国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

海南白沙和儋州油梨葉部及果實炭疽病菌的鑒定

2023-07-27 05:55:59李晶仇芳張超王玉梓謝昌平
果樹學(xué)報 2023年7期
關(guān)鍵詞:油梨致病性

李晶 仇芳 張超 王玉梓 謝昌平

摘 ? ?要:【目的】明確海南省白沙縣和儋州市油梨種植基地的油梨葉片和果實的病原菌種類,為該病害的準(zhǔn)確鑒定和田間防治措施的制定提供理論依據(jù)?!痉椒ā吭诤D鲜“咨晨h和儋州市的油梨種植基地調(diào)查炭疽病的發(fā)生情況并采集病葉和病果,通過組織分離法和單孢分離法獲得純化分離株,并對純化菌株進行致病性測定,結(jié)合形態(tài)學(xué)和分子生物學(xué)對所得菌株進行病原菌種類鑒定?!窘Y(jié)果】從采自白沙縣的14份病葉種分離的得到3株菌株,儋州市的10份病葉中分離獲得6株分離物以及自白沙市采集的5份病果中分離出的1株真菌,經(jīng)致病性測定,菌株HNBSL01、HNDZL02和HNBSF03為致病菌,且均與田間癥狀一致。根據(jù)3種致病菌的菌落、分生孢子和附著胞的形態(tài)特征可初步判斷引起油梨葉片和果實炭疽病的病原菌均為炭疽菌屬(Colletotrichum sp.);多基因(ITS-ACT-TUB2-CHS-1-GAPHD-HIS3)聯(lián)合分析構(gòu)建系統(tǒng)發(fā)育樹分析結(jié)果顯示,病原菌HNBSL01與暹羅炭疽菌(C. siamense)的同源性為81%、HNDZL02與果生炭疽菌(C. fructicola)的同源性為100%、HNBSF03與長直孢炭疽菌(C. gigasporum)的相似性達100%?!窘Y(jié)論】引起海南白沙縣和儋州市油梨種植基地葉片和果實炭疽病的病原菌為暹羅炭疽菌(C. siamense)、果生炭疽菌(C. fructicola)和長直孢炭疽菌(C. gigasporum),其中,C. gigasporum為國內(nèi)首次報道引起油梨果實炭疽病的病原菌。

關(guān)鍵詞:油梨;炭疽菌;致病性;多基因聯(lián)合分析

中圖分類號:S667.9 文獻標(biāo)志碼:A 文章編號:1009-9980(2023)07-1443-12

Identification of pathogen species of avocado (Persea americana Mill.) leaf and fruit anthracnose in Baisha and Danzhou, Hainan

LI Jing, QIU Fang, ZHANG Chao, WANG Yuzi, XIE Changping*

(School of Plant Protection, Hainan University/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Haikou 570228, Hainan, China)

Abstract: 【Objective】 Avocado (Persea americana Mill.) is a tropical and subtropical evergreen fruit crop. As the demand for avocado increases year by year, the planting area has expanded. The incidence of anthracnose is increasing in the planting area. In 2021, the avocado planting base in Baisha and Danzhou of Hainan province found that the symptoms of anthracnose appeared on the leaves of large trees, and more than 50% trees were affected, which seriously affected the yield and quality of avocado. Danzhou Avocado Planting Base, found the dark brown disease spot on the fruit during the fruit harvest and storage, and a sticky orange-red conidiomata appeared, so that the heavy loss was caused. This experiment was conducted to describe and identify the pathogen causing leaf and fruit anthracnose of avocado, so as to provide a theoretical basis for the accurate identification of the disease and the development of control measures in the field. 【Methods】 The disease incidence of Baisha and Danzhou Avocado Planting Bases were investigated, and samples of anthracnose disease were collected. Tissue isolation method and single spore isolation method were used to isolate and purify the strains. To confirm the pathogenicity, the wounded and unwounded leaves and fruits of the avocad were inoculated by stem cake and conidial suspension inoculation method. The pathogen was re-isolated from the inoculated sites, and the morphological characteristics of the reisolated strains were observed and recorded. The purified strains were transferred onto PDA medium and incubated at 25 ℃ and 12 h light /12 h dark. After 7 d, the morphology, color and growth rate of the colonies were recorded. After sporulation, the morphology and size of conidia and appressoria were observed and recorded under the optical microscope to clarify their morphological characteristics. Genomic DNA was extracted using the Fungal Genomic DNA Rapid Extraction Kit (OMEGA BIO-TEK). The six target gene sequences, ITS (ITS1/ITS4), TUB2 (T1/βt2b), ACT (ACT-512F/ACT-783R), HIS3 (CYLH3F/ CYLH3R), CHS-1 (CHS-79F/CHS-354R) and GAPHD (GDF/GDR), were selected for PCR amplification. The products were detected by 1% agarose gel electrophoresis and purified, and then the sequence determination was done by Biotech Bioengineering (Shanghai) Co. SequenceMatrix software was used to perform sequence splicing in the order of ITS-ACT-TUB2-CHS-1-GAPHD-HIS3, and blast alignment. Phylogenetic tree was constructed using the Maximum Likelihood method with MEGA 7.0 software to clarify the taxonomic status of pathogens. 【Results】 Three strains (HNBSL01-03) were obtained from 14 diseased leaves and one strain (HNBSF03) was isolated from five diseased fruits from Baisha. Six isolates (HNDZL02-07) were obtained from 10 diseased leaves from Danzhou. After 10 days of inoculation, only the leaves inoculated with HNBSL01 and HNDZL02 and the fruits inoculated with HNBSF03 showed symptoms of infection. The symptoms that appeared on the inoculated leaves and fruits were similar to those collected from the field. The control was asymptomatic. The strains with the same morphology as HNBSL01, HNDZL02 and HNBSF03 were obtained by re-isolation and purification from the disease site. According to Koch's postulates, it was concluded that these three isolates were pathogens causing anthracnose on the leaves and fruits of avocado. After culturing on PDA medium at 25 ℃ and 12 h light /12 h dark for 7 days, the colonies of strain HNBSL01 were white. Conidia with oil droplets were cylindrical, bluntly rounded at both ends or bluntly rounded at one end and acuminate at the other, the size was 14.11-16.97 (15.61) μm×3.74-4.89 (4.32) μm (n=100), with an aspect ratio of (3.47-3.77). Appressoria were light brown to brown, clavate, ellipsoidal, subglobose or spherical, entire, with a size of 7.7-10.24 (9.03) μm × 4.37-6.16 (5.15) μm (n=100). The strain HNDZL02 was diaphanous green with white outer edges, conidia short cylindrical, bluntly rounded at both ends, without oil droplets, 13.84-16.96 (15.67) μm × 5.38-6.52 (5.97) μm (n=100) in size, and such an aspect ratio (2.57-2.60). Appressoria were light brown to brown, elliptical or irregularly shaped, entire or with obtusely serrate lobes, 9.95-13.76 (11.88) μm × 4.82-6.22 (5.53) μm (n=100) in size. The strain HNDZF03 colonies were inky gray to white on the front, bamboo green to onyx on the back, conidia without oil droplets were clavate, apical acuminate base obtuse round, 13.77-17.65 (15.49) μm × 4.15-5.47 (4.66) μm (n=100) in size, and an aspect ratio (3.23-3.32). Appressoria were brown to dark brown, ovoid to orbicular, entire, and 6.65-9.78 (8.38) μm × 4.95-6.91 (6.25) μm in size (n=100). The results of phylogenetic tree constructed by multi-gene (ITS-ACT-TUB2-CHS-1-GAPHD-HIS3) association analysis showed that the pathogen HNBSL01 had 81% homology with Colletotrichum siamense, HNDZL02 had 100% homology with C. fructicola, and HNBSF03 was 100% similar to C. gigasporum. 【Conclusion】 The strains of anthracnose were isolated from the leaves and fruits of avocado in Baisha and Danzhou, Hainan, which belonged to C. siamense, C. fructicola and C. gigasporum. This is the first report of C. gigasporum causing anthracnose on avocado fruit in China.

Key words: Avocado (Persea americana Mill.); Colletotrichum sp.; Pathogenicity; Multi-gene analysis

油梨(Persea americana Mill.)又稱鱷梨、酪梨、牛油果等,為樟科(Lauraceae)鱷梨屬(Persea)速生常綠喬木果樹,原產(chǎn)于中美洲、南美洲熱帶及亞熱帶地區(qū)。油梨的果肉脂肪含量高,糖分含量低,沒有膽固醇,并含有大量的單不飽和脂肪酸、富含多種維生素和礦物質(zhì),因此被稱為“完美的水果”[1-2]。1918年油梨被引進中國臺灣,目前在海南、廣東、廣西、福建、云南、四川、浙江、貴州、湖南等地均有種植[3]。近年來,中國油梨種植面積和產(chǎn)量增幅較大,在2010年以后的10年里,中國油梨種植面積和產(chǎn)量分別以1.52%和1.31%的年均增長率穩(wěn)步增長,2020年中國油梨栽培面積和生產(chǎn)量分別為1.8萬hm2和11.7萬t(https://www.fao.org/faostat/zh/#data/QCL)。

隨著種植面積的逐年擴大,病害的發(fā)生日趨嚴重,病害導(dǎo)致果實產(chǎn)量和品質(zhì)下降,成為阻礙中國油梨產(chǎn)業(yè)快速發(fā)展的重要因素之一。目前,國內(nèi)外已報道引起油梨葉片和果實的真菌病害有Colletotrichum fructicola[4]、C. siamense[5]、C. karstii[6]、C. kahawae subsp. ciggaro[7]、Glomerella acutata[8]等引起的炭疽??;Corynespora cassiicola[9]引起的葉斑?。籒eofusicoccum luteum[10]、Lasiodiplodia theobromae、N. parvum[11]、N. australe[12]、Pestalotiopsis spp.、P. clavispora[13]、Diaporthe rudis[14]引起的蒂腐病;Erysiphe sp.[15]、Podosphaera perseae-americanae[16]引起的白粉病;Trichothecium roseum[12]引起的粉腐病;Phytophthora cactorum[17]、N. mangiferae[18]、N. parvumand、Botryosphaeria dothidea[19]引起的果腐?。籒. parvum[20]、Pseudocercospora purpurea[21]引起的黑斑病。其中,炭疽病是引起油梨葉片和果實最廣泛和最嚴重的病害之一。

2020年10月3日,筆者在海南省白沙縣和儋州市的兩個哈斯油梨種植基地進行炭疽病病害調(diào)查,并將具有典型病狀的油梨葉片和果實帶回實驗室,對病害樣本進行病原菌分離和純化后,利用柯赫氏法則進行致病性測定,并結(jié)合形態(tài)學(xué)和分子生物學(xué)對病原菌的種類進行鑒定,以明確引起白沙縣和儋州市油梨產(chǎn)區(qū)炭疽病的病原菌,以期為該病害的診斷以及田間防控措施的制定提供理論依據(jù)。

1 材料和方法

1.1 病株采集

表現(xiàn)有典型炭疽病的哈斯品種油梨葉片和果實采自海南省白沙黎族自治縣大嶺農(nóng)場附近的某種植基地(109°6′14.076″ E,19°26′37.464″ N)和儋州市南辰農(nóng)場(109°29′32.856″ E,19°29′36.960″ N),采集時間為2020年10月3日。

1.2 試驗試劑

DNA快速抽提試劑盒(OMEGA BIO-TEK)、DNA片段回收試劑盒、Taq DNA聚合酶、DL2000 Marker和通用引物(表1)[22]。馬鈴薯葡萄糖培養(yǎng)基(PDA)于121 ℃高壓滅菌20 min后備用。

1.3 菌株的分離及純化

根據(jù)組織分離法,選取具有典型癥狀的發(fā)病葉片和果實,用自來水清洗干凈,自然晾干,用無菌剪刀于葉片病健交界處剪取5 mm2組織塊,用無菌手術(shù)刀取病健交界處5 mm2大小的果皮塊。先用75%乙醇對葉片組織塊和果皮塊分別消毒20 s和30 s,2% NaClO消毒1 min和3 min,再用無菌水分別清洗3次(每次30 s),置于PDA培養(yǎng)基上,每皿4個組織塊或果皮塊,3次重復(fù)。28 ℃光照培養(yǎng)3 d,用無菌接種針挑取菌絲尖端進行純化培養(yǎng)。待產(chǎn)孢后挑取單孢獲得純化培養(yǎng)菌株,將純化的菌株轉(zhuǎn)接于PDA斜面培養(yǎng)基,于28 ℃保存?zhèn)溆谩?/p>

1.4 致病性測定

采用刺傷或無傷接種方式,供試菌株為HNBSL01~03、HNDZL02~07和HNBSF03,接種材料為健康的5齡哈斯油梨樹上的葉片和健康的離體哈斯油梨果實。分離菌株在PDA培養(yǎng)基上28 ℃、連續(xù)光照培養(yǎng)5 d后,在菌落邊緣打取直徑為5 mm的菌餅,將HNBSL01~03和HNDZL02~07的菌餅貼在無菌針刺傷的葉片上,表面覆蓋無菌吸水紙,保濕7 d,每個處理3枚葉片,每枚葉片設(shè)置8個接種點,3次重復(fù),以接種空白PDA培養(yǎng)基作為對照[9];待菌株產(chǎn)孢后配制1×106個·mL-1的孢子懸浮液,將20 μL孢子懸浮液均勻噴灑在無傷葉片上,表面覆蓋無菌吸水紙,保濕7 d,每個處理3枚葉片,3次重復(fù),以接種20 μL無菌水作為對照[23];將從菌株HNBSF03打取的菌餅貼在無菌針刺傷的果實上,表面覆蓋無菌吸水紙,保濕7 d,每個處理3個果實,每個果實設(shè)置2個接種點,3次重復(fù),以接種空白PDA培養(yǎng)基作為對照[5]。待出現(xiàn)相同癥狀后,參考1.3從病斑處重新取樣分離并純化。

1.5 病原菌形態(tài)特征的觀察

將純化后的病原菌轉(zhuǎn)接到PDA培養(yǎng)基上,25 ℃ 12 h光暗交替培養(yǎng)。7 d后觀察并記錄菌落的形態(tài)、顏色、產(chǎn)孢情況和菌絲生長情況。待菌落產(chǎn)孢后,挑取培養(yǎng)物在顯微鏡下觀察分生孢子,記錄其形態(tài)特征并測量分生孢子的大小。采用玻片萌發(fā)法誘導(dǎo)附著胞,配制1×104個·mL-1濃度的孢子懸浮液,吸取少量懸浮液滴在無菌載玻片上,于28 ℃下保濕培養(yǎng),24 h后觀察并記錄附著胞的形態(tài)。

1.6 分子生物學(xué)鑒定

用無菌藥匙刮取純化后菌株的氣生菌絲100 mg,用真菌基因組DNA快速抽提試劑盒(OMEGA BIO-TEK)提取菌株的基因組DNA。分別對病原菌的核糖體內(nèi)轉(zhuǎn)錄間隔區(qū)(internal transcribed spacer,ITS)、肌動蛋白基因(actin,ACT)、β-微管蛋白基因(β-tubulin,TUB2)、幾丁質(zhì)合成酶A基因(chitin synthetase A,CHS-1)、3-磷酸甘油醛脫氫酶基因(glyceraldehydes-3-phosphate dehydrogenase,GAPDH)和組蛋白基因(histone3,HIS3)進行PCR擴增(表1)[22]。PCR反應(yīng)體系體積均為25 μL,包括DNA模板1.0 ?L,2×Es Taq MasterMix (Dye) 12.5 ?L,上下引物各1.0 ?L,ddH2O 9.5 ?L。94 ℃變性2 min,各引物按表1中相應(yīng)的退火溫度退火30 s,72 ℃延伸30 s,共35個循環(huán),最后72 ℃延伸2 min。用1%瓊脂糖凝膠電泳檢測擴增產(chǎn)物,檢測到目的片段后委托生工生物工程(上海)股份有限公司完成測序。將獲得的基因序列提交至GenBank數(shù)據(jù)庫,并獲得序列號。通過BLAST比對搜索從GenBank數(shù)據(jù)庫中下載其他炭疽菌屬菌株序列。使用SequenceMatrix軟件按照ITS-ACT-TUB2-CHS-1-GAPHD-HIS3順序進行序列拼接,使用MEGA 7.0選擇最大似然法(maximum likelihood method,ML)和T92+G+I核苷酸替代模型構(gòu)建系統(tǒng)發(fā)育樹,以自展法(bootstrap)重復(fù)1000次檢測系統(tǒng)樹中節(jié)點的置信度[24]。

2 結(jié)果與分析

2.1 田間癥狀描述

2020年10月,在海南省白沙黎族自治縣大嶺農(nóng)場附近的某種植基地(109°6′14.076″ E,19°26′37.464″ N)發(fā)現(xiàn)油梨葉片炭疽病病株。發(fā)病主要從葉片的葉緣或葉尖出現(xiàn)點狀或連接成片的褪綠病斑;發(fā)病中期,葉緣或葉尖病斑逐漸由淡黃色發(fā)展為褐色,病斑邊緣深褐色且伴有黃色暈圈;后期葉尖或葉緣部分呈大面積灰褐色壞死病斑,病健交界處顏色加深且有黃色暈圈(圖1-A~B)。在儋州市南辰農(nóng)場(109°29′32.856″ E,19°29′36.960″ N)發(fā)現(xiàn)油梨葉片炭疽病病株。油梨葉片炭疽病病株從葉片上出現(xiàn)近圓形或不規(guī)則形的褪綠小病斑,病斑中心呈黃色,外緣為淡黃色;發(fā)病中期,病斑中央呈深棕色,外緣顏色較淺為棕色,且具淡黃色暈圈;后期病部中央出現(xiàn)大面積棕色壞死病斑,且有大量散生或輪生的小黑點出現(xiàn),并有明顯同心輪紋,外緣為深棕色(圖1-C~D)。成熟果實發(fā)病初期,果實表面出現(xiàn)淺棕色圓形或近圓形的小病斑;隨著病斑不斷擴大,病斑中心略有凹陷,中央顏色為黑色,邊緣深棕色;后期果實出現(xiàn)大面積的壞死病斑,且病斑的凹陷內(nèi)產(chǎn)生大量黏稠狀橘紅色分生孢子堆,有白色霉層覆蓋,最終導(dǎo)致整個果實腐爛(圖1-E~F)。

2.2 菌株的分離與致病性測定

從采自白沙市具典型病斑的14份病葉中分離出3株真菌菌株(HNBSL01~03),自儋州市采集的10份病葉中分離獲得4株菌株(HNDZL02~07),從白沙市采集的具典型炭疽病病斑的5份病果中分離出菌株HNBSF03。采用刺傷和無傷接種的方法將這些菌株分別接種到活體健康的油梨葉片和健康果實上。刺傷接種HNBSL01菌株的菌餅2 d后,接種葉片開始發(fā)病,接種點出現(xiàn)黃棕色病斑,邊緣有淡黃色暈圈,并逐漸向外圈擴展;10 d后,病斑變?yōu)樯詈稚⑶也“呱嫌叙こ頎铋偌t色分生孢子堆產(chǎn)生,與田間癥狀相同(圖2-A~B)。對照組均未發(fā)?。▓D2-C);無傷接種HNBSL01菌株的孢子懸浮液2 d后,接種葉片開始發(fā)病,葉片邊緣出現(xiàn)褐色病斑,并逐漸向外擴展;10 d后,病斑變?yōu)樯詈稚疫吘壸優(yōu)楹谏?,與田間癥狀相同(圖2-D~E)。對照組均未發(fā)病(圖2-F)。從發(fā)病部位再次分離純化,獲得了與HNBSL01形態(tài)相同的菌株。而接種HNBSL02和HNBSL03菌株的葉片均未發(fā)病。經(jīng)柯赫氏法則檢驗,菌株HNBSL01為油梨葉片炭疽病的致病菌。刺傷接種HNDZL02菌餅第3天,接種部位出現(xiàn)淺褐色小病斑,并有黃色暈圈,隨后病斑逐漸擴大,10 d后,病斑呈深褐色并產(chǎn)生黏稠狀橙色分生孢子堆,邊緣具淡黃色暈圈,與田間癥狀相同(圖2-D~E)。對照組均未見任何癥狀(圖2-F)。從病斑處進行再分離純化,獲得與HNDZL02形態(tài)相同的菌株,而接種HNDZL03~07菌株葉片均未發(fā)病,說明HNDZL02為油梨葉片炭疽病的病原菌。刺傷接種HNBSF03菌株2 d后,接種果實出現(xiàn)淺棕色病斑并逐漸向四周擴展,7 d后,病斑中央略凹陷且有大量黏稠狀粉紅色分生孢子堆產(chǎn)生,病部呈深棕色,邊緣棕色,與田間癥狀相一致(圖2-G~H)。對照組果實均未發(fā)?。▓D2-I)。對發(fā)病組織進行再分離并純化后,得到與HNBSF03形態(tài)相同的菌株,根據(jù)柯赫氏法則,HNBSF03為油梨果實炭疽病的病原菌。

2.3 菌株培養(yǎng)性狀

將HNBSL01、HNDZL02和HNBSF03菌株在PDA培養(yǎng)基上于25 ℃ 12 h光暗交替環(huán)境下培養(yǎng)7 d,結(jié)果顯示,HNBSL01菌株菌落白色,邊緣整齊,菌落直徑為68~70 mm(`x = 69 mm),菌絲濃密,氣生菌絲發(fā)達,菌落正面的顏色為白色,背面的顏色為象牙白色,菌株未產(chǎn)生分生孢子堆(圖3-A1),30 d后菌絲層表面產(chǎn)生大量橘黃色黏稠狀分生孢子堆,散生或成簇聚集(圖3-A2);HNDZL02菌株菌落白色,邊緣整齊,菌落直徑為70~72 mm(`x = 71 mm),菌絲濃密,氣生菌絲發(fā)達,菌落正面靠近菌餅部分的顏色為黛綠色、外緣為白色,背面中心39~42 mm的顏色為鴉青色、外緣為象牙白色,菌株未產(chǎn)生分生孢子堆(圖3-B1),30 d后菌絲層表面產(chǎn)生大量姜黃色黏稠狀分生孢子堆,散生或成簇聚集(圖3-B2);HNDZF03菌株菌落白色,邊緣整齊,菌落直徑為77~79 mm(`x = 78 mm),菌絲濃密,氣生菌絲發(fā)達,菌落正面菌餅周圍略帶墨灰色的顏色、其余部分為白色,背面靠近菌餅24~26 mm處的顏色為竹青色、外緣為象牙白色,菌株未產(chǎn)生分生孢子堆(圖3-C1),30 d后菌絲層表面產(chǎn)生大量橘紅色黏稠狀分生孢子堆,散生或成簇聚集(圖3-C2)。

2.4 菌株形態(tài)特征

菌株HNBSL01的分生孢子無色,單胞,直或稍彎曲,圓柱狀,兩端鈍圓或一端鈍圓另一端漸尖,含油球,壁薄且表面光滑,大小為14.11~16.97(15.61) μm×3.74~4.89(4.32) μm(n=100),長寬比為3.47~3.77(圖4-A1~A2);附著胞淺褐色至褐色,棍棒狀、橢圓形、近球形或球形,全緣,壁厚,大小為7.73~10.24(9.03) μm×4.37~6.16(5.15) μm(n=100)(圖4-A3~A4);菌株HNDZL02的分生孢子無色,單胞,直,短圓柱狀,兩端鈍圓,不含油球,薄壁,表面光滑,大小為13.84~16.96(15.67) μm×5.38~6.52(5.97) μm(n=100),長寬比為2.57~2.60(圖4-B1~B2);附著胞淺棕色至棕色,橢圓形或不規(guī)則形,全緣或具鈍鋸齒狀裂片,壁厚,大小為9.95~13.76(11.88)μm×4.82~6.22(5.53) μm(n=100)(圖4-B3~B4);菌株HNBSF03的分生孢子無色,單胞,直或略彎,棍棒狀,頂端漸尖,基部鈍圓,不含油球,薄壁,光滑,大小為13.77~17.65(15.49) μm×4.15~5.47(4.66) μm(n=100),長寬比為3.23~3.32(圖4-C1~C2);附著胞褐色至深褐色,卵圓形至圓形,全緣,壁厚,大小為6.65~9.78(8.38) μm×4.95~6.91(6.25) μm(n=100)(圖4-C3~C4)。根據(jù)上述形態(tài)學(xué)特征,菌株HNBSL01和HNDZL02與膠孢炭疽菌(Colletotrichum gloeosporioides complexes)復(fù)合種相似[25],HNBSF03與C. coelogynes和長直孢炭疽菌(C. gigasporum complexes)復(fù)合種相似[26-27]。

2.5 病原菌分子生物學(xué)鑒定

提取病原菌基因組DNA并對ITS、ACT、TUB2、CHS-1、GAPHD和HIS3序列片段進行PCR擴增,菌株HNBSL01得到片段大小分別為548、252、728、280、252和383 bp;HNDZL02得到的片段大小分別為550、251、734、278、253和388 bp;HNBSF03獲得的片段大小分別為534、249、745、276、270和384 bp。將獲得的基因片段在GenBank中進行BLAST分析,并下載與3個菌株的6個基因片段相似度達95%以上的序列,以Monilochaetes infuscans CBS 869.96作為外群,對6個基因序列聯(lián)合構(gòu)建系統(tǒng)發(fā)育樹(表2)。結(jié)果表明:菌株HNBSL01與C. siamense聚為一個進化分支,自舉支持率為81%;菌株HNDZL02與C. fructicola聚為一個進化分支,自舉支持率為100%;菌株HNBSF03與C. gigasporum聚為一個進化分支,自舉支持率為100%(圖5)。因此,根據(jù)形態(tài)學(xué)鑒定和系統(tǒng)發(fā)育分析,將引起白沙市油梨葉片炭疽病的病原菌鑒定為C. siamense;引起儋州市油梨葉片炭疽病的病原菌鑒定為C. fructicola;引起白沙市油梨果實炭疽病的病原菌鑒定為C. gigasporum。

3 討 論

炭疽菌屬(Colletotrichum),屬半知菌類Fungi Imperfecti、腔孢綱Coelomycetes、黑盤孢目Melanconiales、黑盤孢科Melanconiaceae[28]。該屬真菌分布范圍廣,寄主繁多,特別是熱帶水果容易受炭疽菌侵染,目前已在多種重要經(jīng)濟作物上報道,如咖啡、番石榴、蘋果、火龍果、杧果和草莓等。炭疽菌屬病原菌包括600多種,其中,C. gloeosporioides和C. boninense復(fù)合種為油梨炭疽病常見的病原菌[6-7]。炭疽菌通常危害油梨的葉、花和果實,造成葉斑、葉枯、花腐和果腐癥狀,影響油梨的生長,嚴重時會導(dǎo)致落葉、落花和爛果,甚至造成植株死亡,降低油梨的產(chǎn)量和質(zhì)量。同時,炭疽病還會危害采后的油梨果實,造成貯藏果實腐爛,給農(nóng)戶帶來嚴重的經(jīng)濟損失。

筆者在本研究中通過對海南省白沙縣和儋州市的油梨主要種植基地中采集具有典型炭疽病癥狀的葉片和果實進行病原菌的分離與純化,通過形態(tài)學(xué)觀察、多基因聯(lián)合建樹分析以及致病性測定,將葉片炭疽病病原鑒定為C. siamense和C. fructicola,果實炭疽病病原為C. gigasporum,通過顯微鏡觀察分生孢子和附著胞的形態(tài)和大小,發(fā)現(xiàn)C. siamense與Li等[5]在中國報道的與Honger等[29]在加納報道的引起油梨果實炭疽病的C. siamense在形態(tài)和大小上相似。C. fructicola與Li等[4]在中國報道的引起油梨果實炭疽病的病原菌形態(tài)大小相似,但筆者在本研究中的附著胞較Fuentes-Aragón等[30]報道的引起墨西哥油梨果實炭疽病的C. fructicola的附著胞長,可能是分離菌株的地區(qū)、分離部位和品種不同導(dǎo)致的差異。C. gigasporum與Hunupolagama等[31]報道的引起斯里蘭卡油梨果實炭疽病的田間癥狀和病原菌形態(tài)相同,但分生孢子和附著胞的大小有較大差異,筆者在本研究中的分生孢子大小為13.77~17.65(15.49) μm×4.15~5.47(4.66) μm(n=100)和附著胞大小為6.65~9.78(8.38) μm×4.95~6.91(6.25) μm(n=100),而Hunupolagama等[31]研究的分生孢子為18.00~30.00(22.50) μm×7.00~10.00(8.00) μm,附著胞大小為18.75 μm×8.00 μm,這種差異可能是分離菌株的國家不同以及菌種隨時間變化造成的。

本研究結(jié)果表明,在海南省白沙縣和儋州市主要的油梨種植區(qū),與油梨相關(guān)的Colletotrichum物種具多樣性,這可能與環(huán)境條件的多樣性有關(guān),如溫度和降雨量,還可能與樣品采集時間、地區(qū)和分離部位有關(guān)。此外,引起白沙縣的油梨果實炭疽病和葉片炭疽病的病原菌不同,可能原因是果實上的病原菌來源不同,果實上的病原菌可能來自葉片和枝干,而不同病原菌的侵染能力不同,導(dǎo)致可成功侵染果實和葉片的病原菌存在差異。這項研究增進了筆者對海南油梨炭疽病相關(guān)的Colletotrichum物種多樣性的了解。筆者需要進一步地研究來確定各個油梨炭疽病菌菌株在生物學(xué)和致病性上的差異,以及造成這種差異的分子機制。關(guān)于油梨炭疽菌的病原學(xué)和流行病學(xué)的研究很少,有待進一步研究。

4 結(jié) 論

通過組織分離與純化、致病性測定、病原菌形態(tài)特征及多基因聯(lián)合建樹分析,首次明確了引起海南省白沙黎族自治縣大嶺農(nóng)場附近的某種植基地油梨葉片炭疽病的病原菌為C. siamense、油梨果實炭疽病的病原菌為C. gigasporum;引起儋州市南辰農(nóng)場油梨葉片炭疽病的病原菌為C. fructicola。

參考文獻 References:

[1] LIN X B,ZHANG H,HU L N,ZHAO G Y,SVANBERG S,SVANBERG K. Ripening of avocado fruits studied by spectroscopic techniques[J]. Journal of Biophotonics,2020,13(8):e202000076.

[2] COMERFORD K B,AYOOB K T,MURRAY R D,ATKINSON S A. The role of avocados in complementary and transitional feeding[J]. Nutrients,2016,8(5):316.

[3] 張良,張德生,劉康德. 海南省油梨產(chǎn)業(yè)發(fā)展的環(huán)境分析與對策[J]. 中國農(nóng)業(yè)資源與區(qū)劃,2015,36(4):78-84.

ZHANG Liang,ZHANG Desheng,LIU Kangde. Environment analysis and policy for development of avocado industry in hainan[J]. Chinese Journal of Agricultural Resources and Reginoal Planning,2015,36(4):78-84.

[4] LI S,LIU Z,ZHANG W. First report of anthracnose disease on avocado (Persea americana) caused by Colletotrichum fructicola in China[J]. Plant Disease,2022,106(9):2529

[5] LI M,F(xiàn)ENG W L,YANG J Y,GAO Z Y,ZHANG Z K,ZHANG W,WANG S M,WANG W B,GONG D Q,HU M J. First report of anthracnose caused by Colletotrichum siamense on avocado fruits in China[J]. Crop Protection,2022,155:105922.

[6] UYSAL A,KURT ?. First report of fruit and leaf anthracnose caused by Colletotrichum karstii on avocado in Turkey[J]. Crop Protection,2020,133:105145.

[7] KWON J H,CHOI O,LEE Y,KIM S H,KANG B S,KIM J W. Anthracnose on postharvest avocado caused by Colletotrichum kahawae subsp. ciggaro in South Korea[J]. Canadian Journal of Plant Pathology,2020,42(4):508-513.

[8] AVILA-QUEZADA G,SILVA-ROJAS H V. First report of the anamorph of Glomerella acutata causing anthracnose on avocado fruits in Mexico[J]. Plant Disease,2007,91(9):1200.

[9] QIU F,XU G,XIE C P,LI X,ZHENG F Q,MIAO W G. First report of Corynespora cassiicola causing leaf spot on avocado (Persea americana) in China[J]. Plant Disease,2020,104(6):1857.

[10] TAPIA L,LARACH A,RIQUELME N,GUAJARDO J,BESOAIN X. First report of Neofusicoccum luteum causing stem-end rot disease on avocado fruits in Chile[J]. Plant Disease,2020,104(7):2027.

[11] WANJIKU E K,WACEKE J W,WANJALA B W,MBAKA J N. Identification and pathogenicity of fungal pathogens associated with stem end rots of avocado fruits in Kenya[J]. International Journal of Microbiology,2020,2020:4063697.

[12] SHARMA G,MAYMON M,F(xiàn)REEMAN S. First detailed report of Trichothecium roseum causing post-harvest pink rot of avocado in Israel[J]. Plant Disease,2016,100(4):856.

[13] VALENCIA A L,TORRES R,LATORRE B A. First report of Pestalotiopsis clavispora and Pestalotiopsis spp. causing postharvest stem end rot of avocado in Chile[J]. Plant Disease,2011,95(4):492.

[14] TORRES C,CAMPS R,AGUIRRE R,BESOAIN X. First report of Diaporthe rudis in Chile causing stem-end rot on ‘Hass avocado fruit imported from California[J]. Plant Disease,2016,100(9):1951.

[15] SUAREZ S N,SAUCEDO J R,SANAHUJA G,LOPEZ P. First report of a putative new Erysiphe sp. causing powdery mildew on avocado in Florida[J]. Plant Disease,2018,102(2):448.

[16] SIAHAAN S A S,HIDAYAT I,KRAMADIBRATA K,MEEBOON J,TAKAMATSU S. Podosphaera perseae-americanae,a new powdery mildew species on Persea americana (avocado) from Indonesia[J]. Mycoscience,2016,57(6):417-421.

[17] L?PEZ-HERRERA C J,P?REZ-JIM?NEZ R M,ZEA-BONILLA T. First report of Phytophthora cactorum causing fruit rot on avocado in Spain[J]. Plant Disease,2005,89(12):1363.

[18] NI H F,LIOU R F,HUNG T H,CHEN R S,YANG H R. First report of a fruit rot disease of avocado caused by Neofusicoccum mangiferae[J]. Plant Disease,2009,93(7):760.

[19] FIRMINO A C,F(xiàn)ISCHER I H,JOS? J?NIOR T H,ROSA D D,F(xiàn)URTADO E L. Identifica??o de espécies de Fusicoccum causadoras de podrid?o em frutos de abacate[J]. Summa Phytopathologica,2016,42(1):100-102.

[20] MOLINA-GAYOSSO E,SILVA-ROJAS H V,GARC?A-MORALES S,AVILA-QUEZADA G. First report of black spots on avocado fruit caused by Neofusicoccum parvum in Mexico[J]. Plant Disease,2012,96(2):287

[21] RODR?GUEZ-POLANCO E,REINA-NORE?A J A,TAMAYO-MOLANO P J,RODR?GUEZ-POLANCO L A,VAR?N-DEVIA E H. Validation of black spot [(Pseudocercospora purpurea (Cooke) Deighton] management strategies in avocado crops in northern Tolima (Colombia)[J]. Revista Colombiana De Ciencias Hortícolas,2020,14(2):178-191.

[22] 馬瑞,徐剛,鄭樊,鄭妃慶,謝昌平. 海南省溫郁金炭疽病的病原鑒定[J]. 植物保護,2018,44(4):81-86.

MA Rui,XU Gang,ZHENG Fan,ZHENG Feiqing,XIE Changping. Identification of the pathogen causing anthracnose on Curcuma wenyujin in Hainan,China[J]. Plant Protection,2018,44(4):81-86.

[23] YANG B,JIN X H,F(xiàn)ENG Q C,XIAO K L,ZHANG H Z,TANG T T,SHAN L Y,GUO W. Colletotrichum species causing leaf spot diseases of Liriope cymbidiomorpha (Ined.) in China[J]. Australasian Plant Pathology,2020,49(2):137-139.

[24] KUMAR S,STECHER G,TAMURA K. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution,2016,33(7):1870-1874.

[25] WEIR B S,JOHNSTON P R,DAMM U. The Colletotrichum gloeosporioides species complex[J]. Studies in Mycology,2012,73(1):115-180.

[26] DAMM U,SATO T,ALIZADEH A,GROENEWALD J Z,CROUS P W. The Colletotrichum dracaenophilum,C. magnum and C. orchidearum species complexes[J]. Studies in Mycology,2019,92:1-46.

[27] LIU F,CAI L,CROUS P W,DAMM U. The Colletotrichum gigasporum species complex[J]. Persoonia,2014,33(1):83-97.

[28] 邢來君,李明春,魏東盛. 普通真菌學(xué)[M]. 2版. 北京:高等教育出版社,2010:389.

XING Laijun,LI Mingchun,WEI Dongsheng. General mycology[M]. 2nd ed. Beijing:Higher Education Press,2010:389.

[29] HONGER J O,OFFEI S K,ODURO K A,ODAMTTEN G T,NYAKU S T. Identification and molecular characterisation of Colletotrichum species from avocado,citrus and pawpaw in Ghana[J]. South African Journal of Plant and Soil,2016,33(3):177-185.

[30] FUENTES-ARAG?N D,JU?REZ-V?ZQUEZ S B,VARGAS-HERN?NDEZ M,SILVA-ROJAS H V. Colletotrichum fructicola,a member of Colletotrichum gloeosporioides sensu lato,is the causal agent of anthracnose and soft rot in avocado fruits cv. ‘Hass[J]. Mycobiology,2018,46(2):92-100.

[31] HUNUPOLAGAMA D M,WIJESUNDERA R L C,CHANDRASEKHARAN N V,WIJESUNDERA W S S,KATHRIARACHCHI H S,F(xiàn)ERNANDO T H P S. Characterization of Colletotrichum isolates causing avocado anthracnose and first report of C. gigasporum infecting avocado in Sri Lanka[J]. Plant Pathology & Quarantine,2015,5(2):132-143.

猜你喜歡
油梨致病性
墨西哥油梨生產(chǎn)商和包裝商協(xié)會將擴大油梨種植面積
一例高致病性豬藍耳病的診治
生豬高致病性藍耳病混合感染防治技術(shù)
高致病性藍耳病的診斷和治療
澳大利亞油梨價格飛漲
新西蘭油梨價格將上漲
哺乳仔豬高、低致病性藍耳病的診治
歐洲市場夏季油梨銷售狀況良好
哥斯達黎加油梨產(chǎn)業(yè)形勢良好
澳大利亞油梨有望豐收
景谷| 红原县| 南安市| 甘洛县| 白河县| 会理县| 梅河口市| 德令哈市| 西峡县| 金平| 奉贤区| 同德县| 安吉县| 堆龙德庆县| 墨玉县| 石狮市| 昭平县| 银川市| 离岛区| 磐石市| 郧西县| 浦东新区| 右玉县| 深州市| 繁峙县| 海兴县| 宽甸| 三穗县| 聊城市| 沽源县| 崇州市| 孙吴县| 玉溪市| 呼伦贝尔市| 女性| 阳信县| 合作市| 屏南县| 永兴县| 于都县| 望江县|