王姝 張海川 趙軒 宋函錕
摘要:提出了一種融合車輛穩(wěn)定性的路徑跟蹤控制策略,以提高分布式驅(qū)動電動汽車在高速、低附著等危險行駛工況下的路徑跟蹤精度和車輛穩(wěn)定性,該控制策略包括路徑跟蹤控制層、穩(wěn)定性控制器決策層、驅(qū)動輪轉(zhuǎn)矩分配層。針對LQR路徑跟蹤控制器在高速大曲率工況下跟蹤精度不足的問題,采用閉環(huán)PID矯正駕駛員模型補償車輛前輪轉(zhuǎn)角,并設(shè)計穩(wěn)定性控制器用以跟蹤車輛理想?yún)⒖寄P?,基于模型預(yù)測控制算法決策出附加橫擺力矩,同時以輪胎負荷率最小為目標優(yōu)化車輪驅(qū)動轉(zhuǎn)矩分配。利用自主開發(fā)的分布式驅(qū)動電動試驗車分別在高速高附著和高速低附著雙移線工況進行試驗。結(jié)果表明:相對于只運用閉環(huán)PID矯正的LQR路徑跟蹤控制器進行路徑跟蹤,車輛在干燥的混凝土路面以90 km/h速度行駛時,融合車輛穩(wěn)定性的路徑跟蹤精度的橫向均方根誤差降低了29.7%;車輛在潮濕瀝青路面以70 km/h速度行駛時,均方根誤差降低了10.3%。所提控制策略能夠提高車輛的路徑跟蹤精度,滿足車輛在危險行駛工況下的橫擺穩(wěn)定性。
關(guān)鍵詞:汽車工程;分布式驅(qū)動電動汽車;路徑跟蹤;穩(wěn)定性控制
中圖分類號:U461
DOI:10.3969/j.issn.1004-132X.2023.09.003
Research on Path Tracking Control Method of Distributed Drive ElectricVehicles with Integrated Stability
WANG Shu ZHANG Haichuan ZHAO Xuan SONG Hankun
Abstract: A path tracking control strategy with integrated vehicle stability was proposed to improve the path tracking precision and vehicle stability of distributed drive electric vehicles under dangerous driving conditions such as high speed and low adhesion conditions. The hierarchical structure path tracking control strategy with vehicle stability, including the path tracking control layer, the stability controller decision layer and the drive wheel torque distribution layer. To solve the problem of the lower accuracy of LQR path tracking controller under high-speed and large curvature conditions, a closed loop PID correction driver model was used to compensate the front wheel angle of the vehicles. In addition, the stability controller was designed to track the ideal reference model of the vehicles. The controller developed the model predictive control algorithm to generate additional yaw moment. Meanwhile, the controller realized the optimal distribution of the wheel drive torques with the objective of minimizing tire load rate. Based on the independently designed distributed drive electric test vehicle, the double lane change tests were carried out on high-speed high adhesion road surfaces and high-speed low adhesion road surfaces respectively. The results show that, when driving on dry concrete pavement at 90 km/h speed, the lateral root mean square errors of the path tracking precision with integrated dynamics stability reduce by 29.7%, compared to the LQR path tracking controller using only closed-loop PID correction for path tracking. When driving on wet asphalt pavement at 70 km/h speed, the lateral root mean square errors reduce by 10.3%. Therefore, the proposed path tracking control strategy with integrated vehicle stability of distributed drive electric vehicles may improve path tracking accuracy, ensuring yaw stability under extreme conditions effectively.
Key words: automotive engineering; distributed drive electric vehicle; path tracking; stability control
0 引言
路徑跟蹤控制是實現(xiàn)汽車智能化的關(guān)鍵技術(shù),它通過車輛狀態(tài)信息和預(yù)先規(guī)劃好的期望路徑,實時控制前輪轉(zhuǎn)角大小,確保車輛按照預(yù)期路徑行駛[1]。但汽車在高速、大曲率行駛時,輪胎容易達到飽和狀態(tài),路徑跟蹤控制器決策出的前輪轉(zhuǎn)角很難滿足控制需求。同時,在高速低附著路面下,汽車過彎時容易發(fā)生側(cè)滑、甩尾等危險工況,導(dǎo)致車輛的路徑跟蹤精度進一步降低。分布式驅(qū)動電動汽車的4個車輪驅(qū)動/制動力矩獨立可控,為直接橫擺力矩控制提高車輛安全性提供平臺[2],因此,分布式驅(qū)動電動汽車在進行路徑跟蹤控制時,可以綜合考慮車輛穩(wěn)定性及道路條件。
LEMAN等[3]基于三自由度非線性車輛動力學(xué)模型設(shè)計了模型預(yù)測路徑跟蹤控制器,但沒有考慮車輛高速行駛穩(wěn)定性問題。張雷等[4]利用軌跡跟蹤與直接橫擺力矩協(xié)調(diào)控制設(shè)計了上層控制器以生成前輪轉(zhuǎn)角和目標橫擺力矩,下層控制器分配4個車輪驅(qū)動轉(zhuǎn)矩,提高了車輛在高速、低附著路面的路徑跟蹤精度和穩(wěn)定性。劉凱等[5]基于包絡(luò)線的輪胎滑移率約束條件設(shè)計了模型預(yù)測軌跡跟蹤控制器,滿足高速車輛在各種路面的行駛能力。GUO等[6]針對分布式驅(qū)動自動駕駛車輛,設(shè)計了一種協(xié)調(diào)路徑跟蹤和直接橫擺力矩控制的分層控制系統(tǒng),上層利用模型預(yù)測算法計算前輪轉(zhuǎn)角和橫擺力矩,下層利用偽逆算法分配車輪驅(qū)動力矩。李軍等[7]通過融合車輛穩(wěn)定性來設(shè)計路徑跟蹤控制器,利用質(zhì)心側(cè)偏角相平面圖判斷穩(wěn)定性控制器的工作區(qū)域,從而將穩(wěn)定性約束條件從路徑跟蹤控制器中獨立出來,簡化了路徑跟蹤控制器的復(fù)雜度,提高了系統(tǒng)的工作計算效率和可靠性。
以上路徑跟蹤控制器的設(shè)計多是利用模型預(yù)測控制算法,能解決帶約束控制問題,但存在預(yù)測時域較大、耗時較長的缺點[8]。工業(yè)領(lǐng)域多采用LQR控制算法來跟蹤預(yù)期路徑。XU等[9]利用LQR控制算法設(shè)計了多點預(yù)瞄控制的車輛路徑跟蹤控制器,提高了路徑跟蹤精度,但沒有考慮車輛高速、大曲率轉(zhuǎn)彎時車輛行駛工況。陳亮等[10]通過LQR控制器計算車輪期望側(cè)偏力,利用刷子輪胎模型將其轉(zhuǎn)化為側(cè)偏角,保持了車輛與輪胎模型的非線性特性。此外,針對車輛的非線性動力學(xué)特性,管欣等[11]設(shè)計了BP神經(jīng)網(wǎng)絡(luò)PID控制器復(fù)合校正模型,克服了輪胎滑移區(qū)跟蹤精度不足的缺點。LI等[12]利用LQR控制算法計算減小航向角偏差所得到的車輪轉(zhuǎn)角,與位置偏差得到的前輪轉(zhuǎn)角通過一定權(quán)重組合在一起,使車輛適應(yīng)高速、大曲率工況。
上述對LQR算法的修正并不能克服車輛在高速、低附著路面的側(cè)滑、甩尾等危險行駛工況,故有必要引入穩(wěn)定性控制策略。HSU等[13]通過最優(yōu)分配車輪驅(qū)動/制動扭矩,提高車輛路徑跟蹤性能。WANG等[14-15]針對雙電機后輪驅(qū)動電動汽車,提出了基于模型預(yù)測控制算法的穩(wěn)定性控制策略,試驗表明車輛穩(wěn)定性得到提高。但上述方法都只針對車輛穩(wěn)定性控制,未考慮前輪轉(zhuǎn)角。
針對上述問題,本文針對分布式驅(qū)動電動汽車設(shè)計了融合車輛穩(wěn)定性的路徑跟蹤模型。基于LQR算法設(shè)計具有預(yù)瞄特性的路徑跟蹤控制器,同時采用PID矯正環(huán)節(jié)補償車輛高速大曲率工況下輪胎滑移區(qū)的位置跟蹤偏差;通過設(shè)計直接橫擺力矩控制器,以整車質(zhì)心側(cè)偏角、橫擺角速度跟蹤理想二自由度參考模型為目標計算附加橫擺力矩,并利用優(yōu)化算法分配車輪驅(qū)動力矩來提高車輛在高速低附著路面上的橫擺穩(wěn)定性。
1 融合車輛穩(wěn)定性的路徑跟蹤控制策略
1.1 七自由度車輛動力學(xué)模型
高速低附著路面上行駛,相對于整車側(cè)翻,更容易發(fā)生側(cè)滑、甩尾等危險行駛工況,因為地面附著條件的限制,側(cè)滑的臨界條件相對于側(cè)翻更先達到,所以主要考慮縱向、橫向、橫擺3個自由度,同時考慮到分布式驅(qū)動電動汽車4個驅(qū)動電機獨立可控,本文構(gòu)建七自由度車輛動力學(xué)模型,如圖1所示。
式中,m為車輛質(zhì)量;vx、vy分別為車輛質(zhì)心的縱向、橫向速度;ωr為繞z軸的橫擺角速度;Iz為車輛繞z軸的轉(zhuǎn)動慣量;a、b分別為車輛質(zhì)心到前后軸的距離;d為整車輪距;δf為汽車前輪轉(zhuǎn)角;Fxij、Fyij分別為4個車輪的縱向力、側(cè)偏力,ij=fl,fr,rl,rr分別表示左前輪、右前輪、左后輪、右后輪;Jw為車輪轉(zhuǎn)動慣量;ωij為4個車輪的旋轉(zhuǎn)角速度;Tdij為4個輪胎的驅(qū)動力矩;rr為車輪滾動半徑。
5 試驗驗證分析
本文基于分布式驅(qū)動電動試驗車,利用A&D5435半實物仿真系統(tǒng)及MATLAB/Simulink的代碼自動生成技術(shù)搭建了分布式驅(qū)動電動汽車試驗平臺,對構(gòu)建的基于直接橫擺力矩控制的雙電機驅(qū)動電動汽車穩(wěn)定性控制系統(tǒng)進行試驗驗證。A&D5435虛擬控制器替代車輛的整車控制器,控制器輸入信號包括轉(zhuǎn)向盤轉(zhuǎn)角、轉(zhuǎn)向盤角速度、轉(zhuǎn)向盤扭矩、油門踏板開度、制動踏板開度、車速、輪速、電機扭矩、電機功率等,輸出信號包括電機驅(qū)動扭矩、電機制動扭矩、液壓制動系統(tǒng)制動扭矩。上述輸入信號可以通過以下傳感器獲得:使用安裝在轉(zhuǎn)向柱上的SensorWay公司的轉(zhuǎn)向盤扭矩、角度傳感器采集轉(zhuǎn)向盤轉(zhuǎn)角、轉(zhuǎn)向盤角速度、轉(zhuǎn)向盤扭矩;使用霍爾式非接觸速度傳感器采集4個車輪的轉(zhuǎn)速;采用Passat B5雙路加速踏板傳感器采集加速踏板開度;采用制動踏板傳感器采集制動踏板開度;采用三軸陀螺儀采集車輛的縱向加速度、側(cè)向加速度、橫擺角速度;電機轉(zhuǎn)速、扭矩、功率信息可以從電機控制器的CAN信號中獲取。車輛參數(shù)見表1?;贏&D5435的分布式驅(qū)動電動汽車試驗平臺如圖6所示。
為了驗證所提控制策略的效果,本文在高速高附著和高速低附著雙移線工況進行試驗。選擇ISO/ TR3888-1規(guī)定的標準雙移線試驗軌跡作為參考路徑,如圖7所示。
文中模型1為本文中融合車輛穩(wěn)定性的路徑跟蹤控制器;模型2為閉環(huán)PID矯正的LQR路徑跟蹤控制器,只進行橫向跟蹤控制;模型3為LQR橫向路徑跟蹤控制器,只進行橫向跟蹤控制。
5.1 干燥的混凝土路面
選擇在附著系數(shù)為0.8的干燥的混凝土路面分別進行車速為60,90 km/h的試驗,如圖8、圖9所示。
由圖8a、圖8b、圖9a、圖9b可以看出,車速為60 km/h時,三種模型均可保證車輛跟蹤參考軌跡,僅在彎道處存在很小偏差,目標路徑跟蹤效果良好,模型3最大橫向誤差為0.545 m;當(dāng)車速增加到90 km/h時,模型3最大跟蹤偏差達到2.341 m,跑偏嚴重,模型1相對于模型2均方根誤差減小了29.7%,在減小車身姿態(tài)波動的同時,改善了路徑跟蹤精度。圖8c、圖9c表明,兩種車速下,模型1具有最小的前輪轉(zhuǎn)角,最大前輪轉(zhuǎn)角不超過4°,且轉(zhuǎn)角波動平緩,有利于提高路徑跟蹤精度和操縱穩(wěn)定性。由圖8d、圖8e、圖9d、圖9g可以看出,60 km/h時,3種模型橫擺角速度與質(zhì)心側(cè)偏角的值接近一致,趨于穩(wěn)定值;當(dāng)車速增加到90 km/h時,模型1相對于模型2橫擺角速度和質(zhì)心側(cè)偏角幅值降低,說明高速行駛時模型1整車穩(wěn)定性最好。圖9e所示為90 km/h時下層控制器分配的四個車輪驅(qū)動力矩,圖9f為相應(yīng)的輪胎負荷率,根據(jù)式(34),為了追求更高的穩(wěn)定性,前軸車輪利用率權(quán)重系數(shù)小于后軸,因此圖9e中車輪驅(qū)動力矩方面前輪明顯高于后輪,且輪胎負荷率低于0.5,結(jié)果表明,驅(qū)動力分配在保證足夠側(cè)向附著能力的同時,提高了整車穩(wěn)定行駛能力。
5.2 潮濕瀝青路面
選擇附著系數(shù)為0.5的潮濕瀝青路面進行車速為70 km/h的試驗,如圖10所示。
圖10a、圖10b表明,模型1控制器均方根誤差相對于模型2減小了10.3%,跟蹤效果最好,LQR控制的模型3在彎道處可能發(fā)生側(cè)滑,橫向誤差最大,達到1.415 m。由圖10c可以看出,相對于模型2、模型3,模型1的前輪轉(zhuǎn)角變化平緩,幅值最小,不超過3°,有利于在低附著路面行駛。圖10d、圖10g表明,模型1跟模型2、模型3相比,橫擺角速度、質(zhì)心側(cè)偏角波動小、幅值低,提高了整車冰雪路面的行駛穩(wěn)定性。圖10e、圖10f所示分別為下層控制器分配的四個車輪驅(qū)動力矩和對應(yīng)的輪胎負荷率,負荷率低于0.5,表示可以提供整車轉(zhuǎn)彎行駛所需側(cè)向力。
6 結(jié)語
在高速、大曲率或低附著路面下,采用融合穩(wěn)定性的路徑跟蹤器的車輛路徑跟蹤精度有明顯提高,且具有更好的行駛穩(wěn)定性。本文中LQR控制器的加權(quán)矩陣、預(yù)瞄時間為人工調(diào)試得到,對復(fù)雜工況適應(yīng)性差,危險行駛工況的路徑跟蹤精度也可通過參數(shù)調(diào)節(jié)得到一定程度的改善。
參考文獻:
[1]VIVERK K, SHETA M A, GUMTAPURE V.A Comparative Study of Stanley, LQR and MPC Controllers for Path Tracking Application (ADAS/AD)[C]∥2019 IEEE International Conference on Intelligent Systems and Green Technology (ICISGT). Visakhapatnam, 2020:67-71.
[2]HU J S, WANG Y, FUJIMOTO H, et al. Robust Yaw Stability Control for In-wheel Motor Electric Vehicles[J]. IEEE/ASME Transactions on Mechatronics, 2017,22(3):1360-1370.
[3]LEMAN A, ARIFF M, ZAMZURI H, et al. Model Predictive Controller for Path Tracking and Obstacle Avoidance Manoeuvre on Autonomous Vehicle[C]∥12th Asian Control Conference (ASCC), Kitakyushushi,2019:1271-1276.
[4]張雷,趙憲華,王震坡. 四輪輪轂電機獨立驅(qū)動電動汽車軌跡跟蹤與橫擺穩(wěn)定性協(xié)調(diào)控制研究[J]. 汽車工程, 2020, 316(11):68-76.
ZHANG Lei, ZHAO Xianhua, WANG Zhenpo. Study on Coordinated Control of Trajectory Tracking and Yaw Stability for Autonomous Four-wheel-independent-driving Electric Vehicles[J]. Automotive Engineering, 2020, 316(11):68-76.
[5]劉凱, 陳慧巖, 龔建偉,等.高速無人駕駛車輛的操控穩(wěn)定性研究[J]. 汽車工程, 2019, 41(5):514-521.
LIU Kai, CHEN Huiyan, GONG Jianwei, et al. A Research on Handling Stability of High-speed Unmanned Vehicles[J]. Automotive Engineering,2019, 41(5):514-521.
[6]GUO Jinghua, LUO Yugong, LI Keqiang, et al. Coordinated Path-following and Direct Yaw-moment Control of Autonomous Electric Vehicles with Sideslip Angle Estimation[J].Mechanical Systems and Signal Processing, 2018,105:183-199.
[7]李軍, 唐爽, 黃志祥,等. 融合穩(wěn)定性的高速無人駕駛車輛縱橫向協(xié)調(diào)控制方法[J].交通運輸工程學(xué)報, 2020,20(2):205-218.
LI Jun, TANG Shuang, HUANG Zhixiang, et al. Longitudinal and Lateral Coordination Control Method of High Speed Unnamed Vehicles with Integrated Stability[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2):205-218.
[8]KAI L, GONG J, KURT A, et al. Dynamic Modeling and Control of High-speed Automated Vehicles for Lane Change Maneuver[J]. IEEE Transactions on Intelligent Vehicles, 2018, 3(3):329-339.
[9]XU S, PENG H. Design, Analysis, and Experiments of Preview Path Tracking Control for Autonomous Vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2020,21(1):48-58.
[10]陳亮,秦兆博,孔偉偉,等. 基于最優(yōu)前輪側(cè)偏力的智能汽車LQR橫向控制[J].清華大學(xué)學(xué)報(自然科學(xué)版), 2021,61(9):906-912.
CHEN Liang, QIN Zhaobo, KONG Weiwei, et al. Lateral Control Using LQR for Intelligent Vehicles Based on the Optimal Front-tire Lateral Force[J]. Journal of Qsinghua University(Science and Technology), 2021,61(9):906-912.
[11]管欣,陳永尚,賈鑫,等.預(yù)瞄跟隨駕駛員模型的復(fù)合校正[J].汽車工程,2018,40(3):297-304.
GUAN Xin, CHEN Yongshang, JIA Xin, et al. Compound Correction of Preview Following Driver Model[J]. Automotive Engineering, 2018,40(3):297-304.
[12]LI H Z, LI L, SONG J, et al. Comprehensive Lateral Driver Model for Critical Maneuvering Conditions[J]. International Journal of Automotive Technology, 2011, 12(5):679-686.
[13]HSU L Y, CHEN T L. An Optimal Wheel Torque Distribution Controller for Automated Vehicle Trajectory Following[J]. IEEE Transactions on Vehicular Technology, 2013, 62(6):2430-2440.
[14]WANG S, ZHAO X, YU Q, et al. Research on Strategy of the Stability Control System of Dual-motor Drive Electric Vehicle[C]∥2019 IEEE International Symposium on Circuits and Systems (ISCAS). Sapporo, 2019:18815602.
[15]WANG S, ZHAO X, YU Q. Vehicle Stability Control Strategy Based on Recognition of Driver Turning Intention for Dual-motor Drive Electric Vehicle[J]. Mathematical Problems in Engineering:Theory, Methods and Applications, 2020:3143620.1-3143620.18.
[16]陸子玉. 四輪轉(zhuǎn)向汽車操縱性和穩(wěn)定性的聯(lián)合優(yōu)化及仿真研究[D].南京:南京航空航天大學(xué), 2007.
LU Ziyu. Joint Optimization and Simulation Research of 4WS Vehicle Handling and Stability[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2007.
[17]王姝,趙軒,余強,等.基于駕駛?cè)宿D(zhuǎn)向意圖的雙電機驅(qū)動電動汽車穩(wěn)定性控制策略研究[J].中國公路學(xué)報,2022, 35(1):334-349.
WANG Shu, ZHAO Xuan, YU Qiang, et al. Research on Vehicle Stability Control Strategy for Dual-motor Drive Electric Vehicle Considering Driver Steering Intention[J]. China Journal of Highway and Transport,2022, 35(1):334-349.
[18]陳蔭三,余強. 汽車動力學(xué)[M]. 4 版.北京:清華大學(xué)出版社, 2009.
CHEN Yinsan, YU Qing. Vehicle Dynamic System [M].4th ed .Beijing:Tsinghua University Press,2009.
[19]錢丹劍.分布式驅(qū)動電動汽車橫擺力矩控制與轉(zhuǎn)矩分配研究[D].長春:吉林大學(xué),2015.
QIAN Danjian. Study on Yaw Moment Control and Torque Distribution for Distributed Drive Electric Vehicles[D].Changchun:Jilin University, 2015.
(編輯 陳 勇)
作者簡介:
王 姝,女,1991年生,高級工程師。研究方向為電動汽車控制。
趙 軒(通信作者),男,1983年生,教授、博士研究生導(dǎo)師。E-mail:zhaoxuan@chd.edu.cn。
收稿日期:2022-02-22
基金項目:國家自然科學(xué)基金(52002034);陜西省科技重大專項(2020zdzx06-01-01);霍英東青年教師基金(171103);陜西省重點產(chǎn)業(yè)創(chuàng)新鏈(群)項目(2020ZDLGY16-01,2020ZDLGY16-02)