閆晗 劉麗妍 李至潔 羅丹 劉皓
摘要:可穿戴傳感器以獨(dú)特的監(jiān)測模式(實時、連續(xù)、非侵入性)在醫(yī)療、體育、健康監(jiān)測等領(lǐng)域得到了迅速發(fā)展。汗液中含有多種生物標(biāo)記物,如代謝物、電解質(zhì)和各種激素等。汗液可以反映人體的勞累程度、疾病、壓力水平、運(yùn)動情況等,與可穿戴技術(shù)相結(jié)合,汗液傳感器有望實現(xiàn)低成本、實時、原位的汗液監(jiān)測。本文從柔性汗液傳感器的基底材料種類入手,介紹了近年來汗液傳感器常用的基底材料,并概述了柔性汗液傳感器在監(jiān)測方面的應(yīng)用。最后,總結(jié)了目前存在的局限性及對未來發(fā)展的展望。
關(guān)鍵詞:汗液;傳感器;柔性;智能可穿戴;健康監(jiān)測;應(yīng)用
中圖分類號:TP212.6; TS101.8
文獻(xiàn)標(biāo)志碼:A
文章編號:10017003(2024)02008510
DOI:10.3969/j.issn.1001-7003.2024.02.010
收稿日期:20230825;
修回日期:20231216
基金項目:科技部國家重點(diǎn)研發(fā)計劃“科技冬奧”重點(diǎn)專項項目(2019YFF0302105);國家自然科學(xué)基金項目(51473122);中國博士后科學(xué)基金項目(2016M591390);天津市自然科學(xué)基金項目(18JCYBJC18500)
作者簡介:閆晗(1998),女,碩士研究生,研究方向為柔性智能傳感器方面的研究。通信作者:劉皓,教授,liuhao_0760@163.com。
隨著電子設(shè)備技術(shù)的快速發(fā)展,各種各樣的柔性可穿戴傳感器已經(jīng)逐漸進(jìn)入人們的生活,柔性可穿戴傳感器在醫(yī)療、軍事、教育上具有極為重要的地位和應(yīng)用潛力。同時,伴隨著人們對健康監(jiān)測的日益重視,可結(jié)合個人情況定制的個性化可穿戴設(shè)備引起了人們的廣泛關(guān)注,柔性傳感是健康監(jiān)測設(shè)備中最有前途的技術(shù)之一。目前,大多數(shù)可穿戴設(shè)備主要用于監(jiān)測人的身體狀況的變化(如心率、運(yùn)動、溫度等),在反映人體整體健康狀況方面存在局限性。因此,實時監(jiān)測體液、血液和間質(zhì)液等生物體液進(jìn)行生理健康評估已成為可穿戴傳感器發(fā)展的新趨勢。與血液成分的有創(chuàng)分析相比,無創(chuàng)的體液監(jiān)測(如淚液、唾液、汗液)是一種更方便、簡單、安全的獲取生理信號的方法。與淚液、唾液和尿液等其他生物體液取樣的復(fù)雜性和不適性相比,汗液的取樣可以無創(chuàng)地按需獲取,甚至可以被連續(xù)采集。汗液取樣可以方便且不顯眼地實現(xiàn)采集,從而體現(xiàn)出可穿戴式傳感器在體液監(jiān)測方面具有的巨大潛力。
汗液是人體汗腺分泌的液體,分布在身體的各個部位,同時汗液也是調(diào)節(jié)核心體溫的重要體液之一。汗液由電解
質(zhì)離子、代謝物、重金屬、小分子等多種成分組成。這些汗液成分包含豐富的人體健康信息,一些重要的診斷可以通過汗液生物標(biāo)志物來實現(xiàn),如代謝活動、糖尿病、脫水狀態(tài)和囊性纖維化。同時,汗液還能監(jiān)測人們不同狀態(tài)下的情緒。時常加班的人群精神壓力有時候會很大,情緒會有不同程度的起伏,長期靜息狀態(tài)下的汗液監(jiān)測可以察覺到人們的心理壓力導(dǎo)致的汗液分泌,從而可以做出一定調(diào)整,如增加減壓訓(xùn)練、配備心理輔導(dǎo)等,避免發(fā)生意外。所以可以說汗液是體外監(jiān)測的最佳監(jiān)測物質(zhì)。
當(dāng)前關(guān)于柔性可穿戴汗液傳感器的研究,主要從監(jiān)測物質(zhì)、監(jiān)測方法和監(jiān)測原理等方面展開討論,而從基底材料角度入手分析的文章在國內(nèi)外比較少?;诖耍疚氖紫冉榻B近年來汗液傳感器常用的基底材料;其次,概述柔性汗液傳感器在監(jiān)測方面的應(yīng)用;最后,總結(jié)目前存在的局限性及對未來發(fā)展的展望。
1 柔性汗液傳感器的基底材料
柔性可穿戴電子設(shè)備需要匹配人體皮膚的彎曲和拉伸且不影響佩戴者日?;顒?。由于傳統(tǒng)的可穿戴傳感器大多數(shù)基底都是剛性的,無法滿足人們的可穿戴使用,因此柔性基底材料的研究成為現(xiàn)階段柔性傳感器領(lǐng)域的重點(diǎn)。本文對常用于柔性汗液傳感器的基底材料進(jìn)行了分類,主要分為薄膜基底材料、紡織基底材料和紙基底材料,具體特點(diǎn)如表1所示,具體類型如圖1所示。
1.1 薄膜基底材料
1.1.1 聚對苯二甲酸乙二醇酯
聚對苯二甲酸乙二醇酯(PET)是全球最常見且用途廣泛的一種高分子熱塑性材料,因其具有較高的化學(xué)惰性、環(huán)境穩(wěn)定性、電絕緣性和重量輕等特點(diǎn),常被當(dāng)作基底材料,用于柔性傳感器中。
Mei等開發(fā)了一種基于納米纖維微流控技術(shù)和分子印跡聚合物(MIP)的柔性電化學(xué)傳感器,用于原位和實時汗液分析。以PET為基底的傳感器由兩層組成,底層是用于傳感的MIP修飾電極層,上層是用于自發(fā)排汗的納米纖維微流控層,是利用靜電紡絲技術(shù),制備了由聚酰亞胺/十二烷基硫酸鈉組成的納米纖維膜。該傳感器以皮質(zhì)醇為模型分析物,表現(xiàn)出1 nM~1 μM的寬檢測范圍及優(yōu)異的選擇性和穩(wěn)定性。Chen等開發(fā)了一種靈敏、小型化、靈活的電化學(xué)汗液pH值傳感器,用于連續(xù)實時監(jiān)測人體汗液中的氫離子濃度。將氟烷基硅烷功能化的TiCT(F-TiCT)與聚苯胺(PANI)膜相結(jié)合,采用簡單、低成本的絲網(wǎng)印刷技術(shù)在PET基底上制備柔性電極,取代了傳統(tǒng)的離子敏感膜。構(gòu)建的微型便攜式可穿戴pH值傳感器旨在實時監(jiān)測運(yùn)動過程中人體汗液的pH值。對女性和男性志愿者進(jìn)行體表汗液pH值監(jiān)測,該傳感器具有較高的準(zhǔn)確性和連續(xù)穩(wěn)定性。Cui等開發(fā)了一種可穿戴的電化學(xué)傳感器,用于監(jiān)測汗液中的pH值和K。該傳感器是使用微電子打印機(jī)在PET基底上印刷β-CD功能化石墨烯(β-CD/RGO)懸浮液制成的。其在不同彎曲狀態(tài)下均表現(xiàn)出良好的電位穩(wěn)定性,與非原位分析相比,體表汗液pH值和K測量顯示出較高的準(zhǔn)確性。Francesca等以氧化銦錫包覆的PET為柔性襯底,制備一種基于聚苯胺的可穿戴pH值電化學(xué)傳感器。在恒電位下沉積聚苯胺膜,為了提高傳感器的性能,使用還原氧化石墨烯修飾成雙層電極。該傳感器表現(xiàn)出良好的性能,靈敏度為62.3 mV/pH,非常接近能斯特響應(yīng),重復(fù)性為3.8%,可用于測定pH值在2~8的生物體液。
1.1.2 聚酰亞胺
聚酰亞胺(PI)具有耐高溫和極低溫、高柔韌性和機(jī)械強(qiáng)度,以及高效隔熱等優(yōu)異性能。作為基底材料,其具有較好的絕緣性、耐熱性和吸濕性,同時對化學(xué)藥品也具有一定的抗腐蝕性,在柔性電子領(lǐng)域展現(xiàn)出廣闊的應(yīng)用前景。
Liao等通過在PI薄膜上使用激光誘導(dǎo)石墨烯(LIG)技術(shù)制造了一種可穿戴式表皮傳感器,用于多路汗液分析。該LIG裝置可以同時監(jiān)測汗液中的pH值、Na和K水平,靈敏度分別為51.5 mV/dec(pH值)、45.4 mV/dec(Na)和43.3 mV/dec(K),在彎曲狀態(tài)下保持了良好的傳感性能,還具有良好的重復(fù)性、穩(wěn)定性和選擇性。Barber等研究了激光誘導(dǎo)改性PI基底制備對溶液pH值敏感的導(dǎo)電石墨化軌道的方法。使用電位法和伏安法研究了幾種傳感器形式,電位測量系統(tǒng)顯示該傳感器具有能斯特響應(yīng),采用核黃素(維生素B)氧化還原探針的伏安測量系統(tǒng)能夠分析出該傳感器的能斯特曲線(56 mV/pH)。Sun等研制了一種柔性可穿戴的生物傳感器,用于人體皮膚表面汗液中葡萄糖的實時監(jiān)測。利用激光誘導(dǎo)PI薄膜合成了LIG,制成了叉指電極(IEs)。此外,通過熱還原氧化石墨烯(GO)合成了IEs表面修飾的半導(dǎo)體rGO傳感膜,并通過化學(xué)交聯(lián)與葡萄糖氧化酶(GOx)進(jìn)行功能化,獲得GOx/FWCB。該傳感器可用于0.01~3.0 mM內(nèi)葡萄糖的測定,具有較好的選擇性,檢出限為0.8 μM(S/N=3),滿足了快速、無損檢測葡萄糖的要求。
1.1.3 聚二甲基硅氧烷
聚二甲基硅氧烷(PDMS)是一種生物相容性好、化學(xué)性質(zhì)穩(wěn)定的高分子聚合物,同時具有優(yōu)異的拉伸性、彎曲性和可壓縮性,可作為柔性基底材料,廣泛應(yīng)用于可穿戴傳感器中,特別是在制備應(yīng)變需求強(qiáng)和環(huán)境復(fù)雜的傳感器中有顯著優(yōu)勢。
Bae等報告了一種可拉伸的微流體葡萄糖傳感器。在應(yīng)力吸收及三維微圖案化的PDMS基底上制備了高度電催化的納米多孔金電極,在非酶葡萄糖檢測中呈現(xiàn)機(jī)械拉伸性、高靈敏度和耐用性的特點(diǎn)。通過將可拉伸棉織物作為毛細(xì)管,嵌入到薄的聚氨酯納米纖維中來增強(qiáng)PDMS通道,制成了一種薄的、可拉伸的、堅韌的微流體裝置。該設(shè)備能夠收集皮膚中的汗液,并將其準(zhǔn)確地傳輸?shù)诫姌O表面,因此具有出色的監(jiān)測汗液中葡萄糖水平的能力。Shu等制備了一種基于PDMS薄膜的高性能可穿戴電化學(xué)傳感器,用于連續(xù)監(jiān)測汗液中的葡萄糖。通過化學(xué)沉積法在PDMS薄膜基底上沉積一層金,可制備柔性的Au/PDMS薄膜電極。該傳感器對葡萄糖的測定具有良好的電化學(xué)性能,線性范圍為20 μM~790 μM,靈敏度為205.1 μA/mm/cm。此外,傳感器在400次重復(fù)拉伸/釋放、拉伸和彎曲到不同程度后仍表現(xiàn)出高的機(jī)械性和電化學(xué)穩(wěn)定性。它還可用于血糖的長期監(jiān)測,15 d內(nèi)保持98%的原值。Yun等通過在自組裝納米片(AuNS)上逐層沉積真空過濾法制備的碳納米管(CNT)薄膜,在PDMS可伸縮基底上制備了可伸展電極。隨后,采用水熱合成法分別制備了CoWO/CNT和聚苯胺/CNT復(fù)合材料,并將其涂覆在CNT-AuNS電極上,成功地制作出一種用于檢測汗液中葡萄糖和pH值的電化學(xué)傳感器。該傳感器對濕潤皮膚具有良好的黏附性,葡萄糖和pH值的靈敏度分別為10.89 μA/mM/cm和71.44 mV/pH。它不受汗液中其他離子和化學(xué)成分的干擾,在空氣中能保持長期穩(wěn)定性(約10 d),且經(jīng)過1 000次反復(fù)拉伸和釋放,機(jī)械穩(wěn)定性仍達(dá)到30%。
1.2 紡織基底材料
紡織基主要以纖維、紗線和織物的形式作為基底材料,多用于制備傳感器。由于紡織基具有透氣性、柔韌性、舒適性、質(zhì)量輕和成本低等優(yōu)秀的特性,被視為有前途的基底材料。相對于其他基底材料制備的柔性汗液傳感器來說,基于紡織品的汗液傳感器有著優(yōu)秀的傳感性能和舒適性,能夠廣泛應(yīng)用到可穿戴領(lǐng)域。
Zhao等通過一種基于彈性金纖維的三電極電化學(xué)平臺,制備了可穿戴紡織品葡萄糖生物傳感器。用普魯士藍(lán)和葡萄糖氧化酶對金纖維進(jìn)行功能化處理,得到工作電極;用Ag/AgCl修飾作為參比電極,未經(jīng)改性的金纖維作為對電極,制備出傳感器的靈敏度為11.7 μA/mM/cm。即使在拉伸率達(dá)到200%的情況下,它的傳感性能也保持穩(wěn)定。Wang等使用金纖維制備了乳酸生物傳感器,并進(jìn)一步編織成具有平面布局的標(biāo)準(zhǔn)三電極體系的紡織品。此傳感器在人工汗液中靈敏度為14.6 μA/mM/cm,同時靈敏度可以在高拉伸應(yīng)變下仍保持100%。
Zhang等開發(fā)了一種基于全織物的雙功能柔性可穿戴式汗液電化學(xué)傳感器,該傳感器以織物為基底,實現(xiàn)了汗液的定向輸送和多組分綜合檢測的雙重功能。通過Janus織物獲得高效集汗,可以有效地將汗液從皮膚一側(cè)轉(zhuǎn)移到電極上,實現(xiàn)微量采集。該傳感器可以實現(xiàn)良好的傳感性能和高效的集汗雙重功能,并且具有良好的靈活性和佩戴的舒適性。Mugo等通過疊層組裝(LbL)在柔性棉織物基底上制備可穿戴式皮質(zhì)醇傳感器。其具有良好的精度,對9.8~49.5 ng/mL的皮質(zhì)醇響應(yīng)迅速(<2 min),在動態(tài)范圍的平均相對標(biāo)準(zhǔn)偏差為6.4%;且皮質(zhì)醇傳感器的檢測下限為8.00 ng/mL,符合人體汗液的生理水平;同時單個皮質(zhì)醇傳感器貼片可以在30 d內(nèi)重復(fù)使用15次,沒有性能損失,也證明了其出色的可重用性。Singh等制作了一種基于棉織物的可穿戴傳感器,用于實時葡萄糖監(jiān)測。其制造分兩步進(jìn)行,一是在棉織物上聚合吡咯以使其導(dǎo)電;二是在導(dǎo)電棉織物上沉積Cu-Mn。研究表明該傳感器可靠,葡萄糖檢出限和定量限分別為125 μM和378 μM。Ma等通過在棉織物上絲網(wǎng)印刷炭黑和再生絲膠,制備了一種基于紡織品的汗液傳感器。獲得的織物具有優(yōu)異的柔韌性、良好的親水性(接觸角為86°)和適當(dāng)?shù)碾娮杪剩?1.7 Ω/cm),可用作可穿戴式汗液傳感器的工作電極。可穿戴式汗液傳感器具有高靈敏度(在酸性汗液中電阻變化率為42.7%)、柔韌性和可洗滌性(洗滌30次后仍保持99.1%)。
Mo等采用一種簡單而新穎的電助紡芯技術(shù)(EACST),開發(fā)了一種基于皮芯結(jié)構(gòu)傳感紗的電化學(xué)織物傳感器,用于原位監(jiān)測人體汗液中的鉀離子濃度。誘導(dǎo)紗表皮層納米纖維表現(xiàn)出優(yōu)異的親水性和較高的比表面積(8.85 m/g),織物經(jīng)、緯紗親疏水性差異顯著。因此,可以在皮膚傳感區(qū)域?qū)崿F(xiàn)汗液極限域的吸收,從而使傳感器在短時間內(nèi)(2.1s)快速響應(yīng)并實現(xiàn)長期穩(wěn)定傳感(6 000 s以上)。此外,該傳感器具有優(yōu)異的選擇性,潛在的再現(xiàn)性及低噪聲和信號漂移(3.6×10 mV/s)。該傳感器還可以縫制到衣服上,有效地收集汗液,實時現(xiàn)場監(jiān)測人體汗液中的K信號。
1.3 紙基底材料
在可穿戴式汗液傳感器中,以紙基作為基底的紙質(zhì)汗液傳感器因其成本低、制作簡單、檢測時間短、采樣方便等優(yōu)點(diǎn)而備受關(guān)注。此外,基于紙基的傳感器能過濾一些可能影響汗液傳感器檢測性能的不必要的干擾,即液體中的顆粒物質(zhì)和灰塵。
Yang等提出了一種過濾汗液中皮脂的紙質(zhì)三明治結(jié)構(gòu)pH值傳感器。該傳感器可以過濾汗液中90%以上的皮脂,也可以監(jiān)測人體代謝水平和身體pH值平衡,人體試驗進(jìn)一步證實了紙質(zhì)三明治結(jié)構(gòu)傳感器的可行性。Al-Hardan等介紹了一種低成本且操作簡單制備pH值傳感器的方法,使用羊皮紙作為基底、鉛筆跡線作為電極來制備pH值傳感器。羊皮紙的疏水性延長了pH值傳感器的使用壽命。發(fā)明的傳感器具有能斯特響應(yīng),其靈敏度為(52.1±1.5)mV/pH,在pH值 4~10的線性度為0.995。Li等報告了一種低成本、獨(dú)立式、一次性的高集成傳感紙(HIS紙),將HIS紙折疊成多層結(jié)構(gòu),制備了能同時檢測葡萄糖和乳酸的雙通道電化學(xué)傳感器,其靈敏度分別為2.4 nA/μM和0.49 nA/mM。該方法為可穿戴生物電子在內(nèi)的一系列生化平臺提供了一種小型化、低成本且靈活的解決方案。
2 柔性汗液傳感器的應(yīng)用
汗液中的組分含量可以反映人體的生理狀況,常見的監(jiān)測物質(zhì)及有關(guān)信息如表2所示。在身體異常狀況下,汗液中的物質(zhì)成分濃度會發(fā)生變化,如汗液中的血糖濃度變化通常會導(dǎo)致糖尿病或低血糖。同時,監(jiān)測汗液的方法主要包括電化學(xué)、比色法等在內(nèi)的多種方法進(jìn)行監(jiān)測,這些不同類型的監(jiān)測方法可以應(yīng)用在不同成本范圍和不同應(yīng)用環(huán)境下,為柔性汗液傳感器在運(yùn)動和靜息、治療和預(yù)防、疾病和保健等多種條件和目的下提供充足的備選。
2.1 用于監(jiān)測電解質(zhì)離子的柔性汗液傳感器
電解質(zhì)濃度異??蓪?dǎo)致酸中毒、腎功能衰竭等高發(fā)病率和高死亡率疾病的發(fā)生,而人體出汗率和電解質(zhì)濃度密切相關(guān),因此實時監(jiān)測汗液中的電解質(zhì)濃度和酸堿參數(shù)對人體健康預(yù)警特別重要。汗液中含有大量的Na、K、Cl、Ca、H等多種無機(jī)電解質(zhì)離子,使汗液具有天然、安全、可靠的電解質(zhì)特性。這些離子與人類的心率、血壓、心血管功能、肌肉收縮、酶激活和骨骼發(fā)育密切相關(guān)。通過分析特定電解質(zhì)離子的濃度,可以達(dá)到早期診斷疾病的目的。
pH值和H濃度相關(guān),主要用于維持人體pH值平衡。pH值是診斷疾病的關(guān)鍵指標(biāo),正常人體汗液的pH值約為3~8,但大多數(shù)情況約為弱酸性。然而,pH值的不正常波動會出現(xiàn)一些健康問題,如皮炎和真菌感染。因此pH值對健康起著重要作用,且汗液pH值與人體的水合狀態(tài)有關(guān),是囊性纖維化等疾病狀診斷的重要指標(biāo)。Hou等通過選擇合適的溶劑和靜電紡絲條件,將聚苯胺(PANI)和聚氨酯(PU)通過同軸靜電紡絲技術(shù)結(jié)合,成功研制出PANI//PU核殼納米纖維柔性pH汗液傳感器。該傳感器在pH 2~7內(nèi)與pH值呈線性關(guān)系,靈敏度為-60 mV/pH且可以檢測到低于pH 0.2的變化,可用于汗液pH值的靈敏檢測。Ha等提出了基于姜黃素和熱塑性聚氨酯(C-TPU)電紡纖維的可穿戴比色汗液pH值傳感器,通過監(jiān)測汗液pH值來診斷疾病狀態(tài)。該傳感器通過改變顏色來響應(yīng)從烯醇到二酮形式的化學(xué)結(jié)構(gòu)變化,從而幫助監(jiān)測pH值。此外,傳感器通過恢復(fù)姜黃素的烯醇形式而具有可逆的pH值比色傳感性能,從而可診斷服裝具有耐用性和可重復(fù)使用性。這項研究有助于為需要持續(xù)汗液pH監(jiān)測的囊性纖維化患者開發(fā)智能診斷服裝。
Cl是人體汗液中含量最豐富的電解質(zhì),測量其濃度可提供人體電解質(zhì)平衡的最佳指標(biāo),也可用于診斷和預(yù)防中暑。Shitanda等制作了一種用于實時監(jiān)測汗液的新型氯離子傳感器。打印的傳感器被熱轉(zhuǎn)移到非織造布上,從而可以輕松地附著在各種類型的衣服上。這種布料還可以防止皮膚和傳感器之間的接觸,并起到流動通道的作用。氯離子傳感器的電動勢變化量為-59.5 mTV/log C,且傳感器與人體汗液中氯離子濃度范圍呈良好的線性關(guān)系。此外,該傳感器還結(jié)合了無線發(fā)射器,可以無線監(jiān)測汗液中的離子,適用于監(jiān)測長期在高溫狀態(tài)下工作的人群,如工人、外賣員、戶外執(zhí)勤民警等。
汗液中Na濃度的變化可以作為監(jiān)測長期運(yùn)動過程中脫水的生物標(biāo)志物,這對運(yùn)動員的水?dāng)z入量有重要意義。通過這種方式,可以預(yù)防因大量出汗而導(dǎo)致的水和電解質(zhì)缺乏。同時Na濃度的變化還可以監(jiān)測熱應(yīng)激,檢測各種疾病,如低鈉血癥和囊性纖維化,為臨床診斷提供重要信息。K在神經(jīng)和肌肉細(xì)胞功能、細(xì)胞生化反應(yīng)和碳水化合物代謝中起重要作用。Mazzaracchio等制備了基于炭黑納米材料的絲網(wǎng)印刷電化學(xué)傳感器。對Na的檢測范圍為10 M~1 M,靈敏度為(58±3)mV/dec,檢出限為63 μM,這可以用來檢測實際汗液樣品中的鈉離子含量。Pirovano等使用聚(3,4-乙烯二氧噻吩)(PEDOT)和聚(3-辛基噻吩-2,5-二基)(POT)作為導(dǎo)電聚合物,并使用固體離子敏感電極(ISEs)來制備監(jiān)測汗液的可穿戴傳感器。測試表明,PEDOT對鈉離子和鉀離子的靈敏度分別為(52.4±6.3)mV/dec和(45.7±7.4)mV/dec。POT對鈉離子和鉀離子的靈敏度分別為(56.4±2.2)mV/dec和(54.3±1.5)mV/dec。此外,運(yùn)動員的騎行試驗表明,90 min內(nèi)Na濃度的動態(tài)范圍為1.89~2.97 mm,K濃度的動態(tài)范圍為3.31~7.25 mm,可以用來測定高水平運(yùn)動員汗液中的電解質(zhì)。Alizadeh等研制了一種無線可穿戴汗液傳感裝置,適用于中等強(qiáng)度運(yùn)動中電解質(zhì)的連續(xù)監(jiān)測,并可作為水合狀態(tài)的測量標(biāo)準(zhǔn)。Na和K的靈敏度分別為55.7 mV/dec和53.9 mV/dec,通過預(yù)測分析,該裝置可用于監(jiān)測高強(qiáng)度排汗過程中的電解質(zhì),適用于監(jiān)測運(yùn)動員和健身愛好者。
2.2 用于監(jiān)測代謝物的柔性汗液傳感器
乳酸積累會引起身體的酸痛和疲勞,長期積累會導(dǎo)致身體酸化或乳酸酸中毒等嚴(yán)重疾病,嚴(yán)重時可導(dǎo)致失血性休克。因此,檢測乳酸可以反映氧化代謝不足和組織損傷,用于預(yù)防運(yùn)動中肌肉酸痛、疼痛和痙攣,并為缺血提供早期預(yù)警。
Zhang等利用絲網(wǎng)印刷技術(shù),在PET的柔性基底上構(gòu)建了一種基于銀納米線(AgNW)的表皮電化學(xué)生物傳感器(MIPs-AgNWS),用于人體運(yùn)動汗液中乳酸的無創(chuàng)監(jiān)測。該傳感器在200次彎曲和扭轉(zhuǎn)循環(huán)后表現(xiàn)出穩(wěn)定的電化學(xué)響應(yīng)。乳酸的監(jiān)測范圍為10 M~0.1 M,檢測下限為0.22 μM。該傳感器在室溫和黑暗條件下存放7個月后,靈敏度保持在99.8%±1.7%,有利于運(yùn)動員的保健和生理監(jiān)測。Wang等研究合成ZIF-67衍生的NiCo層狀氫氧化物(NiCo LDH),作為非酶乳酸檢測的電催化劑,成功制備了無酶乳酸生物傳感器。NiCo-LDH具有均勻的孔隙率,較大的比表面積和層次化的層狀結(jié)構(gòu)。在乳酸濃度為2~26 mM內(nèi),傳感器靈敏度達(dá)到83.98 μA/mM/cm。因此,該傳感器可以實現(xiàn)人體汗液中乳酸的無創(chuàng)監(jiān)測,這在無氧運(yùn)動和有氧運(yùn)動中都具有重要意義。
血糖濃度是衡量患者健康狀況的關(guān)鍵指標(biāo)。由于汗液中葡萄糖水平與血糖濃度相關(guān),因此可以利用可穿戴汗液傳感器實時監(jiān)測汗液中葡萄糖水平,從而反映患者的健康狀況。
Wang等通過在金電極上澆鑄普魯士藍(lán)和葡萄糖氧化酶,成功制備了基于PET的葡萄糖傳感器。該傳感器靈敏度為22.05 μA/mM/cm,線性檢測范圍為0.02~1.11 mM,最低檢出限為2.7 μM,同時對干擾物質(zhì)有良好的靈敏度、線性范圍、檢出限、選擇性、重現(xiàn)性和長期穩(wěn)定性,適合監(jiān)測低血糖患者,防止血糖濃度過低造成心慌、昏迷等狀況。Franco等開發(fā)了一種基于CuO的非酶便攜式葡萄糖傳感器,在纖維素布上印刷石墨烯漿料作為工作電極。此研究中,傳感器在0.1~1 mM葡萄糖內(nèi)具有良好的傳感性能,靈敏度為(182.9±8.83%)μA/mM/cm。Xiao等開發(fā)了一種基于微流控芯片的可穿戴傳感器,用于比色分析和汗液中葡萄糖的檢測。該傳感器的檢測線性范圍為0.1~0.5 mM,檢出限為0.03 mM,可用來監(jiān)測糖尿病患者,杜絕血糖濃度過高導(dǎo)致糖尿病酮癥酸中毒、高血糖高滲綜合征等病癥。
2.3 用于監(jiān)測生物分子的柔性汗液傳感器
酪氨酸(Tyr)是與多種疾病相關(guān)的疾病標(biāo)志物,如酪氨酸血癥和神經(jīng)性貪食癥。Xu等展示了一種基于單寧酸銀碳納米管聚苯胺(TA-Ag-CNT-PANI)復(fù)合水凝膠的電化學(xué)傳感器,用于檢測pH值和Tyr。該可穿戴汗液傳感器具有較高的靈敏度,較好的選擇性、穩(wěn)定性和重復(fù)性,且單寧酸螯合銀納米粒子(TA-AgNPs)和碳納米管(CNTs)的存在顯著提高了水凝膠的導(dǎo)電性和柔韌性,使復(fù)合水凝膠具有抗菌能力。
皮質(zhì)醇由腎上腺合成,是一種應(yīng)激激素,在能量代謝和電解質(zhì)平衡等生理過程中發(fā)揮重要作用,影響記憶、睡眠和情緒等認(rèn)知過程。因此皮質(zhì)醇被認(rèn)為是用于監(jiān)測人類心理健康的生物標(biāo)志物之一。Madhu等提出了一種基于紗線的電化學(xué)傳感器平臺。該傳感器在1 fg/mL~1 μg/mL內(nèi)呈良好的線性關(guān)系,循環(huán)伏安法和微分脈沖伏安法的檢出限分別為0.45 fg/mL和0.098 fg/mL,靈敏度為2.12 μA/(g/mL),可用于皮質(zhì)醇的快速檢測。Sempionatto等制備了一種能夠?qū)崟r監(jiān)測汗液中電解質(zhì)和代謝產(chǎn)物的柔性免疫傳感平臺,將其集成在眼鏡上,可用于高選擇性及高靈敏度測定汗液中的皮質(zhì)醇。傳感器的檢出限為0.3 fg/mL,檢測范圍為1 fg/mL~1 mg/mL。檢測結(jié)果與市售化學(xué)發(fā)光免疫分析法基本一致,對皮質(zhì)醇具有較高的靈敏度。該傳感平臺可作為汗液皮質(zhì)醇的非侵入健康監(jiān)測和臨床診斷工具,適合對工作強(qiáng)度高、壓力大的工作人群監(jiān)測。
2.4 用于監(jiān)測其他成分的柔性汗液傳感器
酒精濫用對個人健康、交通安全和醫(yī)療保健都有有害影響。研究表明,汗液中的乙醇濃度與血液中乙醇濃度高度相關(guān),從而可以通過監(jiān)測汗液中乙醇濃度來判斷血液中的酒精濃度。Kim等提出了一種用于酒精檢測的可穿戴文身生物傳感器系統(tǒng)。這種傳感器使匹羅卡品藥物通過經(jīng)皮傳遞誘導(dǎo)汗液,并通過離子電泳和使用酒精氧化酶和普魯士藍(lán)電極換能器在產(chǎn)生的汗液中對乙醇進(jìn)行安培檢測。該方法在可穿戴的臨時文身紙上使用絲網(wǎng)印刷技術(shù)制作所有電極,制備過程簡單,成本低廉。
維生素在人體的正常新陳代謝中起著重要作用,是肌體維持正常功能所必需的物質(zhì)和營養(yǎng)元素。維生素C可以預(yù)防和治療血液系統(tǒng)疾病、恢復(fù)免疫系統(tǒng)、加速傷口愈合、皮膚管理,并增強(qiáng)身體的抗氧化能力。然而,大量攝入維生素C會導(dǎo)致腎臟疾病、血栓形成和結(jié)石。Sempoatto等提出了一種可穿戴的表皮生物傳感器,用于無創(chuàng)追蹤表皮汗液中維生素C的攝取濃度和動態(tài)趨勢。酶促反應(yīng)消耗的維生素C含量與抗壞血酸濃度成正比,服用維生素C片劑或飲用果汁后可監(jiān)測氧化還原電流的變化,不受尿酸、乙酰氨基酚等汗液成分的干擾。結(jié)果證明,該傳感器可用于評估膳食營養(yǎng)的跟蹤,從而改善佩戴者的飲食行為,正確攝取營養(yǎng)。
咖啡因?qū)儆邳S嘌呤生物堿,是一種相對安全的精神活性藥物,廣泛存在于咖啡、茶等產(chǎn)品中。由于咖啡因成癮,它與生命和健康密切相關(guān)。Tai等開發(fā)了一種可穿戴式皮膚傳感平臺,用于無創(chuàng)、實時、連續(xù)的藥物在線監(jiān)測。研究表明,該傳感器對咖啡因濃度的線性響應(yīng)靈敏度為110 nA/μM,檢測范圍為0~40 μM,檢出限為3×10 M,對尿素、葡萄糖、乳酸、抗壞血酸等干擾物質(zhì)的響應(yīng)小于9.2%。傳感器捕捉咖啡因最高濃度的生理趨勢的能力預(yù)計在30~120 min,構(gòu)建的可穿戴汗液腕帶成功實現(xiàn)了對汗液中甲基黃嘌呤類藥物的連續(xù)監(jiān)測。同時該平臺的微分脈沖伏安法(DPV)檢測技術(shù)還可以檢測到其他類型的甲基黃嘌呤藥物,為持續(xù)進(jìn)行無創(chuàng)藥物監(jiān)測鋪平了道路。
3 結(jié) 論
隨著各種技術(shù)的發(fā)展,靈活的可穿戴傳感器正在成為下一代智能可穿戴的工具,能夠以智能、簡便、實時的方式捕捉人體和周圍環(huán)境的信息,從而被廣泛應(yīng)用于醫(yī)療、軍事等領(lǐng)域。除了上述應(yīng)用領(lǐng)域外,能與人體皮膚緊密貼合的可穿戴設(shè)備也在腕帶、手環(huán)等領(lǐng)域迅速發(fā)展,然而,還存在一些問題。一是汗液的收集和利用。由于環(huán)境和生理差異,個體和身體部位的汗液含量存在差異。汗液的化學(xué)成分會因收集地點(diǎn)和提取方式的不同而有所不同,年齡和性別的差異也會影響汗液的成分。二是大多數(shù)情況下,傳感器多采用聚合物薄膜作為基底,并使用貴金屬作為導(dǎo)電電極,因此,透氣性差、穿著舒適性差、價格高是這些傳感器的主要缺點(diǎn)。三是除了佩戴汗液傳感器的舒適性和汗液檢測的靈敏度外,還需要考慮佩戴過程中人體運(yùn)動和環(huán)境變化是否會影響檢測性能和靈敏度。
針對以上問題,今后可以通過建立具有動態(tài)波動范圍的標(biāo)準(zhǔn)化、個性化的汗液成分?jǐn)?shù)據(jù)庫,可為柔性傳感器的進(jìn)一步發(fā)展和應(yīng)用奠定基礎(chǔ)。開發(fā)天然且成本低的材料制備可穿戴紡織品汗液傳感器已成為一種趨勢,如紡織基底材料及紙基底材料,可以滿足其佩戴的舒適性和透氣性。隨著研究人員對制備方法和實際應(yīng)用的深入研究,柔性可穿戴傳感器會更加具有廣泛的應(yīng)用前景,可穿戴設(shè)備有望在未來的日常健康和體育活動監(jiān)測,以及疾病的預(yù)防、診斷、治療和愈后等方面發(fā)揮重要作用。
參考文獻(xiàn):
[1]CHUNG M, SKINNER W H, ROBERT C, et al. Fabrication of a wearable flexible sweat pH sensor based on SERS-active Au/TPU electrospun nanofibers[J]. ACS Applied Materials & Interfaces, 2021, 13(43): 51504-51518.
[2]GHAFFARI R, YANG D S, KIM J, et al. State of sweat: Emerging wearable systems for real-time, noninvasive sweat sensing and analytics[J]. ACS Sensors, 2021, 6(8): 2787-2801.
[3]KIM J, CAMPBELL A S, AVILA B E F D, et al. Wearable biosensors for healthcare monitoring[J]. Nature Biotechnology, 2019, 37(4): 389-406.
[4]BAKER L B. Physiology of sweat gland function: The roles of sweating and sweat composition in human health[J]. Temperature, 2019, 6(3): 211-259.
[5]JIA J, XU C T, PAN S J, et al. Conductive thread-based textile sensor for continuous perspiration level monitoring[J]. Sensors, 2018, 18(11): 1-19.
[6]LUO D, SUN H B, LI Q Q, et al. Flexible sweat sensors: From films to textiles[J]. ACS Sensors, 2023, 8(2): 465-481.
[7]YIN J, LI J C, REDDY V S, et al. Flexible textile-based sweat sensors for wearable applications[J]. Biosensors, 2023, 13(1): 1-26.
[8]QIAO Y T, QIAO L J, CHEN Z M, et al. Wearable sensor for continuous sweat biomarker monitoring[J]. Chemosensors, 2022, 10(7): 1-53.
[9]YANG P F, WEI G F, LIU A, et al. A review of sampling, energy supply and intelligent monitoring for long-term sweat sensors[J]. Npj Flexible Electronics, 2022, 6(1): 1-13.
[10]TABASUM H, GILL N, MISHRA R, et al. Wearable microfluidic based e-skin sweat sensors[J]. RSC Advances, 2022, 12(14): 8691-8707.
[11]宋璟瑤, 黃蓉, 陳媛媛, 等. 基于導(dǎo)電材料的柔性汗液傳感器的研究進(jìn)展[J]. 分析化學(xué), 2023, 51(5): 695-705.
SONG J Y, HUANG R, CHEN Y Y, et al. Research progress of flexible sweat sensors based on conductive materials[J]. Chinese Journal of Analytical Chemistry, 2023, 51(5): 695-705.
[12]唐麗琴, 李彥, 毛吉富, 等. 檢測汗液用可穿戴電化學(xué)傳感器的研究進(jìn)展[J]. 紡織學(xué)報, 2023, 44(3): 221-230.
TANG L Q, LI Y, MAO J F, et al. Research progress in wearable electrochemical sensor for sweat detection[J]. Journal of Textile Research, 2023, 44(3): 221-230.
[13]MEI X C, YANG J, YU X G, et al. Wearable molecularly imprinted electrochemical sensor with integrated nanofiber-based microfluidic chip for in situ monitoring of cortisol in sweat[J]. Sensors and Actuators B: Chemical, 2023, 381: 133451.
[14]CHEN L J, CHEN F, LIU G, et al. Superhydrophobic functionalized TiCT MXene-based skin-attachable and wearable electrochemical pH sensor for real-time sweat detection[J]. Analytical Chemistry, 2022, 94(20): 7319-7328.
[15]CUI X Q, BAO Y, HAN T T, et al. A wearable electrochemical sensor based on β-CD functionalized graphene for pH and potassium ion analysis in sweat[J]. Talanta, 2022, 245: 123481.
[16]MAZZARA F, PATELLA B, D’AGOSTINO C, et al. PANI-based wearable electrochemical sensor for pH sweat monitoring[J]. Chemosensors, 2021, 9(7): 169.
[17]LIAO J J, ZHANG X Y, SUN Z H, et al. Laser-induced graphene-based wearable epidermal ion-selective sensors for noninvasive multiplexed sweat analysis[J]. Biosensors, 2022, 12(6): 1-11.
[18]BARBER R, CAMERON S, DEVINE A, et al. Laser induced graphene sensors for assessing pH: Application to wound management[J]. Electrochemistry Communications, 2021, 123: 106914.
[19]SUN H X, SONG S J, ZHAO G, et al. A flexible and wearable chemiresistive biosensor fabricated by laser inducing for real-time glucose analysis of sweat[J]. Advanced Materials Interfaces, 2023, 10(22): 2300281.
[20]ZHU Z D, SHI X Y, FENG Y T, et al. Lotus leaf mastoid inspired Ag micro/nanoarrays on PDMS film as flexible SERS sensor for in-situ analysis of pesticide residues on nonplanar surfaces[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 288: 122211.
[21]BAE C W, TOI P T, KIM B Y, et al. Fully stretchable capillary microfluidics-integrated nanoporous gold electrochemical sensor for wearable continuous glucose monitoring[J]. ACS Applied Materials & Interfaces, 2019, 11(16): 14567-14575.
[22]SHU Y, SHANG Z J, SU T, et al. A highly flexible Ni-Co MOF nanosheet coated Au/PDMS film based wearable electrochemical sensor for continuous human sweat glucose monitoring[J]. Analyst, 2022, 147(7): 1440-1448.
[23]OH S Y, HONG S Y, JEONG Y R, et al. Skin-attachable, stretchable electrochemical sweat sensor for glucose and pH detection[J]. ACS Applied Materials & Interfaces, 2018, 10(16): 13729-13740.
[24]WANG R, ZHAI Q F, AN T, et al. Stretchable gold fiber-based wearable textile electrochemical biosensor for lactate monitoring in sweat[J]. Talanta, 2021, 222: 121484.
[25]佘明華, 徐瑞東, 韋繼超, 等. 紡織基柔性觸覺傳感器及可穿戴應(yīng)用進(jìn)展[J]. 絲綢, 2023, 60(3): 60-72.
SHE M H, XU R D, WEI J C, et al. Textile-based flexible tactile sensors and wearable applications[J]. Journal of Silk, 2023,60(3): 60-72.
[26]ZHAO Y M, ZHAI Q F, DONG D S, et al. Highly stretchable and strain-insensitive fiber-based wearable electrochemical biosensor to monitor glucose in the sweat[J]. Analytical Chemistry, 2019, 91(10): 6569-6576.
[27]ZHANG Y W, LIAO J J, LI Z H, et al. All fabric and flexible wearable sensors for simultaneous sweat metabolite detection and high-efficiency collection[J]. Talanta, 2023, 260: 124610.
[28]MUGO S M, LU W H, ROBERTSON S. A wearable, textile-based polyacrylate imprinted electrochemical sensor for cortisol detection in sweat[J]. Biosensors, 2022, 12(10): 1-13.
[29]SINGH A, SHARMA A, ARYA S. Human sweat-based wearable glucose sensor on cotton fabric for real-time monitoring[J].Journal of Analytical Science and Technology, 2022, 13(1): 1-13.
[30]MA H, LI J, ZHOU J, et al. Screen-printed carbon black/recycled Sericin@ Fabrics for wearable sensors to monitor sweat loss[J]. ACS Applied Materials & Interfaces, 2022, 14(9): 11813-11819.
[31]MO L, MA X D, FAN L F, et al. Weavable, large-scaled, rapid response, long-term stable electrochemical fabric sensor integrated into clothing for monitoring potassium ions in sweat[J]. Chemical Engineering Journal, 2023, 454: 140473.
[32]BAGHERI N, MAZZARACCHIO V, CINTI S, et al. Electroanalytical sensor based on gold-nanoparticle-decorated paper for sensitive detection of copper ions in sweat and serum[J]. Analytical Chemistry, 2021, 93(12): 5225-5233.
[33]LI T, LIANG B, YE Z C, et al. An integrated and conductive hydrogel-paper patch for simultaneous sensing of Chemical-Electrophysiological signals[J]. Biosensors and Bioelectronics, 2022, 198: 113855.
[34]PARRILLA M, VANHOOYDONCK A, WATTS R, et al. Wearable wristband-based electrochemical sensor for the detection of phenylalanine in biofluids[J]. Biosensors and Bioelectronics, 2022, 197: 113764.
[35]YANG M P, SUN N, LAI X C, et al. Paper-based sandwich-structured wearable sensor with sebum filtering for continuous detection of sweat pH[J]. ACS Sensors, 2023, 8(1): 176-186.
[36]Al-HARDAN N H, HAMID M A A, KENG L K, et al. Low-cost fabrication of a pH sensor based on writing directly over parchment-type paper with pencil[J]. Journal of Materials Science: Materials in Electronics, 2021, 32: 9431-9439.
[37]LI M, WANG L C, LIU R, et al. A highly integrated sensing paper for wearable electrochemical sweat analysis[J]. Biosensors and Bioelectronics, 2021, 174: 112828.
[38]YOUHANNA S, DEVUYST O. Editors’ digest-basic science a wearable sweat analyzer for continuous electrolyte monitoring[J]. Peritoneal Dialysis International Journal of the International Society for Peritoneal Dialysis, 2016, 36(5): 470.
[39]MO L, MA X D, FAN L F, et al. Weavable, large-scaled, rapid response, long-term stable electrochemical fabric sensor integrated into clothing for monitoring potassium ions in sweat[J]. Chemical Engineering Journal, 2023, 454: 140473.
[40]ZHANG J, ZHOU Q Q, CAO J D, et al. Flexible textile ion sensors based on reduced graphene oxide/fullerene and their potential applications of sweat characterization[J]. Cellulose, 2021, 28: 3123-3133.
[41]CURTO V F, COYLE S, BYRNE R, et al. Concept and development of an autonomous wearable micro-fluidic platform for real time pH sweat analysis[J]. Sensors and Actuators B: Chemical, 2012, 175(175): 263-270.
[42]HOU X S, ZHOU Y, LIU Y J, et al. Coaxial electrospun flexible PANI//PU fibers as highly sensitive pH wearable sensor[J]. Journal of Materials Science, 2020, 55: 16033-16047.
[43]HA J H, JEONG Y, AHN J, et al. A wearable colorimetric sweat pH sensor-based smart textile for health state diagnosis[J]. Materials Horizons, 2023(10): 4163-4171.
[44]SHITANDA I, MURAMATSU N, KIMURA R, et al. Wearable ion sensors for the detection of sweat ions fabricated by heat-transfer printing[J]. ACS Sensors, 2023, 8(7): 2889-2895.
[45]BARIYA M, NYEIN H Y Y, JAVEY A. Wearable sweat sensors[J]. Nature Electronics, 2018, 1(3): 160-171.
[46]GHOORCHIAN A, KAMALABADI M, MORADI M, et al. Wearable potentiometric sensor based on Na 0.44 MnO for non-invasive monitoring of sodium ions in sweat[J]. Analytical Chemistry, 2022, 94(4): 2263-2270.
[47]MAZZARACCHIO V, SERANI A, FIORE L, et al. All-solid state ion-selective carbon black-modified printed electrode for sodium detection in sweat[J]. Electrochimica Acta, 2021, 394: 139050.
[48]PIROVANO P, DORRIAN M, SHINDE A, et al. A wearable sensor for the detection of sodium and potassium in human sweat during exercise[J]. Talanta, 2020, 219: 121145.
[49]ALIZADEH A, BURNS A, LENIGK R, et al. A wearable patch for continuous monitoring of sweat electrolytes during exertion[J]. Lab on a Chip, 2018, 18(17): 2632-2641.
[50]PROMPHET N, RATTANAWALEEDIROJN P, SIRALERTMUKUL K, et al. Non-invasive textile based colorimetric sensor for the simultaneous detection of sweat pH and lactate[J]. Talanta, 2019, 192: 424-430.
[51]ONOR M, GUFONI S, LOMONACO T, et al. Potentiometric sensor for non invasive lactate determination in human sweat[J]. Analytica Chimica Acta, 2017, 989: 80-87.
[52]ZHANG Q W, JIANG D F, XU C S, et al. Wearable electrochemical biosensor based on molecularly imprinted Ag nanowires for noninvasive monitoring lactate in human sweat[J]. Sensors and Actuators B: Chemical, 2020, 320: 128325.
[53]WANG Y X, TSAO P K, RINAWATI M, et al. Designing ZIF-67 derived NiCo layered double hydroxides with 3D hierarchical structure for Enzyme-free electrochemical lactate monitoring in human sweat[J]. Chemical Engineering Journal, 2022, 427: 131687.
[54]XUAN X, YOON H S, PARK J Y. A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate[J]. Biosensors and Bioelectronics, 2018, 109: 75-82.
[55]王怡, 汪宇佳, 陳方春, 等. 蠶絲基葡萄糖傳感器研究進(jìn)展[J]. 絲綢, 2023, 60(3): 8-15.
WANG Y, WANG Y J, CHEN F C, et al. Research progress on silk-based glucose sensors[J]. Journal of Silk, 2023, 60(3): 8-15.
[56]ZHAI Q F, GONG S, WANG Y, et al. Enokitake mushroom-like standing gold nanowires toward wearable noninvasive bimodal glucose and strain sensing[J]. ACS Applied Materials & Interfaces, 2019, 11(10): 9724-9729.
[57]ZHAO Y M, ZHAI Q F, DONG D S, et al. Highly stretchable and strain-insensitive fiber-based wearable electrochemical biosensor to monitor glucose in the sweat[J]. Analytical Chemistry, 2019, 91(10): 6569-6576.
[58]OH S Y, HONG S Y, JEONG Y R, et al. Skin-attachable, stretchable electrochemical sweat sensor for glucose and pH detection[J]. ACS Applied Materials & Interfaces, 2018, 10(16): 13729-13740.
[59]WANG Y S, WANG X Q, LU W, et al. A thin film polyethylene terephthalate (PET) electrochemical sensor for detection of glucose in sweat[J]. Talanta, 2019, 198: 86-92.
[60]FRANCO F F, HOGG R A, MANJAKKAL L. CuO-Based electrochemical biosensor for non-invasive and portable glucose detection[J]. Biosensors, 2022, 12(3): 1-11.
[61]XIAO J Y, LIU Y, SU L, et al. Microfluidic chip-based wearable colorimetric sensor for simple and facile detection of sweat glucose[J]. Analytical Chemistry, 2019, 91(23): 14803-14807.
[62]XU Z Y, QIAO X J, TAO R Z, et al. A wearable sensor based on multifunctional conductive hydrogel for simultaneous accurate pH and tyrosine monitoring in sweat[J]. Biosensors and Bioelectronics, 2023, 234: 115360.
[63]KINNAMON D, GHANTA R, LIN K C, et al. Portable biosensor for monitoring cortisol in low-volume perspired human sweat[J]. Scientific Reports, 2017, 7(1): 13312.
[64]MADHU S, ANTHUUVAN A J, RAMASAMY S, et al. ZnO nanorod integrated flexible carbon fibers for sweat cortisol detection[J]. ACS Applied Electronic Materials, 2020, 2(2): 499-509.
[65]SEMPIONATTO J R, NAKAGAWA T, PAVINATTO A, et al. Eyeglasses based wireless electrolyte and metabolite sensor platform[J]. Lab on a Chip, 2017, 17(10): 1834-1842.
[66]KIM J, JEERAPAN I, IMANI S, et al. Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system[J]. ACS Sensors, 2016, 1(8): 1011-1019.
[67]HAUKE A, SIMMERS P, OJHA Y R, et al. Complete validation of a continuous and blood-correlated sweat biosensing device with integrated sweat stimulation[J]. Lab on a Chip, 2018, 18(24): 3750-3759.
[68]GRANGER M, ECK P. Dietary vitamin C in human health[J]. Advances in Food and Nutrition Research, 2018, 83: 281-310.
[69]SEMPIONATTO J R, KHORSHED A A, AHMED A, et al. Epidermal enzymatic biosensors for sweat vitamin C: Toward personalized nutrition[J]. ACS Sensors, 2020, 5(6): 1804-1813.
[70]MCLELLAN T M, CALDWELL J A, LIEBERMAN H R. A review of caffeine’s effects on cognitive, physical and occupational performance[J]. Neuroscience & Biobehavioral Reviews, 2016, 71: 294-312.
[71]TAI L C, GAO W, CHAO M H, et al. Methylxanthine drug monitoring with wearable sweat sensors[J]. Advanced Materials, 2018, 30(23): 1707442.
Research and application progress of flexible sweat sensors
YAN Han, LIU Liyan, LI Zhijie, LUO Dan, LIU Hao
(a.School of Textile Science and Engineering; b.Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, China)
Abstract:Sweat is the liquid secreted by the sweat glands of the human body and is distributed in all parts of the body, while sweat contains a wealth of information about human health. In addition to water, sweat contains electrolytes, metabolites, heavy metals, hormones, proteins, etc. The levels of electrolytes and other components in sweat can change significantly depending on the physical condition and environmental conditions, so the assessment of human health status can be realized by monitoring specific components in sweat. Compared with other biological fluids, sweat is easy to be collected and shows unique advantages in the field of wearable sensors, especially in health tracking and monitoring during human movement. In recent years, the rapid development of flexible wearable sensors and electronic device technologies has greatly facilitated the research on wearable sweat sensors. Currently, portable devices have been developed to capture the energy in sweat and store it. As the research on flexible sweat sensors continues to deepen, corresponding progress has been made in the design of wearable flexible sweat sensors, which are expected to play a greater role in the fields of healthcare, human movement monitoring, and aerospace.
Flexible wearable electronic devices need to match the bending and stretching of human skin without affecting the wearer’s daily activities. Since most of the substrates of traditional wearable sensors are rigid and cannot meet the wearable use of people, the research of flexible substrate materials has become the focus of the field of flexible sensors at this stage. Starting from the types of substrate materials for flexible sweat sensors, this paper described in detail the substrate materials commonly used for sweat sensors in recent years and briefly outlined the applications of flexible sweat sensors in monitoring. Finally, it summarized the current limitations and prospects for future development.
Flexible wearable sensors are now becoming the next generation of smart wearable tools, capable of capturing information about the human body and its surroundings in an intelligent, easy and real-time manner. However, there are still some problems. Firstly, in terms of sweat collection and utilization, due to environmental and physiological differences, there are variations in sweat levels in individuals and body parts. The chemical composition of sweat can vary depending on where it is collected and how it is extracted. Age and gender differences also affect the composition of sweat. Secondly, in most cases, polymer films are used as substrates and precious metals as conductive electrodes for sensors; therefore, these sensors have such main drawbacks as poor breathability, wearing comfort and high price. Finally, in addition to the comfort of wearing the sweat sensor and the sensitivity of sweat detection, it is also necessary to consider whether human movement and environmental changes during the wearing process will affect the detection performance and sensitivity.
To address the above issues, a standardized and personalized sweat composition database with dynamic fluctuation range can be established in the future, which can lay the foundation for further development and application of flexible sensors. It has become a trend to develop natural and low-cost materials such as textile substrate materials and paper substrate materials for the preparation of wearable textile sweat sensors, which can satisfy the comfort and breathability of their wearing. With the researchers’ in-depth study of preparation methods and practical applications, flexible wearable sensors will be more widely used, and wearable devices are expected to play an important role in the future monitoring of daily health and physical activities, as well as in the prevention, diagnosis, treatment and healing of diseases.
Key words:sweat; sensor; flexible; smart wearable; health detection; application