn)行關(guān)鍵詞聚類,如圖5所示。所得研究集群為熱防護(hù)服、服裝熱阻與織物性能三大類,共涵蓋國(guó)內(nèi)外作者共56名,其中發(fā)文量排名前5的作者分別為L(zhǎng)I J(Li Jun,70篇)、SONG G W(Song Guowen,35篇)、SU Y(Su Yun,33篇)、LU Y H(Lu Yehu,23篇)、ROSSI R M(18篇)。
在WOS數(shù)據(jù)庫(kù)的發(fā)文作者合作網(wǎng)絡(luò)三大集群中,最大的集群為熱防護(hù)服,其主要研究人員為L(zhǎng)I J(Li Jun)、SONG G W(Song Guowen)、SU Y(Su Yun)、LU Y H(Lu Yehu),這4位作者之間合作關(guān)系緊密,主要研究熱防護(hù)服的傳熱、儲(chǔ)熱、散熱,以了解熱應(yīng)激與熱生理的關(guān)系,降低人體熱應(yīng)激帶來(lái)的消極影響。其中,LU Y H等通過(guò)將形狀記憶合金運(yùn)用于熱防護(hù)服中,實(shí)現(xiàn)空氣層的動(dòng)態(tài)調(diào)節(jié),提升熱防護(hù)與熱舒適。LI J與SU Y等制備了一種智能雙向熱調(diào)節(jié)的PCM涂層織物,有助于開(kāi)發(fā)用于熱防護(hù)服的高熱容量和低放熱的PCM材料。SONG G W等通過(guò)氣凝膠與相變材料的結(jié)合應(yīng)用,為減少熱防護(hù)服系統(tǒng)的質(zhì)量和厚度提供新的解決方案。
使用CiteSpace軟件得到CNKI數(shù)據(jù)庫(kù)中關(guān)于熱防護(hù)材料相關(guān)文獻(xiàn)發(fā)文量排名前5的作者,分別為李俊、蘇云、朱方龍、盧業(yè)虎、王云儀。其中,李俊、蘇云、王云儀的合作關(guān)系密切,主要研究熱防護(hù)服的傳熱機(jī)制,并通過(guò)制備阻燃型相變微膠囊涂層織物來(lái)提高相變調(diào)溫防護(hù)服的使用安全性。朱方龍通過(guò)將相變材料應(yīng)用于熱防護(hù)服來(lái)研究服裝的傳熱、熱防護(hù)性能,利用數(shù)值模擬研究了相變材料在服裝中的位置關(guān)系,驗(yàn)證了含相變材料的熱防護(hù)服應(yīng)對(duì)高溫環(huán)境溫度突變的有效性。盧業(yè)虎將石墨烯氣凝膠、形狀記憶材料分別應(yīng)用于熱防護(hù)服面料系統(tǒng),通過(guò)創(chuàng)新熱防護(hù)服面料達(dá)到提升熱舒適的目的。
3.2.2 共被引作者
表2為出現(xiàn)頻次與中心性分別排名前5的共被引作者。其中,TORVI D A不僅具有較高的被引頻次,還具有較強(qiáng)的中心性,其研究?jī)?nèi)容在熱防護(hù)領(lǐng)域具有重要價(jià)值。早在1994年,TORVI D A開(kāi)發(fā)了多層有限元模型,用于預(yù)測(cè)模擬閃火條件下的二度和三度燒傷時(shí)間;隨后,TORVI D A基于小尺寸臺(tái)式測(cè)試建立了由織物到傳感器的傳熱模型,為后續(xù)熱防護(hù)領(lǐng)域傳熱的研究奠定基礎(chǔ)。在前期學(xué)者研究的基礎(chǔ)上,SONG G W等建立了用于預(yù)測(cè)低熱輻射暴露下消防員熱應(yīng)激的數(shù)值模型,為兼顧熱防護(hù)性能與熱舒適性提供新思路。HAVENITH G、HOLMER I、LOTENS W A、PSIKUTA A及NUNNELEY S A主要從事人體熱舒適與熱平衡方面的研究,減少熱應(yīng)激對(duì)人體的傷害。其中,HAVENITH G通過(guò)引入熱應(yīng)激指數(shù)和模型來(lái)量化熱應(yīng)激,有助于降低熱應(yīng)激概率。BARKER R L和LU Y H研究?jī)?nèi)容廣泛,主要研究在熱暴露下熱防護(hù)服的熱防護(hù)性能及傳熱和儲(chǔ)熱等方面的內(nèi)容。其中,LU Y H等通過(guò)在熱防護(hù)服中引入形狀記憶合金,增加熱防護(hù)服內(nèi)的空氣層厚度,有效延緩二度燒傷時(shí)間,為熱防護(hù)服的熱防護(hù)與熱舒適的研究提供新方向。
3.3 關(guān)鍵詞分析
關(guān)鍵詞是文章內(nèi)容的高度概括,通常用于分析該領(lǐng)域的新興研究趨勢(shì)。使用CiteSpace軟件對(duì)WOS中所選文獻(xiàn)進(jìn)行關(guān)鍵詞共現(xiàn)分析,獲得1993—2023年熱防護(hù)材料領(lǐng)域的研究動(dòng)態(tài)。表3為WOS中出現(xiàn)頻次排名前10的關(guān)鍵詞,其中熱應(yīng)激、傳熱及熱舒適與前文中WOS的核心作者的主要研究方向一致,表明熱防護(hù)服的熱防護(hù)性與傳熱機(jī)制、人體的熱生理與熱舒適受到學(xué)術(shù)界的廣泛關(guān)注,熱防護(hù)服需要在滿足熱防護(hù)性的基礎(chǔ)上圍繞人體熱生理進(jìn)行合理設(shè)計(jì)。
表4為CNKI中出現(xiàn)頻次排名前10的關(guān)鍵詞,相變材料、氣凝膠在熱防護(hù)材料中占重要地位,當(dāng)前大多數(shù)熱防護(hù)服中通過(guò)使用這兩種材料來(lái)保障人體的熱舒適。服裝的熱防護(hù)性、阻燃性、空氣層與前文中CNKI的核心作者的主要研究方向一致,空氣層厚度與傳熱關(guān)聯(lián)程度大,研究者通過(guò)改變空氣層厚度來(lái)延緩二度燒傷時(shí)間,保障人體熱生理處于舒適范圍。
通過(guò)對(duì)WOS和CNKI兩大數(shù)據(jù)庫(kù)進(jìn)行關(guān)鍵詞分析,可得到熱防護(hù)服的熱防護(hù)性與傳熱機(jī)制、人體熱舒適和熱生理是研究重點(diǎn)。SU Y等建立了熱源、防護(hù)服、空氣層之間的熱濕傳遞耦合模型,為新型熱防護(hù)材料的研制提供了理論基礎(chǔ)。ONOFREI E等開(kāi)發(fā)了低輻射熱條件下防護(hù)服的傳熱模型,為材料和服裝設(shè)計(jì)提供系統(tǒng)指導(dǎo),實(shí)現(xiàn)最佳熱防護(hù)性和熱舒適性。通過(guò)研究傳熱機(jī)制,了解熱防護(hù)服的傳熱、散熱情況,為設(shè)計(jì)高效熱防護(hù)服提供新思路。傳熱機(jī)制與人體熱生理響應(yīng)、熱舒適相關(guān),熱防護(hù)服需要具備較低蒸發(fā)阻力、更輕的質(zhì)量才能在濕熱環(huán)境下緩解熱應(yīng)激。MANDAL S等通過(guò)開(kāi)發(fā)多元線性回歸和人工神經(jīng)網(wǎng)絡(luò)模型,用于預(yù)測(cè)熱防護(hù)服織物的熱防護(hù)性和生理舒適性,更高效、便捷、準(zhǔn)確地實(shí)現(xiàn)性能預(yù)測(cè),開(kāi)拓了熱防護(hù)性和熱舒適性的測(cè)試方法。在動(dòng)態(tài)穿著條件下,特別是惡劣的高溫環(huán)境下,熱防護(hù)服在人體與環(huán)境之間的傳熱和舒適性是重要因子。熱防護(hù)服的面料系統(tǒng)應(yīng)給穿著者提供最佳的熱防護(hù)和熱舒適,為作業(yè)人員提供更好的職業(yè)健康與安全。
4 新型熱防護(hù)材料研究熱點(diǎn)
通過(guò)前文分析發(fā)現(xiàn),著眼于熱防護(hù)性、傳熱機(jī)制、熱應(yīng)激與熱生理的研究,提升熱防護(hù)服的熱舒適性成為當(dāng)前的研究熱點(diǎn)。新型熱防護(hù)材料的研發(fā)、服裝內(nèi)部結(jié)構(gòu)的優(yōu)化是有效應(yīng)對(duì)熱應(yīng)激的解決方法。當(dāng)前,相變材料、氣凝膠在熱防護(hù)領(lǐng)域的應(yīng)用廣泛,在近五年中陸續(xù)出現(xiàn)各種新型熱防護(hù)材料,如蜂窩夾芯結(jié)構(gòu)材料、形狀記憶材料、三維間隔織物,這三種材料利用空氣優(yōu)良的隔熱性能來(lái)減緩熱量傳遞速度,通過(guò)增加空氣層厚度來(lái)進(jìn)行有效熱防護(hù),并提升熱舒適。
4.1 相變材料與氣凝膠
相變材料是一種隨外界溫度變化而改變儲(chǔ)能的調(diào)溫材
料,“固液”型相變材料因具有較大的相變潛熱且使用方便而廣泛用于熱防護(hù)領(lǐng)域。很多研究證實(shí)了相變材料可有效降低熱應(yīng)激,減輕個(gè)體防護(hù)設(shè)備質(zhì)量并提高舒適性。表5為相變材料的制備方法及其在熱防護(hù)服中的相關(guān)應(yīng)用。
各學(xué)者通過(guò)實(shí)驗(yàn)驗(yàn)證了相變材料在熱防護(hù)服中應(yīng)用的可行性與有效性。GAO C S等通過(guò)真人生理實(shí)驗(yàn)得出,熔化溫度較低的相變背心冷卻效果更好;馮倩倩等實(shí)驗(yàn)發(fā)現(xiàn),經(jīng)后整理的Outlast 纖維與腈綸混紡的調(diào)溫織物作為消防服的舒適層能有效減緩熱量傳遞;鄢瑛等采用微膠囊制備制冷背心,發(fā)現(xiàn)配備制冷背心的熱防護(hù)服一定程度上可改善防護(hù)服內(nèi)的儲(chǔ)存熱。此外,MCCARTHY L K等、BUHLER M等、FONSECA A等、ZHU F L等同樣專注于研究相變材料的成分、潛熱、質(zhì)量、熔化溫度等因素在消防服中的應(yīng)用,有效實(shí)現(xiàn)個(gè)體熱管理。
相變材料在熱防護(hù)領(lǐng)域的應(yīng)用廣泛,但仍存在液相材料泄漏、相變材料的溫度調(diào)節(jié)不可控、需要定時(shí)安裝和更換相變材料、妨礙蒸發(fā)冷卻、負(fù)荷較大導(dǎo)致行動(dòng)不便等問(wèn)題。PCM如何規(guī)避缺陷、有效應(yīng)用于熱防護(hù)服,以提高防護(hù)服的熱防護(hù)與熱舒適性仍然是當(dāng)前探討的熱點(diǎn)問(wèn)題。近年來(lái)學(xué)者多注重于將相變材料與其他材料相結(jié)合并應(yīng)用于熱防護(hù)領(lǐng)域,以改善相變材料的使用缺陷,實(shí)現(xiàn)熱防護(hù)與熱舒適最佳效果。
氣凝膠是一種超高孔隙率的三維納米多孔材料,具有質(zhì)
量輕、隔熱等特點(diǎn),廣泛用于航空航天、消防等領(lǐng)域。表6為氣凝膠的三種制備方法及各種制備方法的優(yōu)缺點(diǎn)。
早在19世紀(jì)30年代已制出氣凝膠材料,但并未廣泛應(yīng)用于熱防護(hù)領(lǐng)域。張興娟等制備SiO氣凝膠作為新型隔熱材料,發(fā)現(xiàn)其熱傳導(dǎo)率為傳統(tǒng)熱防護(hù)材料的四分之一,質(zhì)量減輕70%以上,可有效降低重量負(fù)荷與傳熱速率。許魯?shù)戎苽銼iO氣凝膠混合于芳綸1313/1414非織造布中并復(fù)合PTFE膜,顯著提升其隔熱阻燃效果。ALTAY P等使用聚丙烯腈納米纖維與SiO氣凝膠膜復(fù)合制成織物系統(tǒng)的防水透氣層,實(shí)現(xiàn)了輕質(zhì)、良好的熱舒適性和熱防護(hù)性。
氣凝膠材料雖隔熱性能優(yōu)異,但其力學(xué)性能、透氣透濕性能不佳,阻礙穿著者熱量和水分的釋放,限制了其在熱防護(hù)領(lǐng)域的應(yīng)用。因此,提升氣凝膠的結(jié)構(gòu)穩(wěn)定性與力學(xué)性能是當(dāng)前氣凝膠的研究熱點(diǎn)。錢(qián)晶晶等制備聚酰亞胺氣凝膠代替SiO氣凝膠,改善了純氣凝膠材料的力學(xué)性能。還有不少學(xué)者提出將氣凝膠和相變材料結(jié)合使用來(lái)解決力學(xué)性能問(wèn)題。如ZHANG H等、SHAID A等致力于研究氣凝膠與相變材料的結(jié)合方式,減輕織物質(zhì)量的同時(shí)提高服裝的熱防護(hù)與熱舒適,延長(zhǎng)二度燒傷時(shí)間。
4.2 新型熱防護(hù)材料
蜂窩夾芯織物、形狀記憶材料、三維間隔織物是近些年應(yīng)用于熱防護(hù)領(lǐng)域的新型熱防護(hù)材料,均是利用空氣導(dǎo)熱系數(shù)低的原理進(jìn)行設(shè)計(jì)。
蜂窩夾芯結(jié)構(gòu)源于仿生學(xué)的六角形蜂巢結(jié)構(gòu),具有熱穩(wěn)定性好、質(zhì)量輕、隔熱性能優(yōu)異、吸濕透氣、舒適性好、高規(guī)格強(qiáng)度硬度等特點(diǎn),在熱防護(hù)領(lǐng)域用于降低多層織物組合的面密度,改善防護(hù)服笨重的問(wèn)題,通過(guò)三維結(jié)構(gòu)提升熱防護(hù)服的功能防護(hù)性與熱濕舒適性。蜂窩夾芯結(jié)構(gòu)作為近五年新興的熱防護(hù)材料,在熱防護(hù)領(lǐng)域有較大的發(fā)展空間。李小輝團(tuán)隊(duì)致力于此方面的研究,發(fā)現(xiàn)熱防護(hù)性與蜂窩夾芯的邊長(zhǎng)、壁厚、芯厚、孔型結(jié)構(gòu)及開(kāi)孔方式等因素息息相關(guān),證實(shí)蜂窩孔洞錐形、斜孔結(jié)構(gòu)兩者具有更佳的熱防護(hù)性能。
形狀記憶材料是經(jīng)高溫處理后塑形,冷卻后隨意改變形狀,再次加熱至形變溫度后完全恢復(fù)到原始形狀的智能材料,包括形狀記憶合金(SMA)、形狀記憶環(huán)(SMR)、形狀記憶合金彈簧(SMAs)、形狀記憶聚合物(SMP)、形狀記憶織物(SMF)等,其具備可調(diào)節(jié)性,在熱防護(hù)領(lǐng)域用于改善熱防護(hù)與熱舒適。
將形狀記憶材料運(yùn)用于熱防護(hù)領(lǐng)域,可有效降低熱流量,延長(zhǎng)火場(chǎng)救援時(shí)間。以SMR為例,HENDRICKSON B W將7 mm空氣層的SMR置于面料系統(tǒng)中,在熱輻射條件下SMR產(chǎn)生的空氣層使皮膚維持在較低的溫度范圍。YATES D A將形狀記憶合金盤(pán)成中部拱起的8字形SMR,固定于熱防護(hù)服的肩部、上臂的隔熱口袋內(nèi),并在HENDRICKSON B W的基礎(chǔ)上進(jìn)行真人實(shí)驗(yàn),顯示SMR可顯著降低服裝內(nèi)部局部熱流量。WHITE J P實(shí)驗(yàn)發(fā)現(xiàn),SMR置于防水透氣層外部的隔熱效果更佳。以SMAs為例,CONGALTON D研究發(fā)現(xiàn)SMA彈簧的形變溫度接近二度燒傷溫度(45℃)時(shí),彈簧的隔熱效果更優(yōu)。王麗君等研究SMA彈簧的排列方式和形變高度對(duì)熱防護(hù)性能的影響,發(fā)現(xiàn)1個(gè)彈簧中心排列與三個(gè)彈簧對(duì)角排列的隔熱效果更優(yōu),且全高型較減半型隔熱效果更好。以SMF為例,LAH A S等開(kāi)發(fā)了一種形狀記憶鎳鈦緯編針織面料用于消防服的隔熱層,構(gòu)筑智能防護(hù)系統(tǒng),提高局部隔熱性并保護(hù)人體皮膚免受燒傷。WANG L J等開(kāi)發(fā)由鎳鈦合金和芳綸織物制造的SMF,從長(zhǎng)絲間隔、SMF位置、水分含量方面探究對(duì)熱防護(hù)性能的影響,結(jié)果顯示:使用相鄰兩長(zhǎng)絲2 cm間隔且接近防護(hù)外層的潮濕SMF的智能織物系統(tǒng),具有更優(yōu)的熱防護(hù)性和熱舒適性。但目前除YATES D A外,其他學(xué)者只局限于局部面料的隔熱性能測(cè)試,缺乏形狀記憶材料在熱防護(hù)服中應(yīng)用的整體實(shí)驗(yàn)測(cè)試。作為一種新型熱防護(hù)材料,形狀記憶材料在熱防護(hù)服中的應(yīng)用具有巨大的發(fā)展前景,有待進(jìn)一步研究探索。
三維間隔織物是由若干間隔紗連接上下兩個(gè)織物層形成的三維立體結(jié)構(gòu)織物,此結(jié)構(gòu)可儲(chǔ)存大量靜止空氣,具有質(zhì)量輕、吸濕透氣性好、抗壓縮等特點(diǎn),在熱防護(hù)領(lǐng)域具有較大的發(fā)展?jié)摿ΑD壳?,三維間隔織物優(yōu)異的隔熱性能已通過(guò)實(shí)驗(yàn)證實(shí),如CHEN Q等研究表明間隔織物的隔熱效果比傳統(tǒng)織物高5~16倍。李紅燕等證實(shí)三維阻燃間隔織物應(yīng)用于消防服中可有效減輕消防員熱負(fù)荷。但由于間隔織物中含有大量空氣,在強(qiáng)迫對(duì)流的情況下,織物中的靜止空氣會(huì)產(chǎn)生熱對(duì)流,使織物的隔熱性能減弱。目前解決此類問(wèn)題的主要途徑是通過(guò)降低間隔織物的透氣性來(lái)增強(qiáng)隔熱性。MAO N等通過(guò)水刺技術(shù)在針織墊片織物的一側(cè)附著輕質(zhì)羊毛網(wǎng)以阻擋表面的網(wǎng)孔,降低間隔織物的透氣性和導(dǎo)熱性。
三維間隔織物多與隔熱材料復(fù)合使用,以提升兩者使用性能。王漢玉等用無(wú)堿玻璃纖維紗制備間隔織物、使用白炭黑為填充材料,實(shí)驗(yàn)發(fā)現(xiàn)間隔織物的結(jié)構(gòu)主要影響復(fù)合材料的隔熱均勻性,而織物的隔熱性隨著隔熱材料填充量的增加而提升。葛東升制備了芳綸/聚酰亞胺間隔織物,在高溫下可保持良好的力學(xué)性能,兼具隔熱、質(zhì)輕特點(diǎn)。但無(wú)機(jī)材料扭轉(zhuǎn)性差、織造困難,有機(jī)材料燃燒會(huì)產(chǎn)生有害氣體,使用較少,目前SiO氣凝膠與間隔織物的復(fù)合效果較好,在熱防護(hù)領(lǐng)域的發(fā)展空間廣闊。王漢玉將SiO氣凝膠填充到玻璃纖維間隔織物中,對(duì)比先前的白炭黑填充材料,SiO氣凝膠填充的隔熱效果更佳。ISLAM S R等將SiO氣凝膠涂覆于間隔織物表面,發(fā)現(xiàn)SiO氣凝膠與間隔織物復(fù)合使用的隔熱效果提升。
5 結(jié) 論
本文使用CiteSpace信息可視化軟件對(duì)1993—2023年WOS數(shù)據(jù)庫(kù)和CNKI數(shù)據(jù)庫(kù)中的熱防護(hù)材料相關(guān)文獻(xiàn)進(jìn)行可視化處理,對(duì)所選文獻(xiàn)中的發(fā)文量、發(fā)文國(guó)家/地區(qū)和機(jī)構(gòu)、研究方向、核心作者、關(guān)鍵詞等元素進(jìn)行逐一剖析,分析當(dāng)前熱防護(hù)材料的研究現(xiàn)狀及研究熱點(diǎn),得到的研究結(jié)論如下。
1)通過(guò)文獻(xiàn)分析可知熱防護(hù)材料的相關(guān)文獻(xiàn)發(fā)文量呈增長(zhǎng)態(tài)勢(shì),學(xué)科交叉融合性強(qiáng),熱防護(hù)服的材料、消防員的職業(yè)健康備受關(guān)注。
2)美國(guó)、中國(guó)為主要研究國(guó)家,在該領(lǐng)域居主導(dǎo)地位。東華大學(xué)(中國(guó))、中央勞動(dòng)保護(hù)研究所(波蘭)、瑞士聯(lián)邦技術(shù)研究所(瑞士)、瑞士聯(lián)邦材料科學(xué)與技術(shù)研究所(瑞士)、阿爾伯特大學(xué)(加拿大)、北卡羅萊納州立大學(xué)(美國(guó))等機(jī)構(gòu)學(xué)術(shù)網(wǎng)絡(luò)關(guān)系密切;LI J(Li Jun)、SONG G W(Song Guowen)、SU Y(Su Yun)、LU Y H(Lu Yehu)、王云儀、朱方龍等作者為該領(lǐng)域的核心作者,在熱應(yīng)激、熱防護(hù)服研究中具有重要影響力;熱防護(hù)服的熱防護(hù)性與傳熱機(jī)制、人體的熱生理與熱舒適屬于重要研究熱點(diǎn)。
3)相變材料、氣凝膠、形狀記憶織物、蜂窩夾芯織物、三維間隔織物為近年來(lái)的熱點(diǎn)材料,在平衡熱防護(hù)與熱舒適方面有著重要作用,促進(jìn)了傳統(tǒng)熱防護(hù)材料的更新?lián)Q代,但材料使用過(guò)程中潛在的問(wèn)題仍需重點(diǎn)關(guān)注并改善。
4)利用新型熱防護(hù)材料進(jìn)行應(yīng)用創(chuàng)新,將不同材料和結(jié)構(gòu)進(jìn)行優(yōu)化組合,降低熱應(yīng)激對(duì)人體的影響,使熱防護(hù)和熱舒適的綜合性能達(dá)到最優(yōu)化是未來(lái)熱防護(hù)材料的重點(diǎn)研究方向。
本文基于CiteSpace信息可視化軟件的分析結(jié)果,得出熱防護(hù)服的熱防護(hù)性、傳熱屬性、熱舒適性是設(shè)計(jì)熱防護(hù)服的重要內(nèi)容,羅列出當(dāng)前應(yīng)用于熱防護(hù)服的熱門(mén)材料,并總結(jié)其優(yōu)缺點(diǎn)和應(yīng)對(duì)之策,為熱防護(hù)服的設(shè)計(jì)與研究提供參考。在未來(lái)研究中,數(shù)值模型將成為評(píng)價(jià)熱防護(hù)服熱防護(hù)性與舒適性的主要方法,未來(lái)研究將趨向于各隔熱材料之間的復(fù)合使用,以規(guī)避各類材料的缺陷,熱防護(hù)服的設(shè)計(jì)將朝輕質(zhì)、高效、舒適方向發(fā)展。
參考文獻(xiàn):
[1]盧業(yè)虎, 王麗君. 多災(zāi)害環(huán)境下熱防護(hù)服裝防護(hù)性能研究進(jìn)展[J]. 服裝學(xué)報(bào), 2020, 5(1): 31-39.
LU Y H, WANG L J. Research progress on protective performance of thermal protective clothing in multiple hazardous environments[J]. Journal of Clothing Research, 2020, 5(1): 31-39.
[2]楊杰. 基于人體服裝環(huán)境的高溫人體熱反應(yīng)模擬與實(shí)驗(yàn)研究[D]. 北京: 清華大學(xué), 2017.
YANG J. Numerical and Experimental Study on Physiological Responses in Hot Environments Based on Human-Clothing-Environment System[D]. Beijing: Tsinghua University, 2017.
[3]許慧娟, 高利軍. 個(gè)體防護(hù)服裝內(nèi)人體熱舒適評(píng)價(jià)模型研究[J]. 邢臺(tái)職業(yè)技術(shù)學(xué)院學(xué)報(bào), 2022, 39(5): 96-100.
XU H J, GAO L J. Research on evaluation model of human thermal comfort inside the personal protective clothing[J]. Journal of Xingtai Polytechnic College, 2022, 39(5): 96-100.
[4]周亮. 消防服材料熱舒適性與熱防護(hù)性的研究[D]. 上海: 東華大學(xué), 2012.
ZHOU L. Study of the Thermal Comfort and Thermal Protective Performance of Firefighter Clothing Materials[D]. Shanghai: Donghua University, 2012.
[5]LU Y H, SONG G W, LI J, et al. Effect of an air gap on the heat transfer of protective materials upon hot liquid splashes[J]. Textile Research Journal, 2013, 83(11): 1156-1169.
[6]CHEN S, LU Y H, HE J Z, et al. Predicting the heat transfer through protective clothing under exposure to hot water spray[J]. International Journal of Thermal Sciences, 2018, 130: 416-422.
[7]LI X H, LU Y H, LI J, et al. A new approach to evaluate the effect of moisture on heat transfer of thermal protective clothing under flashover[J]. Fibers and Polymers, 2012, 13(4): 549-554.
[8]LI J, LU Y H, LI X H. Effect of relative humidity coupled with air gap on heat transfer of flame-resistant fabrics exposed to flash fires[J]. Textile Research Journal, 2012, 82(12): 1235-1243.
[9]SU Y, TIAN M, LI J, et al. Numerical study of heat and moisture transfer in thermal protective clothing against a coupled thermal hazardous environment[J]. International Journal of Heat and Mass Transfer, 2022, 194: 122989.
[10]HE J Z, LU Y H, YANG J. Quantification of the energy storage caused dual performance of thermal protective clothing containing with moisture exposed to hot steam[J]. Energy Science & Engineering, 2019, 7(6): 2585-2595.
[11]HE J Z, LU Y H, CHEN Y, et al. Investigation of the thermal hazardous effect of protective clothing caused by stored energy discharge[J]. Journal of Hazardous Materials, 2017, 338: 76-84.
[12]HE J Z, CHEN Y, WANG L C, et al. Quantitative assessment of the thermal stored energy in protective clothing under low-level radiant heat exposure[J]. Textile Research Journal, 2018, 88(24): 2867-2879.
[13]SONG G W, CAO W, GHOLAMREZA F. Analyzing stored thermal energy and thermal protective performance of clothing[J]. Textile Research Journal, 2011, 81(11): 1124-1138.
[14]XIN L S, LI J. The relation between thermal protection performance and total heat loss of multi-layer flame resistant fabrics with the effect of moisture considered[J]. Fibers and Polymers, 2016, 17(2): 289-297.
[15]GUAN M H, LI J. Garment size effect of thermal protective clothing on global and local evaporative cooling of walking manikin in a hot environment[J]. International Journal of Biometeorology, 2020, 64(3): 485-499.
[16]ZHAO M M, GAO C S, WANG F M, et al. The torso cooling of vests incorporated with phase change materials: A sweat evaporation perspective[J]. Textile Research Journal, 2013, 83(4): 418-425.
[17]SU Y, YANG J, SONG G W, et al. Development of a numerical model to predict physiological strain of firefighter in fire hazard[J]. Scientific Reports, 2018, 8: 1-12.
[18]HE J Z, LU Y H, WANG L J, et al. On the improvement of thermal protection for temperature-responsive protective clothing incorporated with shape memory alloy[J]. Materials, 2018, 11(10): 1932.
[19]LU Y H, WANG L J, HE J Z, et al. Investigation of the thermal protective performance of shape memory fabric system: Effect of moisture and position of shape memory alloy[J]. Clothing and Textiles Research Journal, 2022, 40(1): 73-86.
[20]MA N N, LU Y H, HE J Z, et al. Application of shape memory materials in protective clothing: A review[J]. Journal of the Textile Institute, 2019, 110(6): 950-958.
[21]PAN M J, WANG L J, LU Y H, et al. Design and fabrication of NiTi shape memory alloy/aramid composite fabric for thermal protective clothing[J]. Smart Materials and Structures, 2023, 32(5): 055003.
[22]WANG L J, LU Y H, HE J Z. On the effectiveness of temperature-responsive protective fabric incorporated with shape memory alloy (SMA) under radiant heat exposure[J]. Clothing and Textiles Research Journal, 2020, 38(3): 212-224.
[23]WANG L J, PAN M J, LU Y H, et al. Developing smart fabric systems with shape memory layer for improved thermal protection and thermal comfort[J]. Materials & Design, 2022, 221:110922.
[24]SU Y, ZHU W, TIAN M, et al. Intelligent bidirectional thermal regulation of phase change material incorporated in thermal protective clothing[J]. Applied Thermal Engineering, 2020, 174: 115340.
[25]ZHANG H, SONG G W, SU H, et al. An exploration of enhancing thermal protective clothing performance by incorporating aerogel and phase change materials[J]. Fire and Materials, 2017, 41(8): 953-963.
[26]蘇云, 王云儀, 李俊. 消防服衣下空氣層熱傳遞機(jī)制研究進(jìn)展[J]. 紡織學(xué)報(bào), 2016, 37(1): 167-172.
SU Y, WANG Y Y, LI J. Research progress of heat transfer mechanism of air gap under firefighter protective clothing[J]. Journal of Textile Research, 2016, 37(1): 167-172.
[27]馬艷柳, 蘇云, 朱雯, 等. 相變調(diào)溫防護(hù)服用織物的阻燃性能研究[J]. 中國(guó)安全生產(chǎn)科學(xué)技術(shù), 2021, 17(1): 19-24.
MA Y L, SU Y, ZHU W, et al. Investigation on flame-retardant performance of fabrics used for protective clothing with phase change thermoregulation[J]. Journal of Safety Science and Technology, 2021, 17(1): 19-24.
[28]朱方龍. 附加相變材料層的熱防護(hù)服裝傳熱數(shù)值模擬[J]. 應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報(bào), 2011, 19(4): 635-643.
ZHU F L. Numerical simulation of heat transfer for protective clothing incorporating phase change material layer[J]. Journal of Basic Science and Engineering, 2011, 19(4): 635-643.
[29]朱方龍, 樊建彬, 馮倩倩, 等. 相變材料在消防服中的應(yīng)用及可行性分析[J]. 紡織學(xué)報(bào), 2014, 35(8): 124-132.
ZHU F L, FAN J B, FENG Q Q, et al. Application and feasibility analysis of phase change materials for fire-fighting suit[J]. Journal of Textile Research, 2014, 35(8): 124-132.
[30]馮倩倩, 朱方龍, 楊凱. Outlast腈綸調(diào)溫紡織品在消防服中的應(yīng)用[J]. 中國(guó)個(gè)體防護(hù)裝備, 2013(4): 39-44.
FENG Q Q, ZHU F L, YANG K. The application of outlast acrylic temperature-controlling fabric in firefighters protective clothing[J]. China Personal Protective Equipment, 2013(4): 39-44.
[31]朱方龍. 消防服用織物熱防護(hù)性能數(shù)值模擬[J]. 消防科學(xué)與技術(shù), 2011, 30(11): 1044-1047.
ZHU F L. The development and damnagement of city fire remote monitorung system[J]. Fire Science and Technology, 2011, 30(11): 1044-1047.
[32]王麗君, 盧業(yè)虎, 王帥, 等. 形狀記憶合金尺寸對(duì)消防服面料防護(hù)性能的影響[J]. 紡織學(xué)報(bào), 2018, 39(6): 113-118.
WANG L J, LU Y H, WANG S, et al. Influence of size of shape memory alloy on thermal protection of fabrics used in firefighters’s protective clothing[J]. Journal of Textile Research, 2018, 39(6): 113-118.
[33]孟晶, 高珊, 盧業(yè)虎. 石墨烯氣凝膠復(fù)合防火面料防護(hù)性能的影響因素[J]. 紡織學(xué)報(bào), 2020, 41(11): 116-121.
MENG J, GAO S, LU Y H. Investigation on factors influencing thermal protection of composite flame retardant fabrics treated by graphene aerogel[J]. Journal of Textile Research, 2020, 41(11): 116-121.
[34]王帥, 盧業(yè)虎, 王麗君, 等. 熱災(zāi)害環(huán)境對(duì)形狀記憶消防服面料防護(hù)性能的影響[J]. 東華大學(xué)學(xué)報(bào)(自然科學(xué)版), 2018, 44(1): 74-79.
WANG S, LU Y H, WANG L J, et al. Effect of thermal hazards on the thermal protection of fabrics used in firefighters’ protective clothing incorporated with shape memory alloy[J]. Journal of Donghua University (Natural Science), 2018, 44(1): 74-79.
[35]王帥, 盧業(yè)虎, 王麗君, 等. 低輻射環(huán)境下形狀記憶合金對(duì)防火面料隔熱性能的影響[J]. 紡織學(xué)報(bào), 2017, 38(8): 114-119.
WANG S, LU Y H, WANG L J, et al. Influence of shape memory alloy on thermal insulation performance of flame retardant fabrics in low radiation environment[J]. Journal of Textile Research, 2017, 38(8): 114-119.
[36]TORVI D A, DALE J D. A finite element model of skin subjected to a flash fire[J]. Journal of Biomechanical Engineering-Transactions of the Asme, 1994, 116(3): 250-255.
[37]TORVI D A, DALE J D. Neat transfer in thin fibrous materials under high heat flux[J]. Fire Technology, 1999, 35(3): 210-231.
[38]HAVENITH G, FIALA D. Thermal indices and thermophysiological modeling for heat stress[J]. Comprehensive Physiology, 2016, 6(1): 255-302.
[39]ONOFREI E, PETRUSIC S, BEDEK G, et al. Study of heat transfer through multilayer protective clothing at low-level thermal radiation[J]. Journal of Industrial Textiles, 2015, 45(2): 222-238.
[40]ZHANG C K, CHEN Y, LIANG G J, et al. Heat strain in chemical protective clothing in hot-humid environment: Effects of clothing thermal properties[J]. Journal of Central South University, 2021, 28(12): 3654-3665.
[41]MANDAL S, ANNAHEIM S, GREVE J, et al. Modeling for predicting the thermal protective and thermo-physiological comfort performance of fabrics used in firefighters’ clothing[J]. Textile Research Journal, 2019, 89(14): 2836-2849.
[42]CHOU C, TOCHIHARA Y, KIM T. Physiological and subjective responses to cooling devices on firefighting protective clothing[J]. European Journal of Applied Physiology, 2008, 104(2): 369-374.
[43]GAO C S, KUKLANE K, HOLMER I. Cooling vests with phase change materials: The effects of melting temperature on heat strain alleviation in an extremely hot environment[J]. European Journal of Applied Physiology, 2011, 111(6): 1207-1216.
[44]鄢瑛, 張會(huì)平. 配有制冷背心的隔絕式防護(hù)服的傳熱模型[J]. 華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版), 2010, 38(8): 17-22.
YAN Y, ZHANG H P. Heat transfer model of impermeable protective clothing with cooling vest[J]. Journal of South China University of Technology (Natural Science Edition), 2010, 38(8): 17-22.
[45]MCCARTHY L K, MARZO M D. The application of phase change material in fire fighter protective clothing[J]. Fire Technology, 2012, 48(4): 841-864.
[46]BUHLER M, POPA A M, SCHERER L J, et al. Heat protection by different phase change materials[J]. Applied Thermal Engineering, 2013, 54(2): 359-364.
[47]FONSECA A, MAYOR T S, CAMPOS J B L M. Guidelines for the specification of a PCM layer in firefighting protective clothing ensembles[J]. Applied Thermal Engineering, 2018, 133: 81-96.
[48]ZHU F L, FENG Q Q, LIU R T, et al. Enhancing the thermal protective performance of firefighters’ protective fabrics by incorporating phase change materials[J]. Fibres & Textiles in Eastern Europe, 2015, 23(2): 68-73.
[49]DU A, ZHOU B, ZHANG Z H, et al. A special material or a new state of matter: A review and reconsideration of the aerogel[J]. Materials, 2013, 6(3): 941-68.
[50]張興娟, 孔祥明, 楊春信. 氣凝膠消防服概念研究[J]. 中國(guó)個(gè)體防護(hù)裝備, 2011(3): 15-17.
ZHANG X J, KONG X M, YANG Chunxin. Study on the concept of the aerogel-based fire protective clothing[J]. China Personal Protective Equipment, 2011(3): 15-17.
[51]張興娟, 吳洪飛, 孔祥明. 新型組合式消防服熱防護(hù)性能分析[J]. 中國(guó)個(gè)體防護(hù)裝備, 2013(6): 20-24.
ZHANG X J, WU H F, KONG X M. Analysis of thermal protective performance of aerogel-based new combined firefighters’ clothing[J]. China Personal Protective Equipment, 2013(6): 20-24.
[52]許魯, 王虹, 顏肇基, 等. SiO氣凝膠混雜芳綸非織布的性能研究[J]. 現(xiàn)代紡織技術(shù), 2018, 26(1): 22-25.
XU L, WANG H, YAN Z J, et al. The performance study of SiO aerogel hybrib aramid nonwoven fabric[J]. Advanced Textile Technology, 2018, 26(1): 22-25.
[53]ALTAY P, ERYURUK S H, ZCAN G, et al. A new thermal protective clothing design with silica aerogel filled acrylic nanofibers[J]. International Journal of Clothing Science and Technology, 2023, 35(1): 32-47.
[54]劉國(guó)熠, 劉元軍, 趙曉明. SiO氣凝膠含量對(duì)單層涂層柔性復(fù)合材料熱防護(hù)性能的影響[J]. 紡織科學(xué)與工程學(xué)報(bào), 2019, 36(1): 102-105.
LIU G Y, LIU Y J, ZHAO X M. Influence of SiO aerodel content on the thermal protective performance of single-layer coating flexible composites[J]. Journal of Textile Science and Engineering, 2019, 36(1): 102-105.
[55]錢(qián)晶晶, 陳益人, 馮堅(jiān), 等. 聚酰亞胺氣凝膠的制備及其性能研究[J]. 功能材料, 2014, 45(20): 20122-20126.
QIAN J J, CHEN Y R, FENG J, et al. Synthesis and properties of polyimide aerogels[J]. Journal of Functional Materials, 2014, 45(20): 20122-20126.
[56]SHAID A, WANG L J, FERGUSSON S M, et al. Effect of aerogel incorporation in PCM-containing thermal liner of firefighting garment[J]. Clothing and Textiles Research Journal, 2018, 36(3): 151-164.
[57]趙倫玉, 隋曉鋒, 毛志平, 等. 氣凝膠材料在紡織品上的應(yīng)用研究進(jìn)展[J]. 紡織學(xué)報(bào), 2022, 43(12): 181-189.
ZHAO L Y, SUI X F, MAO Z P, et al. Research progress in aerogel materials application for textiles[J]. Journal of Textile Research, 2022, 43(12): 181-189.
[58]侯玉瑩, 李小輝. 防火服用蜂窩隔熱層的熱蓄積性能測(cè)評(píng)[J]. 紡織學(xué)報(bào), 2019, 40(12): 109-113.
HOU Y Y, LI X H. Evaluation of thermal storage performance of honeycomb insulation layer for fireproof clothing[J]. Journal of Textile Research, 2019, 40(12): 109-113.
[59]杜菲菲, 李小輝, 張思嚴(yán). 防火服用蜂窩夾芯結(jié)構(gòu)織物的熱防護(hù)性能測(cè)評(píng)[J]. 紡織學(xué)報(bào), 2019, 40(3): 133-138.
DU F F, LI X H, ZHANG S Y. Evaluation of thermal protection performance of honeycomb sandwich structure fabric for fireproof clothing[J]. Journal of Textile Research, 2019, 40(3): 133-138.
[60]胡貝貝, 杜菲菲, 李小輝. 消防服用隔熱層孔型結(jié)構(gòu)優(yōu)化與測(cè)評(píng)[J]. 紡織學(xué)報(bào), 2019, 40(11): 140-414.
HU B B, DU F F, LI X H. Hole structure optimization and evaluation of thermal barrier for firefighter protective clothing[J]. Journal of Textile Research, 2019, 40(11): 140-414.
[61]張泓月, 李小輝. 熱防護(hù)服用織物蜂窩夾芯結(jié)構(gòu)的輻射熱性能測(cè)評(píng)[J]. 紡織學(xué)報(bào), 2019, 40(10): 147-151.
ZHANG H Y, LI X H. Evaluation on radiation thermal performance of honeycomb sandwich structure of thermal protective clothing fabrics[J]. Journal of Textile Research, 2019, 40(10): 147-151.
[62]張思嚴(yán). 消防服用蜂窩夾芯結(jié)構(gòu)織物的熱防護(hù)性能優(yōu)化研究[D]. 上海: 東華大學(xué), 2019.
ZHANG S Y. Study of Optimization on Thermal Protective Performance of Honeycomb Sandwich Structure Fabrics for Firefighter Protective Clothing[D]. Shanghai: Donghua University, 2019.
[63]DU F F, LI X H. The approach of honeycomb sandwich structure for thermal protective clothing[J]. Journal of Industrial Textiles, 2021, 50(7): 957-969.
[64]DAI J X, LI X H. Effect of different hole shape of thermal barrier on the performance for thermal protective clothing[J]. Journal of Industrial Textiles, 2022, 51(2): 2499S-2513S.
[65]HENDRICKSON B W. The Impact of a Variable Air Gap on the Thermal Performance of Firefighter Protective Clothing[D]. Maryland: University of Maryland, College Park, 2011.
[66]YATES D A. Design and Evaluation of a Thermally Responsive Firefighter Turnout Coat[D]. Maryland: University of Maryland, College Park, 2012.
[67]WHITE J P. An Experimental Analysis of Firefighter Protective Clothing: The Influences of Moisture and a Thermally Activated Expanding Air-Gap[D]. Maryland: University of Maryland, College Park, 2012.
[68]CONGALTON D. Shape memory alloys for use in thermally activated clothing, protection against flame and heat[J]. Fire and Materials, 1999, 23(5): 223-226.
[69]LAH A S, FAJFAR P, KUGLER G, et al. A NiTi alloy weft knitted fabric for smart firefighting clothing[J]. Smart Materials and Structures, 2019, 28(6): 065014.
[70]ERTEKIN G, MARMARALI A. The compression characteristic of weft knitted spacer fabrics[J]. Tekstil Ve Konfeksiyon, 2012, 22(4): 340-345.
[71]CHEN Q, LIANG X G, GUO Z Y. Entransy theory for the optimization of heat transfer: A review and update[J]. International Journal of Heat and Mass Transfer, 2013, 63: 65-81.
[72]李紅燕, 吳宣潤(rùn), 張渭源. 多層織物系統(tǒng)綜合熱防護(hù)性能[J]. 材料科學(xué)與工程學(xué)報(bào), 2008, 26(4): 520-525.
LI H Y, WU X R, ZHANG W Y. Multi-fabric system’s integrated thermal protective performance[J]. Journal of Materials Science and Engineering, 2008, 26(4): 520-525.
[73]MAO N, RUSSELL S J. The thermal insulation properties of spacer fabrics with a mechanically integrated wool fiber surface[J]. Textile Research Journal, 2007, 77(12): 914-922.
[74]王漢玉, 孫潤(rùn)軍. 間隔織物增強(qiáng)復(fù)合材料的隔熱性能研究[J]. 合成纖維, 2020, 49(12): 44-48.
WANG H Y, SUN R J. Study on thermal insulation properties of spacer fabric reinforced composites[J]. Synthetic Fiber in China, 2020, 49(12): 44-48.
[75]葛東升. 芳綸間隔織物/聚酰亞胺樹(shù)脂復(fù)合材料的制備與壓縮和熱學(xué)性能評(píng)價(jià)[D]. 上海: 東華大學(xué), 2021.
GE D S. Preparation, Compression and Thermal Performance Evaliation of Aramid Spacer Fabric/Polymide Resin Composite[D]. Shanghai: Donghua University, 2021.
[76]王漢玉. 間隔織物增強(qiáng)復(fù)合材料的隔熱性能研究[D]. 西安: 西安工程大學(xué), 2021.
WANG H Y. Study on Thermal Insulation Properties of Spacer Fabric Reinforced Composites[D]. Xi’an: Xi’an Polytechnic University, 2021.
[77]ISLAM S R, YU W D, NAVEED T. Influence of silica aerogels on fabric structural feature for thermal isolation properties of weft-knitted spacer fabrics[J]. Journal of Engineered Fibers and Fabrics, 2019, 14: 1-11.
Research progress on novel thermal protection materials
XIANG Shuqi, LU Yehu
(a.College of Textile and Clothing Engineering; b.National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215006, China)
Abstract:Thermal protective clothing is an effective barrier to protect the safety of workers in the fields of industry, fire protection, and emergency rescue. The development of high-performance thermal protective materials and clothing is of great significance. At present, the traditional fabric system used for thermal protective clothing is composed of a four-layer structure. Although the protective performance is satisfactory, the fabric is too thick and bulky, and the physiological heat load and heat stress of operators will be caused for a long time of wearing. Therefore, improving thermal comfort while ensuring thermal protective performance is a key research direction in this field. In recent years, the number of research on thermal protective materials has been increasing, but there is rarely a systematic summary of their research direction and progress from the bibliometric perspective. The information visualization analysis software CiteSpace was used to analyze the research hotspots of thermal protection materials, understand the research progress and dynamic frontiers of new thermal protective materials, explore the research status and future development trends of various new thermal protective materials, and lay the foundation for subsequent research.
By using CiteSpace information visualization software to visualize the literature related to thermal protective materials in the WOS database and CNKI database from January 1993 to June 2023, the selected literature was analyzed one by one, including the publication volume, publication country/region and institution, research direction, core authors, keywords, and other elements. The current research status and research hotspots of thermal protection materials were analyzed. The publication volume of relevant literature shows an increasing trend in the two major databases, with strong interdisciplinary nature, and research in this area has received widespread attention. In addition, China and the United States are the main research countries in this field, with Chinese authors accounting for the majority of the core authors. They have significant contributions in heat stress, thermal protective performance, heat transfer mechanisms, human thermal physiology and thermal comfort.
Based on the above data analysis, the mainstream materials and emerging materials in the field of thermal protection in recent years were obtained, including phase change materials, aerogels, shape memory fabrics, honeycomb sandwich fabrics, and three-dimensional spacer fabrics. The present situation and application of these fabrics were analyzed and studied. Specifically, phase change materials and aerogel materials are widely used in the current thermal protection field, but phase change materials have drawbacks such as leakage of liquid phase change materials, uncontrollable temperature regulation of phase change materials, regular need of replacement, evaporative cooling hindering, and inconvenient mobility due to heavy load. By contrast, aerogel materials have problems like poor mechanical properties. The defects of materials can be improved by combining phase change materials with other materials such as aerogels to achieve the best performance of thermal protection and thermal comfort. Honeycomb sandwich fabrics, shape memory materials, and 3D spacer fabrics are new types of thermal protective materials that have been applied in the field of thermal protective clothing in recent years. They are all designed based on the principle of low air thermal conductivity to achieve better thermal protection and thermal comfort. The key research directions for future thermal protective materials include innovating applications with new thermal protective materials, optimizing the combination of different materials and structures, reducing the impact of heat stress on the human body, and optimizing the comprehensive performance of thermal protection and thermal comfort.
Heat stress, thermal protection, heat transfer mechanisms, and human thermal physiological thermal comfort are currently hot topics in the field of thermal protective clothing, and have important influence on the research of balancing thermal protection and thermal comfort. Based on the aforementioned hot research, developing new thermal protection materials is an important strategy for improving thermal protection and comfort. Existing studies have confirmed the feasibility of phase change materials, aerogels, honeycomb sandwich fabrics, shape memory materials and 3D spacer fabrics in improving thermal protection and thermal comfort. Various solutions have been proposed to deal with the defects of various materials one by one. Three new types of thermal protective materials have great application potential, and further studies are still needed in the future.
Based on the analysis results of information visualization software CiteSpace, it is concluded that the thermal protection, heat transfer properties, and thermal comfort of thermal protective clothing are important aspects of designing thermal protective clothing. It sorts out the popular materials currently used in thermal protective clothing, summarizes their advantages, disadvantages and countermeasures, and provides reference for the design and research of thermal protective clothing. In future studies, numerical models will become the main method for evaluating the thermal protection and comfort of thermal protective clothing. Future research will tend to combine the use of various insulating materials to avoid defects in various materials. The design of thermal protective clothing will be towards light weight, efficient, and comfortable directions.
Key words:thermal protective materials; CiteSpace; visualization analysis; heat stress; thermal comfort; thermal protective performance