劉德帥 馮美 樊姍姍 孫雨桐 遲敬楠 姚文孔
摘 ? ?要:【目的】探究葡萄JAZ家族基因特點及在低溫脅迫下的表達情況,以期篩選出與低溫脅迫相關(guān)的家族成員,并進一步篩選其互作蛋白,為后續(xù)葡萄抗寒機制研究提供理論依據(jù)?!痉椒ā恳詳M南芥和葡萄基因組數(shù)據(jù)為基礎(chǔ),獲得葡萄JAZ家族成員基因并進行同源克隆、染色體定位、理化性質(zhì)以及蛋白家族聚類等分析,利用實時熒光定量PCR(quantitative real-time PCR,qRT-PCR)技術(shù)分析VvJAZ家族成員基因在低溫脅迫下的表達情況,應(yīng)用酵母雙雜交技術(shù)進行互作蛋白篩選和驗證,并通過雙分子熒光互補試驗驗證候選互作蛋白與VvJAZ9蛋白的互作關(guān)系?!窘Y(jié)果】葡萄中有11個JAZ家族基因,隨機分布于7條染色體上,都具有JAZ家族蛋白中特有且高度保守的TIFY和Jas結(jié)構(gòu)域,均屬于堿性不穩(wěn)定親水蛋白;聚類分析表明,葡萄JAZ家族蛋白可分為3個亞族,其中VvJAZ9與擬南芥AtJAZ1和AtJAZ2的親緣關(guān)系最近,VvJAZ1與VvJAZ11、VvJAZ5與VvJAZ6同源關(guān)系最近。qRT-PCR結(jié)果表明,VvJAZ9是葡萄JAZ家族成員基因中受低溫誘導(dǎo)表達最為明顯的1個基因。通過酵母雙雜交試驗篩選獲得26個可能與VvJAZ9存在互作關(guān)系的候選蛋白;通過qRT-PCR分析候選蛋白的相關(guān)基因在低溫脅迫下的表達模式,結(jié)果表明HAP5A基因受低溫誘導(dǎo)表達趨勢與篩選出的VvJAZ9基因類似,推測HAP5A可能是JAZ9候選互作蛋白中響應(yīng)低溫最為顯著的1個蛋白;通過同源克隆獲得了VvHAP5A基因序列,全長636 bp,編碼211個氨基酸,進一步分析發(fā)現(xiàn)該基因是NF-YC類型的轉(zhuǎn)錄因子,通過酵母雙雜交和雙分子熒光互補試驗也證實了JAZ9與HAP5A蛋白全長有互作關(guān)系?!窘Y(jié)論】鑒定并克隆到了葡萄的11個VvJAZs基因,VvJAZ9和VvHAP5A基因均響應(yīng)葡萄低溫誘導(dǎo)表達,并且二者還具有蛋白互作關(guān)系,可為進一步研究葡萄JAZ基因參與低溫脅迫的機制提供參考。
關(guān)鍵詞:歐洲葡萄;JAZ基因家族;蛋白互作;低溫脅迫;表達分析
中圖分類號:S663.1 文獻標志碼:A 文章編號:1009-9980(2023)07-1294-18
Screening and verification of JAZ9 gene interacting proteins in Vitis vinifera
LIU Deshuai, FENG Mei, FAN Shanshan, SUN Yutong, CHI Jingnan, YAO Wenkong*
(College of Agriculture, Ningxia University/Ningxia Key Laboratory of Modern Molecular Breeding of Dominant and Characteristic Crops, Yinchuan 750021, Ningxia, China)
Abstract: 【Objective】 The aims of this experiment were to investigate the characteristics of grapevine JAZs gene family and its expression pattern in response to low temperature stress, to screen out the JAZs family members which related to low temperature stress, to screen the candidate substrates of the low temperature-induced JAZ proteins by the yeast two-hybrid assay, and to provide a theoretical basis for the study on cold resistance mechanism in grapevines. 【Methods】 Based on the genomic analysis of Arabidopsis thaliana and grapevine, the grapevine JAZs gene family members were obtained and analyzed by homologous cloning, and their chromosomal localization, physicochemical properties and protein family clustering were also investigated. We used the qRT-PCR experiment to analyze the expression of the JAZs gene family members under low temperature treatment conditions, and the yeast two-hybrid was used to screen the candidate substrates of low temperature-induced JAZ protein, and the yeast two-hybrid assay and bimolecular fluorescence complementation assay were used to verify the interactions between the candidate protein and the target JAZ protein. 【Results】 Eleven JAZs gene family members were cloned by homologous sequences in grapevine. These genes were randomly distributed on seven chromosomes, all of which have TIFY and Jas structural domains that are unique and strongly conserved in JAZs family proteins, and all of them belong to basic hydrophilic proteins. Cluster analysis showed that grapevine JAZs family proteins can be divided into three subfamilies. In subgroup Ⅰ, VvJAZ4 and VvJAZ9 are closest to AtJAZ1 and AtJAZ2 in Arabidopsis. In subgroup Ⅱ, VvJAZ1 and VvJAZ11 are closest to AtJAZ9 in Arabidopsis. In subgroup Ⅲ, VvJAZ3, VvJAZ5, VvJAZ6, VvJAZ7 and VvJAZ8 are most closely related to AtJAZ7 and AtJAZ8 in Arabidopsis. The following qRT-PCR results showed that among the JAZs gene family members, the transcripts of VvJAZ9 were significantly induced by low temperature, with the lowest level at 0 h and the highest level at 24 h. The expression of VvJAZ2 and VvJAZ10 genes showed an increasing trend at first, followed by a decreasing expression, and then gradually increasing again. The expression of VvJAZ3, VvJAZ5/6 and VvJAZ8 was at a low level before 12 h and peaked at 24 h. The expression of VvJAZ1 showed a decreasing trend firstly, and then showed an increasing expression pattern, while the expression of VvJAZ11 showed a decreasing expression trend in response to low temperature treatment, with the lowest expression level at 24 h. According to the qRT-PCR assay, we found that VvJAZ9 was one of the most significantly low temperature-induced gene among the grapevine JAZs gene family members. By the yeast two-hybrid assay, we obtained 26 candidate proteins to be the candidate substrates of the VvJAZ9 protein, including bZIP, HAP5A, CONSTANS-LIKE 2, STOP1, CSN5B, GAI1, NINJA and so on. Based on the conserved structural domains of 26 VvJAZ9 candidate reciprocal proteins, the homologous sequences of some proteins were obtained, and the mRNA sequences corresponding to the related genes were obtained by the blast analysis in the NCBI database. The qRT-PCR primers for these candidate protein-related genes were designed by Primer 6.0 software. The results indicated that the bZIP gene showed a rising trend at first, and then showed a decreasing expression trend after treatment with low temperature, and the maximum level was presented at 3 h. The transcripts of CONSTANS-LIKE 2, STOP1 and GAI2 showed a down regulation toward at first, and then presented the increasing expression trend, and the lowest expression point was observed at 6 h after cold treatment. The expression of CSN5B showed a double-peaked trend, and the maximum expressions were at 6 h and 24 h, respectively. The expression of NINJA showed a gradually decreasing trend. The transcripts of HAP5B and GAI1 increased at first and then decreased, and both of them reached to the maximum expression at 3 h. However, the expression level of HAP5A showed a gradually increasing expression trend, which was similar to the low temperature-induced expression trend of VvJAZ9 we screened. By the qRT-PCR analysis of the candidate genes, we considered that the expression of HAP5A gene was similar to the VvJAZ9 gene in terms of low temperature. Therefore, the HAP5A might be one of the most significant expression of the JAZ9 candidate interacting protein among the JAZ9 candidate substrates in response to low temperature. Furthermore, VvHAP5A was cloned by homologous sequences, and its ORF includes 636 nucleotides, encoding 211 amino acids. Further analysis revealed that the VvHAP5A gene is a NF-YC type transcription factor gene, and the interacting relationship between JAZ9 and the full length of HAP5A protein was also confirmed by the yeast two-hybrid and bimolecular BiFC experiments. 【Conclusion】 The 11 VvJAZs genes from grapes were identified and cloned, and both VvJAZ9 and VvHAP5A responded to low temperature in grapevines, and they also had protein interaction relationship. These results can provide reference for further study on the mechanism of grape JAZ genes involved in low temperature stress.
Key words: Vitis vinifera L.; JAZ gene family; Protein interaction; Low temperature stress; Expression analysis
葡萄(Vitis spp.)為葡萄科(Vitaceae)葡萄屬(Vitis L.)的多年生落葉藤本植物,是世界上廣泛栽培的經(jīng)濟果樹之一[1]。近年來,我國葡萄優(yōu)質(zhì)高效標準化栽培模式及管理技術(shù)發(fā)展迅猛,栽培面積、產(chǎn)量均居世界前列,葡萄產(chǎn)業(yè)已經(jīng)成為我國果樹產(chǎn)業(yè)的重要組成部分[2-3]。目前,我國栽培的葡萄多數(shù)為歐洲葡萄(V. vinifera L.)品種,具有品質(zhì)優(yōu)良但抗寒性差的特點,在越冬和“倒春寒”侵襲過程中,常出現(xiàn)葡萄枝蔓凍傷、花芽凍干、果實凍落,甚至樹體死亡等現(xiàn)象,嚴重影響了葡萄產(chǎn)量、經(jīng)濟效益和產(chǎn)業(yè)發(fā)展[2,4]。為防止凍害,我國北方葡萄產(chǎn)區(qū)多采用葡萄樹體埋土的方式,這既增加成本,又對樹體產(chǎn)生傷害,影響產(chǎn)量,還不利于環(huán)境保護[5-6]。因此,挖掘葡萄中與抗寒相關(guān)的基因并研究其功能和作用機制,對解決葡萄凍害問題具有重要的理論意義和實際應(yīng)用價值。
植物激素在植物生長發(fā)育和抵抗逆境脅迫中都有不可或缺的作用。茉莉酸(jasmonic acid,JA)及其衍生物茉莉酸甲酯(methyl jasmonate,MeJA)是主要的茉莉酸類化合物(JAs)[7]。JAs作為一種廣泛存在于植物中的內(nèi)源生長調(diào)節(jié)物質(zhì)和信號分子,在調(diào)控植物生長發(fā)育、次生代謝以及生物和非生物脅迫的防御反應(yīng)中發(fā)揮著重要作用[8-10]。研究發(fā)現(xiàn),在低溫脅迫條件下植物內(nèi)源JAs含量會增加,而施用外源JAs則會通過提高抗氧化酶活性、增強抗氧化劑和防御化合物的合成、促進熱激蛋白的激活和誘導(dǎo)冷響應(yīng)基因的表達形式來增強植物的抗寒性,包括番茄(Solanum lycopersicum)[11]、葡萄(V. vinifera)[12]、香蕉(Musa paradisiaca)[13]等。在正常條件下,JA信號通路中的抑制因子JAZ蛋白(jasmonate ZIM-domain)通過阻遏ICE1蛋白(inducer of CBF expression)、MYC2(myelocytomatosis proteins)的激活,來抑制下游冷響應(yīng)基因的表達;植物受到冷脅迫時內(nèi)源JAs含量增加,JA活性因子JA-Ile (jasmonic acid-isoleucine)大量積累,促使JAZ蛋白與SCFCOI1(Skp1-Cul1-F-box protein coronatine insensitive 1)的結(jié)合使得JAZ蛋白泛素化后被26S蛋白酶降解,解除對ICE1、MYC2的阻遏,激活下游冷響應(yīng)基因CBF(C-repeat binding factor)、DREB(dehydration responsive element binding factor)和ICE41的表達[14-15]。
JAZ蛋白是植物中特有的鋅指蛋白,定位于細胞核中,屬于TIFY 蛋白家族,由ZIM(zinc-finger protein expressed in inflorescence meristem)、Jas(jasmonates)和NT(N terminal domain)3個結(jié)構(gòu)域組成[16-17]。ZIM和Jas是JAZ蛋白主要含有的2個特定保守區(qū),位于N端的ZIM(又稱 TIFY)結(jié)構(gòu)域,由包含1個TIFY基序(TIF[F/Y]XG)在內(nèi)的28個氨基酸組成,該結(jié)構(gòu)域介導(dǎo)JAZ蛋白同源或異源二聚體的形成以及與NINJA(novel interactor of JAZ)等抑制子的互作[18];位于C端的Jas(又稱 CCT_2)結(jié)構(gòu)域,可以與MYC、ICE蛋白的ACT和TAD區(qū)域有著廣泛互作,也是JA-Ile(jasmonic acid-isoleucine)與COI1(coronatine insensitive 1)相互作用的關(guān)鍵[15,19];NT是JAZ蛋白N端的1個弱保守區(qū),該結(jié)構(gòu)域可以與DELLA蛋白互作抑制JA信號[20]。此外,葡萄中有11個JAZs蛋白,但目前行使的功能還不明了[21]。將毛葡萄(V. quinquangularis)VqJAZ4、 VqJAZ7基因在擬南芥(Arabidopsis thaliana)中異源表達可以減輕白粉病發(fā)病癥狀,增強對白粉病的抗性,但也提高了對灰霉病菌的易感性[22-23]。本研究克隆歐洲葡萄霞多麗中JAZ家族基因,獲得其開放閱讀框(open reading frame,ORF)序列,并進行了序列分析,同時對JAZ家族成員基因進行實時熒光定量PCR(quantitative real-time PCR,qRT-PCR)分析,獲得葡萄在低溫脅迫反應(yīng)中差異表達的JAZs基因,然后將差異表達的JAZs基因利用酵母雙雜交技術(shù)篩選互作蛋白并進行驗證,為葡萄抗寒控機制的研究和抗寒葡萄品種的選育提供理論基礎(chǔ)與參考。
1 材料和方法
1.1 試驗材料及處理
試驗于2022年3月—9月在寧夏大學(xué)農(nóng)學(xué)院寧夏優(yōu)勢特色作物現(xiàn)代分子育種重點實驗室進行。試驗材料為2年生歐洲葡萄霞多麗(V. vinifera L. ‘Chardonnay)盆栽扦插苗,于植物培養(yǎng)間(25 ℃,16 h光照,8 h黑暗)進行培養(yǎng)。選取生長狀況良好,長勢一致、無病蟲害的盆栽葡萄苗為試驗植株,試驗植株為同一批扦插育苗且萌芽后25 d的葡萄苗,將選取的試驗植株平均分為2組,一組放置于低溫培養(yǎng)箱內(nèi)(立德泰勀,上海)分別進行4 ℃低溫處理,另一組正常培養(yǎng)為對照(CK),光照條件一致,每個處理設(shè)置3次生物學(xué)重復(fù)。分別在0、3、6、12、24 h收集2組供試葡萄苗從頂端往下數(shù)的第3和第4枚展開的葉片為試驗樣品,立即放入液氮中冷凍,然后置于-80 ℃冰箱保存,用于后續(xù)試驗(圖1)。
1.2 葡萄JAZ家族基因的鑒定
從TAIR數(shù)據(jù)庫(https://www.arabidopsis.org/)中獲取擬南芥JAZ家族蛋白序列信息作為搜尋葡萄同源基因的探針序列。利用Pfam數(shù)據(jù)庫(http://pfam.xfam.org/)下載TIFY(PF06200)和CCT _2(PF09425)結(jié)構(gòu)域的隱馬爾可夫模型文件,使用HMMER 3.0軟件篩選出葡萄全基因組蛋白序列中含有這2個結(jié)構(gòu)域的候選蛋白。利用NCBI數(shù)據(jù)庫(https://www.ncbi.nlm.nih.gov/)、Pfam數(shù)據(jù)庫和SMART(http://smart.embl-heidelberg.de/)進一步驗證候選VvJAZ蛋白的保守結(jié)構(gòu)域,以確定葡萄JAZ家族成員基因。在NCBI網(wǎng)站和葡萄基因組網(wǎng)站(http://www.genoscope.cns.fr/externe/GenomeBrowser/Vitis/)中獲取JAZ家族成員基因的編碼序列(coding sequence,CDS)、基因組序列、外顯子數(shù)量以及在染色體上的位置信息。采用在線軟件ExPASy ProtParam(https://web.expasy.org/protparam/)分析VvJAZs基因編碼的蛋白的理化性質(zhì),采用MEGA 7.0軟件中的鄰接法(neighbor-joining,NJ)構(gòu)建蛋白系統(tǒng)進化樹(bootstrap設(shè)為1000)。
1.3 葡萄JAZ家族基因CDS的克隆
使用Plant RNA kit試劑盒(Omega,美國)分別提取4 ℃低溫處理后0、3、6、12和24 h葉片總RNA,然后按照PrimeScript? Ⅱ Strand cDNA Synthesis Kit劑盒試(TaKaRa,日本)說明書合成第一鏈cDNA。以混合cDNA為模板,使用基因特異性引物對葡萄JAZ家族成員基因的CDS序列進行克隆。運用在線網(wǎng)站Oligo Calc: Oligonucleotide Properties Calculator(http://biotools.nubic.northwestern.edu/OligoCalc.html)設(shè)計同源克隆所用的全部引物(表1)。參考俞沁含等[24]的反應(yīng)體系與程序進行PCR反應(yīng)。PCR產(chǎn)物經(jīng)過凝膠檢測、膠回收后獲得相應(yīng)的目的片段,經(jīng)連接反應(yīng)與pMD19-T載體相連接,將重組產(chǎn)物轉(zhuǎn)化大腸桿菌(Escherichia coli)Top10感受態(tài)細胞,經(jīng)陽性克隆篩選后,送單克隆至北京奧科鼎盛生物科技有限公司測序確認,獲得含有目的基因的重組載體。
1.4 誘餌表達載體的構(gòu)建及自激活檢測
利用Primer Premier 6.0軟件設(shè)計VvJAZ9基因的全長特異引物(表1),以歐洲葡萄霞多麗葉片的cDNA為模板進行PCR反應(yīng),膠回收目的片段。同時利用EcoRⅠ和BamHⅠ雙酶切誘餌載體pGBKT7后,將回收的PCR產(chǎn)物與酶切后的線性載體進行同源重組,隨后轉(zhuǎn)化至E. coli DH5α感受態(tài)細胞,經(jīng)陽性克隆篩選后,送單克隆至公司測序,測序準確后獲得重組質(zhì)粒pGBKT7-VvJAZ9。以pGBKT7-p53+pGADT7-T為陽性對照,pGBKT7-Lam+pGADT7-T為陰性對照,pGBKT7為空載對照,pGBKT7-VvJAZ9+pGADT7為自激活檢測組,采用PEG/LiAc法將其共轉(zhuǎn)化至酵母Y2H Gold感受態(tài)細胞中,涂布于SD/-Leu/-Trp/X-α-Gal(DDO/X)培養(yǎng)基上,再將自激活檢測組另涂布于SD/-Leu/-Trp/-His/X-α-Gal(TDO/X)和SD/-Leu/-Trp/-His/-Ade/X-α-Gal/AbA(QDO/X/A)培養(yǎng)基上,在恒溫培養(yǎng)箱中30 ℃倒置培養(yǎng)3~4 d,觀察菌落的生長和顏色變化,確定誘餌蛋白是否具有自激活活性[25]。
1.5 酵母雙雜交cDNA文庫的構(gòu)建與VvJAZ9互作蛋白的篩選
運用CloneMiner? Ⅱ cDNA Library Construction Kit試劑盒(Invitrogen,美國)構(gòu)建酵母雙雜交cDNA文庫,參考韓雪等[25]的方法進行,具體操作步驟如下,選取4 ℃低溫處理0、3、6、12和24 h的霞多麗葡萄植株葉片,分別提取總RNA,各取5 μg等質(zhì)量均勻混合,根據(jù)Oligotex mRNA Midi Kit 試劑盒(Qiagen,德國)說明書對mRNA進行分離純化,參考CloneMiner? Ⅱ cDNA Library Construction Kit試劑盒說明書將分離純化后的mRNA反轉(zhuǎn)錄合成雙鏈cDNA。將cDNA與三框attB1重組接頭連接(3種接頭分別各連接1份)后,混勻加入TEN Buffer清洗過的分級柱,對cDNA分級分離及收集。將收集的cDNA與pDONR222載體進行BP重組反應(yīng),反應(yīng)產(chǎn)物通過電轉(zhuǎn)化至E. coli DH10B感受態(tài)細胞,加入4 mL SOC培養(yǎng)基,37 ℃,225 r·min-1培養(yǎng)1 h后,獲得初級文庫菌液,并進行庫容量、重組率和插入片段長度的鑒定。從檢驗合格的初級文庫(Uncut型)中抽提質(zhì)粒,將得到的質(zhì)粒質(zhì)量濃度調(diào)整到300 mg·L-1后與pGADT7-DEST進行LR重組反應(yīng),產(chǎn)物經(jīng)電轉(zhuǎn)化至E. coli DH10B,37 ℃,225 r·min-1培養(yǎng)1 h后得到次級文庫菌液,并進行文庫質(zhì)量鑒定,將次級文庫菌液涂布在氨芐平板培養(yǎng)基上,37 ℃過夜培養(yǎng)后,用液體培養(yǎng)基洗脫后抽提質(zhì)粒,用于后續(xù)酵母雙雜交共轉(zhuǎn)化。
將10 μg pGADT7文庫質(zhì)粒與5 μg pGBKT7-VvJAZ9誘餌質(zhì)粒共轉(zhuǎn)化Y2H Gold感受態(tài)細胞。先涂布在SD/-Leu/-Trp/-His/X-α-Gal(TDO/X)固體培養(yǎng)基上,30 ℃倒置培養(yǎng)3~5 d,待單克隆長至1~2 mm時,初篩完成。再挑取TDO/X平板上的藍色陽性克隆轉(zhuǎn)移到SD/-Leu/-Trp/-His/-Ade/X-α-Gal/AbA(QDO/X/A)固體培養(yǎng)基上進行復(fù)篩,然后置于恒溫培養(yǎng)箱中30 ℃倒置培養(yǎng)3~4 d后,挑取陽性克隆并從中提取酵母質(zhì)粒。然后將>500 bp的PCR產(chǎn)物送至公司進行測序,在NCBI Blastx(https://blast.ncbi.nlm.nih.gov/Blast)進行比對分析候選互作蛋白。挑選含正確ORF的候選互作蛋白,根據(jù)其序列設(shè)計引物(表1),克隆至pGADT7載體上,并與pGBKT7-VvJAZ9共轉(zhuǎn)化Y2H Gold感受態(tài)細胞中進行回轉(zhuǎn)驗證[26]。
1.6 雙分子熒光互補試驗驗證候選蛋白互作關(guān)系
設(shè)計VvJAZ9和VvHAP5A基因的ORF中不含終止密碼子的同源重組引物(表1),通過雙分子熒光互補試驗(bimolecular fluorescent complimentary,BiFC),將其構(gòu)建至BiFC驗證載體pB221-cYFP、pB221-nYFP,形成pB221-JAZ9-cYFP和pB221-HAP5A-nYFP。然后將構(gòu)建好的pB221-JAZ9-cYFP和pB221-HAP5A-nYFP及對照載體分別大提質(zhì)粒之后將所獲得的質(zhì)粒通過乙醇沉淀法濃縮至1500~2000 mg·L-1。采用酶解法分離擬南芥葉肉組織原生質(zhì)體,通過PEG(polyethylene glycol)介導(dǎo)法分別將質(zhì)粒兩兩組合共轉(zhuǎn)至擬南芥原生質(zhì)體,22 ℃弱光孵育18 h進行瞬時表達,使用激光共聚焦顯微鏡(Leica TCS SP8 X,德國)觀察并拍照。
1.7 實時熒光定量PCR
利用qRT-PCR檢測低溫脅迫下葡萄JAZ家族成員基因和與VvJAZ9互作候選蛋白的相關(guān)基因的表達情況。qRT-PCR所用引物均使用Primer Premier 6.0軟件設(shè)計(表1)。使用Plant RNA kit試劑盒(Omega,美國)分別提取對照(CK)和4 ℃低溫處理0、3、6、12、24 h的葉片樣品總RNA,各取1 μg通過PrimeScript? RT reagent Kit with gDNA Eraser試劑盒(TaKaRa,日本)將RNA反轉(zhuǎn)錄為cDNA,稀釋10倍后用于后續(xù)的qRT-PCR分析。qRT-PCR反應(yīng)用SYBR? Premix Ex TaqTM (Perfect Real Time)試劑盒(TaKaRa,日本)進行;反應(yīng)體系為:上下游引物各0.8 μL,模板1 μL,SYBR試劑10 μL,用ddH2O補齊至20 μL;反應(yīng)程序為:95 ℃預(yù)變性10 min,95 ℃變性15 s,60 ℃退火1 min,72 ℃延伸 30 s,循環(huán)40次;每次循環(huán)第2步進行熒光采集,使用qTOWER 2.0儀器(Analytik Jena,德國)進行qRT-PCR檢測,每個樣品設(shè)置3次生物學(xué)重復(fù),采用2-??CT法計算基因的相對表達量。
1.8 數(shù)據(jù)統(tǒng)計與分析
使用Excel 2019整理試驗數(shù)據(jù),利用IBM SPSS 25.0對試驗數(shù)據(jù)進行統(tǒng)計分析,并采用Students t-test進行顯著性分析(p<0.05),然后使用Origin Pro 2021作圖。試驗數(shù)據(jù)以(平均值±標準差)表示。
2 結(jié)果與分析
2.1 葡萄JAZ家族成員基因的鑒定與分析
運用生物信息學(xué)手段從葡萄基因組中鑒定出11個JAZ家族成員基因,根據(jù)參考序列在染色體上的分布將所獲得的JAZ家族基因分別命名為VvJAZ1~VvJAZ11。由表2可知,這11個VvJAZs基因不均勻地分布在7條染色體上,其中1號染色體含有2個VvJAZs基因,10號染色體含有4個VvJAZs基因,有5個VvJAZs基因分別位于4、9、11、12、17號染色體上。這些VvJAZs基因CDS長度為297(VvJAZ3)~1167(VvJAZ1)bp,外顯子有2~8個,編碼氨基酸序列長度為98(VvJAZ3)~388(VvJAZ1)aa,分子質(zhì)量最大為40.31 ku,最小為11.26 ku,等電點在9.19~10.46之間,不穩(wěn)定系數(shù)在46.91~85.17之間。11個VvJAZ蛋白的GRAVY(grand average of hydropathicity)值為均負值,表明葡萄JAZ家族蛋白為堿性不穩(wěn)定親水蛋白。
2.2 葡萄JAZ家族基因克隆與聚類分析
以4 ℃低溫處理后不同時間節(jié)點的葡萄葉片的混合cDNA為模板通過同源克隆的方式從歐洲葡萄霞多麗中克隆到11個JAZ家族成員基因。結(jié)果表明,克隆到葡萄中的JAZs基因與所預(yù)測的葡萄基因組中ORF長度和所編碼的氨基酸序列長度基本一致(圖2)。
對獲得的葡萄JAZ家族蛋白序列進行多重比對分析,發(fā)現(xiàn)11個VvJAZ蛋白序列中都含有TIFY和Jas這2個高度保守的結(jié)構(gòu)域,符合JAZ家族類型特點(圖3-A)。葡萄JAZ家族成員的氨基酸序列聚類分析顯示,VvJAZ1與VvJAZ11、VvJAZ4與VvJAZ9、VvJAZ5與VvJAZ6的氨基酸相似度最高(圖3-B)。從葡萄JAZs蛋白與擬南芥中的JAZ蛋白的聚類結(jié)果可以看出(圖3-C),葡萄JAZ家族蛋白可分為3個亞族;在亞組Ⅰ中的VvJAZ4、VvJAZ9與擬南芥中AtJAZ1和AtJAZ2的親緣關(guān)系最近;在亞組Ⅱ中的VvJAZ1、VvJAZ11與擬南芥中AtJAZ9的進化距離最近;在亞組Ⅲ中的VvJAZ3、VvJAZ5、VvJAZ6、VvJAZ7、VvJAZ8與擬南芥中AtJAZ7和AtJAZ8的親緣關(guān)系最近;其中,VvJAZ1與VvJAZ11、VvJAZ5與VvJAZ61同源關(guān)系最近,推測其在蛋白功能上具有一定的相似性。
2.3 葡萄JAZ家族基因在低溫脅迫下的表達分析
對所獲得的葡萄JAZ家族基因的核苷酸序列聚類分析后發(fā)現(xiàn),VvJAZ5和VvJAZ6的核苷酸相似度達到96.88%,因而在設(shè)計qRT-PCR引物時選擇VvJAZ5與VvJAZ6的同源片段區(qū)域,命名為VvJAZ5/6。qRT-PCR分析結(jié)果表明(圖4),在歐洲葡萄JAZs基因家族中的VvJAZ9基因受低溫誘導(dǎo)表達最為明顯,在0 h相對表達量最低,在24 h達到最高;VvJAZ2和VvJAZ10基因均呈現(xiàn)先上升再下降、后期又逐漸上升的表達趨勢;VvJAZ3、VvJAZ5/6及VvJAZ8基因在12 h以前相對表達量均處于較低水平,但在24 h達到頂峰;VvJAZ1基因在受到低溫處理后相對表達量呈現(xiàn)出先降低后又逐漸上升的表達模式,而VvJAZ11基因在受到低溫處理后相對表達量呈現(xiàn)逐漸下降的表達趨勢,在24 h相對表達量最低。這11個VvJAZs基因中僅有VvJAZ9基因的相對表達量隨著低溫時間延長而呈現(xiàn)顯著上升趨勢,是受低溫誘導(dǎo)表達顯著的基因,推測該基因可能響應(yīng)低溫調(diào)控,參與葡萄抵御冷脅迫的應(yīng)答過程。
2.4 誘餌載體自激活檢測
在篩庫之前,需將構(gòu)建好的pGBKT7-VvJAZ9誘餌載體進行自激活檢測。在SD/-Leu/-Trp/X-α-Gal(DDO/X)培養(yǎng)基上陽性對照(pGBKT7-p53+pGADT7-T)有藍色酵母菌落生長,而陰性對照(pGBKT7-Lam+pGADT7-T)有菌落生長但未顯現(xiàn)藍色,說明陽性和陰性對照試驗成功(圖5)。pGBKT7空載體和pGBKT7-VvJAZ9+pGADT7在SD/-Leu/-Trp/X-α-Gal上生長,在SD/-Leu/-Trp/-His/X-α-Gal(TDO/X)和SD/-Leu/-Trp/-His/-Ade/X-α-Gal/AbA(QDO/X/A)上不生長,說明pGBKT7-VvJAZ9質(zhì)粒成功轉(zhuǎn)入酵母菌株中,且無自激活活性,可以用于后續(xù)篩選試驗(圖6)。
2.5 酵母雙雜交篩選VvJAZ9互作蛋白
2.5.1 ? ?文庫初篩與復(fù)篩 ? ?將pGBKT7-VvJAZ9誘餌質(zhì)粒和構(gòu)建的酵母雙雜交文庫質(zhì)粒共轉(zhuǎn)化Y2H Gold酵母感受態(tài)細胞,轉(zhuǎn)化產(chǎn)物涂布在SD/-Leu/-Trp/-His/X-α-Gal(TDO/X)平板上培養(yǎng)3~5 d,初篩共獲得72個藍色的酵母克隆(圖7-A~B)。在轉(zhuǎn)化過程中檢測轉(zhuǎn)化情況,確定轉(zhuǎn)化效率>210 cfu·μg-1,總轉(zhuǎn)化子數(shù)>210 cfu。再挑取TDO/X篩選平板上的藍色陽性克隆轉(zhuǎn)移到SD/-Leu/-Trp/-His/-Ade/X-α-Gal/AbA(QDO/X/A)篩選平板上,共篩選到50個藍色克?。▓D7-C),最終對50個克隆全部測序。
2.5.2 ? ?候選互作蛋白的鑒定 ? ?將篩選到的50個陽性克隆在四缺培養(yǎng)基上擴大培養(yǎng)后,提取酵母質(zhì)粒,運用pGADT7載體上通用引物對質(zhì)粒進行PCR檢測,將所獲得的條帶中>500 bp的PCR產(chǎn)物送公司進行測序,測序結(jié)果通過NCBI數(shù)據(jù)庫中進行Blastx比對分析,去除移碼的假陽性克隆后,初步獲得26個可能與VvJAZ9互作的候選蛋白,包括核轉(zhuǎn)錄因子Y亞基C-9亞型X3、精氨酸脫羧酶、JAZ1蛋白、冠狀激素不敏感蛋白、鋅指蛋白CONSTANS-like 2、KH結(jié)構(gòu)域蛋白和忍者家族蛋白等(表3)。
2.5.3 ? ?VvJAZ9候選互作蛋白的相關(guān)基因在低溫脅迫下的表達分析 ? ?qRT-PCR分析結(jié)果如圖8所示,在4 ℃低溫處理的歐洲葡萄中bZIP(XP_002266061.1)基因表現(xiàn)出先上升后下降的表達趨勢,且在3 h相對表達量達到最高;CONSTANS-LIKE 2(RVX06365.1)、STOP1(XP_002267529.1)和GAI2(CAN59753.1)呈現(xiàn)出先下降后逐漸上升的表達趨勢,均在6 h相對表達量最低;CSN5B(XP_002283561.1)則呈現(xiàn)出雙峰的表達趨勢,分別在6 h和24 h相對表達量達到最大;NINJA(XP_002283979)呈現(xiàn)出逐漸下降的表達趨勢;HAP5B(XM_002262845.4)和GAI1(XM_002284612.4)表現(xiàn)出先上升后下降的表達趨勢,都在3 h相對表達量達到最大;而HAP5A(CAN73357.1)則呈現(xiàn)出逐漸上升的表達趨勢,這與已篩選出的VvJAZ9受低溫誘導(dǎo)表達趨勢類似。以上結(jié)果表明,HAP5A可能是響應(yīng)低溫較為顯著的VvJAZ9候選互作蛋白。
2.5.4 ? ?VvJAZ9與VvHAP5A回轉(zhuǎn)驗證 ? ?為進一步驗證VvJAZ9與VvHAP5A蛋白互作關(guān)系,從霞多麗葡萄cDNA中同源克隆到VvHAP5A的ORF序列,其ORF序列共636 bp,編碼211個氨基酸,VvHAP5A基因是1個NF-YC類型的轉(zhuǎn)錄因子基因。采用同源重組的方法獲得pGADT7-HAP5A載體,然后將pGADT7-HAP5A和pGBKT7-JAZ9共轉(zhuǎn)化酵母感受態(tài)細胞中進行回轉(zhuǎn)驗證。共轉(zhuǎn)化的酵母在
SD/-Leu/-Trp培養(yǎng)基上均可正常生長,但在SD/-Leu/
-Trp/-His/-Ade/X-α-Gal/AbA(QDO/X/A)培養(yǎng)基上只有pGBKT7-JAZ9+pGADT7-HAP5A和陽性對照(pGBKT7-p53+pGADT7-T)顯現(xiàn)藍色酵母菌落,并隨著稀釋倍數(shù)的增大,藍色菌落在減少,說明VvJAZ9與VvHAP5A蛋白具有相互作用(圖9)。
2.6 VvJAZ9與VvHAP5A蛋白互作驗證
利用BiFC試驗進一步驗證VvJAZ9與VvHAP5A在植物體內(nèi)的互作關(guān)系,結(jié)果如圖10所示,共轉(zhuǎn)化的cYFPJAZ9+nYFPHAP5A在擬南芥原生質(zhì)體中可以觀察到黃色熒光信號,而cYFPJAZ9+nYFP和cYFP+nYFPHAP5A均未觀察到黃色熒光信號,表明VvJAZ9和VvHAP5A蛋白在植物體內(nèi)存在互作關(guān)系。
3 討 論
JA是一種廣泛存在于高等植物體內(nèi)脂肪酸衍生的植物激素,不僅在植物生長發(fā)育過程中具有重要的調(diào)節(jié)作用,而且在植物應(yīng)對生物和非生物脅迫中也扮演著重要的角色[27]。SCFCOI1泛素蛋白復(fù)合體、轉(zhuǎn)錄抑制因子JAZ蛋白和轉(zhuǎn)錄激活因子MYC蛋白是JA信號途徑的3個核心組件,其中JAZ蛋白作為E3泛素連接酶SCFCOI1的靶蛋白和MYC的轉(zhuǎn)錄抑制子,是JA信號轉(zhuǎn)導(dǎo)途徑的關(guān)鍵組分,在JA調(diào)控植物脅迫應(yīng)答的過程中發(fā)揮著重要作用[16]。JAZ家族成員基因眾多,且生物學(xué)功能豐富。目前已報道在擬南芥[28]、煙草(Nicotiana tabacum)[29]、小麥(Triticum aestivum)[30]、玉米(Zea mays)[31]、番茄(S. lycopersicum)[32]、黃瓜(Cucumis sativus)[33]、西瓜(Citrullus lanatus)[34]等中分別鑒定出12、15、14、38、13、11、8個JAZ成員。
筆者在本研究中利用生物信息學(xué)方法,從葡萄全基因組序列中鑒定到11個葡萄JAZ家族成員基因,分別命名為VvJAZ1~VvJAZ11,這與前人在葡萄上的篩選鑒定結(jié)果一致[21]。這11個成員不均勻地分布在7條染色體上,但在10號染色體上分布較為密集,這與粗山羊草(Aegilops tauschii)JAZ家族基因在染色體上的分布研究類似[35]。對這11個JAZ家族成員的蛋白序列進行比對分析后發(fā)現(xiàn),葡萄中VvJAZ蛋白都具有2個高度保守的TIFY和Jas結(jié)構(gòu)域,屬于典型的JAZ家族蛋白,與甘薯(Ipomoea batatas)中JAZ蛋白結(jié)構(gòu)研究一致[36]。通過對葡萄JAZ家族成員的理化性質(zhì)分析發(fā)現(xiàn),11個VvJAZ蛋白的平均親水性均為負值且等電點均大于7.0,都屬于堿性不穩(wěn)定親水蛋白,與核桃(Juglans regia)中JAZ蛋白性質(zhì)研究一致[37]。根據(jù)芥菜(Brassica juncea)[38]與擬南芥JAZ家族的系統(tǒng)進化樹分析結(jié)果,將這些JAZ明顯分為5個亞組(Ⅰ、Ⅱ、Ⅲ、Ⅳ和V),而在本研究中葡萄與擬南芥JAZ家族成員的系統(tǒng)進化樹被分為3個亞組;在亞組Ⅰ中的VvJAZ9與擬南芥中AtJAZ1和AtJAZ2的親緣關(guān)系最近;在亞組Ⅱ中的VvJAZ1、VvJAZ11和亞組Ⅲ中的VvJAZ5與VvJAZ6同源關(guān)系最近,并推測其在蛋白功能上有一定的相似性。
JAZs基因是茉莉酸信號通路中的關(guān)鍵節(jié)點基因,也是植物響應(yīng)逆境脅迫的關(guān)鍵調(diào)控因子[27]。有研究表明,JAZs基因參與一些植物的低溫脅迫,JAZ1和JAZ4基因過度表達會使植物對冷脅迫敏感,也會抑制擬南芥中的ICE-CBF信號通路和冷凍反應(yīng)[14]。JAZ1基因沉默的擬南芥愈傷組織中鈣調(diào)素含量顯著增加,同時也增強了對冷應(yīng)激的耐受性[39]。在低溫脅迫下,耐低溫的棉花(Gossypium hirsutum)品種中GhJAZ1基因的上調(diào)表達更為顯著,推測該基因參與棉花低溫脅迫防御反應(yīng)[40]。筆者在本研究中通過對葡萄JAZ家族成員基因在低溫條件下的qRT-PCR分析發(fā)現(xiàn),這11個VvJAZs基因都存在不同程度的受低溫誘導(dǎo)表達,但只有VvJAZ9基因的相對表達量隨低溫脅迫時間的延長而呈現(xiàn)上升趨勢,是受低溫誘導(dǎo)表達最為顯著的基因。
蛋白之間的相互作用對闡明胞內(nèi)信號轉(zhuǎn)導(dǎo)有重要意義。JAZ可以與ICE[14]、MYC[41]、bHLH[42]類蛋白互作,在JA信號通路中發(fā)揮作用,參與植物生長發(fā)育以及逆境響應(yīng)。水稻(Oryza sativa)中OsJAZ9蛋白與OsMYB30相互作用負調(diào)控BMY基因以調(diào)節(jié)淀粉分解和麥芽糖積累,從而增強植物的抗寒性[43]。作為抑制子的MdJAZ1/4可與MdMYC2結(jié)合,促進抗寒相關(guān)基因的表達,提高蘋果(Malus pumila)愈傷組織對低溫的抵抗能力[44]。MdJAZ1和MdJAZ2通過與MdABI4蛋白相互作用負調(diào)節(jié)MdABI4基因以促進MdICE2基因?qū)ζ湎掠伟谢騇dCBF1的轉(zhuǎn)錄調(diào)節(jié),從而提高蘋果的耐寒性[45]。甜櫻桃(Prunus avium)PavJAZ1/2/3與PavMYC2相互作用共同響應(yīng)溫度脅迫并協(xié)同調(diào)控開花[46]。本研究通過酵母雙雜交試驗篩選獲得26個可能與VvJAZ9存在互作關(guān)系的候選蛋白,進一步運用qRT-PCR技術(shù)分析候選互作蛋白的相關(guān)基因在低溫脅迫下的表達情況后發(fā)現(xiàn),這些相關(guān)基因中有1個HAP5A基因的相對表達量隨低溫時間的延長而呈現(xiàn)出顯著上升的趨勢,這與從葡萄JAZ家族成員基因中篩選出的VvJAZ9受低溫誘導(dǎo)表達模式相似,推測HAP5A可能是候選互作蛋白中響應(yīng)低溫較為明顯的且與JAZ9有互作關(guān)系的蛋白。
NF-Y(nuclear factor-Y)又稱為HAP(heme activator protein),是廣泛存在于真核生物中的轉(zhuǎn)錄因子,以NF-YA(HAP2/CBF-B)、NF-YB(HAP3/ CBF-A)和NF-YC(HAP5/CBF-C)3種亞基構(gòu)成異源三聚體的形式調(diào)控下游基因的表達[47]。研究發(fā)現(xiàn),HAPs家族參與胚胎合成、種子萌發(fā)、開花調(diào)控、果實成熟以及響應(yīng)逆境脅迫等生長發(fā)育過程[48]。HAP5基因通過與GSH2(glutathione synthetase)的啟動子結(jié)合,誘導(dǎo)GSH2基因表達,提高細胞中谷胱甘肽含量,減輕活性氧對細胞膜的損傷,從而有效提高假絲酵母(Candida glycerinogenes)對2-苯乙醇的耐受性[49]。將青杄(Picea wilsonii)PwHAP5基因在擬南芥中過表達可顯著提高幼苗對鹽分的耐受性[50];AtHAP5A基因通過與AtXTH2啟動子上的CCAAT順式作用元件結(jié)合來正向調(diào)節(jié)擬南芥對冷脅迫的響應(yīng),過表達AtHAP5A基因也可增強擬南芥植株對冷凍的耐受性[51-52]。此外,PwHAP5可以與PwFKBP12發(fā)生互作,參與花粉管發(fā)育和花粉管定向控制[53];OsHAP5和OsHAP2相互作用,共同參與水稻光周期開花的調(diào)控[54]。本研究通過qRT-PCR分析獲得1個響應(yīng)低溫較為顯著的JAZ9候選互作蛋白HAP5A,進一步通過酵母雙雜交和雙分子熒光互補實驗也表明VvJAZ9與VvHAP5A蛋白存在互作關(guān)系。
4 結(jié) 論
從葡萄基因組共鑒定到11個VvJAZs基因,編碼氨基酸序列長度為98~388 aa,分子質(zhì)量在11.26~40.31 ku,均為堿性親水蛋白,分布于3個亞組中,其中VvJAZ9與擬南芥AtJAZ1和AtJAZ2蛋白的親緣關(guān)系最近。qRT-PCR表明,VvJAZ9和VvHAP5A基因均響應(yīng)低溫誘導(dǎo)表達,推測該基因可能在葡萄抵御冷脅迫的應(yīng)答過程中起重要作用。酵母雙雜交和雙分子熒光互補試驗結(jié)果都表明,VvJAZ9與VvHAP5A蛋白具有互作關(guān)系。本研究為進一步開展葡萄JAZ基因參與低溫脅迫的研究奠定理論基礎(chǔ),為探討葡萄抗逆分子機制研究提供參考。
參考文獻References:
[1] 陸昱穎,萬然,樊秀彩,張穎,孫磊,劉崇懷,姜建福. 中國和UPOV、日本葡萄品種DUS測試指南比較分析[J]. 果樹學(xué)報,2023,40(2):363-375.
LU Yuying,WAN Ran,F(xiàn)AN Xiucai,ZHANG Ying,SUN Lei,LIU Chonghuai,JIANG Jianfu. Comparative analysis of test guidelines for distinctness,uniformity and stability of grapevine (Vitis L.) formulated by China,UPOV and Japan[J]. Journal of Fruit Science,2023,40(2):363-375.
[2] 張利鵬,劉懷鋒,辛海平. 葡萄抗寒機制研究進展[J]. 果樹學(xué)報,2023,40(2):350-362.
ZHANG Lipeng,LIU Huaifeng,XIN Haiping. Research progress in cold tolerance mechanism of grape [J]. Journal of Fruit Science,2023,40(2):350-362.
[3] 劉硯璞,肖雪,趙建明,朱自果. 中國野生燕山葡萄VyCIPK9基因的克隆與功能分析[J]. 果樹學(xué)報,2022,39(10):1748-1758.
LIU Yanpu,XIAO Xue,ZHAO Jianming,ZHU Ziguo. Cloning and functional analysis of VyCIPK9 gene in Chinese wild grape (Vitis yeshanensis ‘Yanshan)[J]. Journal of Fruit Science,2022,39(10):1748-1758.
[4] 劉暢,楊興旺,王小龍,王志強,劉鳳之,王海波. 植物防凍劑對葡萄抗寒能力的影響研究進展[J]. 中國果樹,2022(3):6-9.
LIU Chang,YANG Xingwang,WANG Xiaolong,WANG Zhiqiang,LIU Fengzhi,WANG Haibo. Research progress on the effect of plant antifreeze on grape under low-temperature stress[J]. China Fruits,2022(3):6-9.
[5] FENNELL A. Freezing tolerance and injury in grapevines[J]. Journal of Crop Improvement,2004,10(1/2):201-235.
[6] 段曉鳳,張曉煜,張磊,劉建文,南學(xué)軍,李楠,李紅英. 釀酒葡萄越冬防凍技術(shù)研究發(fā)展概況[J]. 農(nóng)業(yè)工程,2022,12(6):133-138.
DUAN Xiaofeng,ZHANG Xiaoyu,ZHANG Lei,LIU Jianwen,NAN Xuejun,LI Nan,LI Hongying. General situation of research and development on antifreeze technology for wine grape overwintering[J]. Agricultural Engineering,2022,12(6):133-138.
[7] ALI M S,BAEK K H. Jasmonic acid signaling pathway in response to abiotic stresses in plants[J]. International Journal of Molecular Sciences,2020,21(2):621.
[8] 李芳菲,馬文瑤,程大偉,黃海娜,顧紅,陳錦永,楊英軍. 植物生長調(diào)節(jié)物質(zhì)對葡萄著色影響的研究進展[J]. 果樹學(xué)報,2019,36(7):928-938.
LI Fangfei,MA Wenyao,CHENG Dawei,HUANG Haina,GU Hong,CHEN Jinyong,YANG Yingjun. Advances in grape coloration regulated by plant growth regulators[J]. Journal of Fruit Science,2019,36(7):928-938.
[9] WASTERNACK C,HAUSE B. Jasmonates:biosynthesis,perception,signal transduction and action in plant stress response,growth and development:An update to the 2007 review in annals of botany[J]. Annals of Botany,2013,111(6):1021-1058.
[10] GHORBEL M,BRINI F,SHARMA A,LANDI M. Role of jasmonic acid in plants:The molecular point of view[J]. Plant Cell Reports,2021,40(8):1471-1494.
[11] DING F,WANG C,XU N,WANG M L,ZHANG S X. Jasmonic acid-regulated putrescine biosynthesis attenuates cold-induced oxidative stress in tomato plants[J]. Scientia Horticulturae,2021,288:110373.
[12] 解振宇,楊江山. 茉莉酸甲酯對高寒地區(qū)設(shè)施延后栽培葡萄生理的影響[J]. 中國農(nóng)學(xué)通報,2016,32(16):66-71.
XIE Zhenyu,YANG Jiangshan. Effect of methyl jasmonate on physiology of delayed culture grape in alpine greenhouse[J]. Chinese Agricultural Science Bulletin,2016,32(16):66-71.
[13] 馮斗,禤維言,黃政樹,鄧付園,譚湘. 茉莉酸甲酯對低溫脅迫下香蕉幼苗的生理效應(yīng)[J]. 果樹學(xué)報,2009,26(3):390-393.
FENG Dou,XUAN Weiyan,HUANG Zhengshu,DENG Fuyuan,TAN Xiang. Effects of MeJA on cold tolerance of banana seedlings[J]. Journal of Fruit Science,2009,26(3):390-393.
[14] HU Y R,JIANG L Q,WANG F,YU D Q. Jasmonate regulates the inducer of cbf expression-c-repeat binding factor/dre binding factor1 cascade and freezing tolerance in Arabidopsis[J]. The Plant Cell,2013,25(8):2907-2924.
[15] 樊曉培,邢津溥,魏鐵鎖,李欣洋,蒼晶,徐慶華,張達. 外源MeJA對低溫脅迫下冬小麥冷響應(yīng)基因表達的影響[J]. 麥類作物學(xué)報,2020,40(3):292-299.
FAN Xiaopei,XING Jinpu,WEI Tiesuo,LI Xinyang,CANG Jing,XU Qinghua,ZHANG Da. Effect of exogenous MeJA on the expression of cold response genes in winter wheat under low temperature stress[J]. Journal of Triticeae Crops,2020,40(3):292-299.
[16] THINES B,KATSIR L,MELOTTO M,NIU Y J,MANDAOKAR A,LIU G H,NOMURA K,HE S Y,HOWE G A,BROWSE J. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling[J]. Nature,2007,448(7154):661-665.
[17] THIREAULT C,SHYU C,YOSHIDA Y,ST AUBIN B,CAMPOS M L,HOWE G A. Repression of jasmonate signaling by a non-TIFY JAZ protein in Arabidopsis[J]. The Plant Journal,2015,82(4):669-679.
[18] BROWSE J,WALLIS J G. Arabidopsis flowers unlocked the mechanism of jasmonate signaling[J]. Plants,2019,8(8):285.
[19] SHEARD L B,TAN X,MAO H B,WITHERS J,BEN-NISSAN G,HINDS T R,KOBAYASHI Y,HSU F F,SHARON M,BROWSE J,HE S Y,RIZO J,HOWE G A,ZHENG N. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor[J]. Nature,2010,468(7322):400-405.
[20] MELOTTO M,MECEY C,NIU Y J,CHUNG H S,KATSIR L,YAO J,ZENG W Q,THINES B,STASWICK P,BROWSE J,HOWE G A,HE S Y. A critical role of two positively charged amino acids in the Jas motif of Arabidopsis JAZ proteins in mediating coronatine- and jasmonoyl isoleucine-dependent interactions with the COI1 F-box protein[J]. The Plant Journal,2008,55(6):979-988.
[21] ZHANG Y C,GAO M,SINGER S D,F(xiàn)EI Z J,WANG H,WANG X P. Genome-wide identification and analysis of the TIFY gene family in grape[J]. PLoS One,2012,7(9):e44465.
[22] HANIF M,RAHMAN M U,GAO M,YANG J H,AHMAD B,YAN X X,WANG X P. Heterologous expression of the grapevine JAZ7 gene in Arabidopsis confers enhanced resistance to powdery mildew but not to Botrytis cinerea[J]. International Journal of Molecular Sciences,2018,19(12):3889.
[23] ZHANG G F,YAN X X,ZHANG S L,ZHU Y X,ZHANG X M,QIAO H B,VAN NOCKER S,LI Z,WANG X P. The jasmonate-ZIM domain gene VqJAZ4 from the Chinese wild grape Vitis quinquangularis improves resistance to powdery mildew in Arabidopsis thaliana[J]. Plant Physiology and Biochemistry,2019,143:329-339.
[24] 俞沁含,焦淑珍,吳楠,張寧波,徐偉榮. 葡萄E3泛素酶HOS1基因克隆、表達及抗血清制備[J]. 園藝學(xué)報,2021,48(6):1173-1182.
YU Qinhan,JIAO Shuzhen,WU Nan,ZHANG Ningbo,XU Weirong. Molecular cloning,expression and polyclonal antibody preparation of E3 ubiquitin ligase gene HOS1 from Vitis vinifera[J]. Acta Horticulturae Sinica,2021,48(6):1173-1182.
[25] 韓雪,王樹芳,林金星. 擬南芥酵母雙雜交文庫構(gòu)建及ADPG1互作蛋白篩選[J]. 中國細胞生物學(xué)學(xué)報,2022,44(6):1048-1055.
HAN Xue,WANG Shufang,LIN Jinxing. Construction of yeast two-hybrid library of Arabidopsis thaliana and screening of ADPG1 interacting proteins[J]. Chinese Journal of Cell Biology,2022,44(6):1048-1055.
[26] 鄭巧玲,申威,姚文孔,徐偉榮. 山葡萄低溫誘導(dǎo)酵母雙雜三框cDNA文庫構(gòu)建和VaCIPK18互作蛋白篩選鑒定[J]. 園藝學(xué)報,2020,47(12):2301-2316.
ZHENG Qiaoling,SHEN Wei,YAO Wenkong,XU Weirong. Construction of yeast two-hybrid three-frame cDNA library of Vitis amurensis and screening of VaCIPK18 interaction protein[J]. Acta Horticulturae Sinica,2020,47(12):2301-2316.
[27] WASTERNACK C,STRNAD M. Jasmonates are signals in the biosynthesis of secondary metabolites: Pathways,transcription factors and applied aspects: A brief review[J]. New Biotechnology,2019,48:1-11.
[28] CHICO J M,CHINI A,F(xiàn)ONSECA S,SOLANO R. JAZ repressors set the rhythm in jasmonate signaling[J]. Current Opinion in Plant Biology,2008,11(5):486-494.
[29] ZHANG H Y,LI W J,NIU D X,WANG Z J,YAN X X,YANG X L,YANG Y F,CUI H. Tobacco transcription repressors NtJAZ:potential involvement in abiotic stress response and glandular trichome induction[J]. Plant Physiology and Biochemistry,2019,141:388-397.
[30] XIE S F,CUI L C,LEI X L,YANG G,LI J,NIE X J,JI W Q. The TIFY gene family in wheat and its progenitors:genome-wide identification,evolution and expression analysis[J]. Current Genomics,2019,20(5):371-388.
[31] SUN P D,SHI Y N,VALERIO A G O,BORREGO E J,LUO Q Y,QIN J,LIU K,YAN Y X. An updated census of the maize TIFY family[J]. PLoS One,2021,16(2):e0247271.
[32] CHINI A,BEN-ROMDHANE W,HASSAIRI A,ABOUL-SOUD M A M. Identification of TIFY/JAZ family genes in Solanum lycopersicum and their regulation in response to abiotic stresses[J]. PLoS One,2017,12(6):e0177381.
[33] PAN J W,TU J Y,SHARIF R,QI X H,XU X W,CHEN X H. Study of JASMONATE ZIM-Domain gene family to waterlogging stress in Cucumis sativus L.[J]. Vegetable Research,2021,1(1):1-12.
[34] YANG Y X,AHAMMED G J,WAN C P,LIU H J,CHEN R R,ZHOU Y. Comprehensive analysis of TIFY transcription factors and their expression profiles under jasmonic acid and abiotic stresses in watermelon[J]. International Journal of Genomics,2019,2019:6813086.
[35] 王玉昆,苑少華,苑國良,段文靜,王鵬,廖祥政,陳兆波,王娜,王拯,張立平,趙昌平. 粗山羊草JAZ基因家族的全基因組鑒定與分析[J]. 麥類作物學(xué)報,2016,36(1):9-17.
WANG Yukun,YUAN Shaohua,YUAN Guoliang,DUAN Wenjing,WANG Peng,LIAO Xiangzheng,CHEN Zhaobo,WANG Na,WANG Zheng,ZHANG Liping,ZHAO Changping. Genome-wide identification and analysis of JAZ gene family in Aegilops tauschii[J]. Journal of Triticeae Crops,2016,36(1):9-17.
[36] 黃小芳,畢楚韻,陳其俊,劉江洪,胡韻卓,黃碧芳,許明,陳選陽,林世強. 甘薯基因組JAZ基因家族的鑒定與分析[J]. 基因組學(xué)與應(yīng)用生物學(xué),2021,40(s4):3685-3693.
HUANG Xiaofang,BI Chuyun,CHEN Qijun,LIU Jianghong,HU Yunzhuo,HUANG Bifang,XU Ming,CHEN Xuanyang,LIN Shiqiang. Identification and analysis of JAZ gene family in Ipomoea batatas genome[J]. Genomics and Applied Biology,2021,40(S4):3685-3693.
[37] 劉凱,李津津,王紅霞,李林晴,趙書崗,張俊佩,馬慶國,張志華. 核桃JrJAZ基因家族鑒定與轉(zhuǎn)錄表達分析[J]. 河北農(nóng)業(yè)大學(xué)學(xué)報,2021,44(1):41-50.
LIU Kai,LI Jinjin,WANG Hongxia,LI Linqing,ZHAO Shugang,ZHANG Junpei,MA Qingguo,ZHANG Zhihua. Identification and transcriptional expression analysis of walnut JrJAZ gene family[J]. Journal of Hebei Agricultural University,2021,44(1):41-50.
[38] CAI Z M,CHEN Y Q,LIAO J J,WANG D D. Genome-wide identification and expression analysis of jasmonate ZIM domain gene family in tuber mustard (Brassica juncea var. tumida)[J]. PLoS One,2020,15(6):e0234738.
[39] MAKHAZEN D S,VEREMEICHIK G N,SHKRYL Y N,TCHERNODED G K,GRIGORCHUK V P,BULGAKOV V P. Inhibition of the JAZ1 gene causes activation of camalexin biosynthesis in Arabidopsis callus cultures[J]. Journal of Biotechnology,2021,342:102-113.
[40] 蔡肖,甄軍波,江振興,劉琳琳,劉迪,張建宏,田海燕,張香云,遲吉娜. 陸地棉低溫響應(yīng)基因GhJAZ1的克隆及表達分析[J]. 華北農(nóng)學(xué)報,2018,33(1):7-13.
CAI Xiao,ZHEN Junbo,JIANG Zhenxing,LIU Linlin,LIU Di,ZHANG Jianhong,TIAN Haiyan,ZHANG Xiangyun,CHI Jina. Cloning and expression analysis of cold response gene GhJAZ1 from Gossypium hirsutum L.[J]. Acta Agriculturae Boreali-Sinica,2018,33(1):7-13.
[41] GOOSSENS J,SWINNEN G,VANDEN BOSSCHE R,PAUWELS L,GOOSSENS A. Change of a conserved amino acid in the MYC2 and MYC3 transcription factors leads to release of JAZ repression and increased activity[J]. New Phytologist,2015,206(4):1229-1237.
[42] FONSECA S,F(xiàn)ERN?NDEZ-CALVO P,F(xiàn)ERN?NDEZ G M,D?EZ-D?AZ M,GIMENEZ-IBANEZ S,L?PEZ-VIDRIERO I,GODOY M,F(xiàn)ERN?NDEZ-BARBERO G,VAN LEENE J,DE JAEGER G,F(xiàn)RANCO-ZORRILLA J M,SOLANO R. bHLH003,bHLH013 and bHLH017 are new targets of JAZ repressors negatively regulating JA responses[J]. PLoS One,2014,9(1):e86182.
[43] LV Y,YANG M,HU D,YANG Z Y,MA S Q,LI X H,XIONG L Z. The OsMYB30 transcription factor suppresses cold tolerance by interacting with a JAZ protein and suppressing β-amylase expression[J]. Plant Physiology,2017,173(2):1475-1491.
[44] WANG Y C,XU H F,LIU W J,WANG N,QU C Z,JIANG S H,F(xiàn)ANG H C,ZHANG Z Y,CHEN X S. Methyl jasmonate enhances apple cold tolerance through the JAZ-MYC2 pathway[J]. Plant Cell,Tissue and Organ Culture (PCTOC),2019,136(1):75-84.
[45] AN J P,XU R R,LIU X,SU L,YANG K,WANG X F,WANG G L,YOU C X. Abscisic acid insensitive 4 interacts with ICE1 and JAZ proteins to regulate ABA signaling-mediated cold tolerance in apple[J]. Journal of Experimental Botany,2022,73(3):980-997.
[46] 王繼源,王麗,糾松濤,孫菀霞,徐巖,劉勛菊,張才喜. 甜櫻桃PavMYC2基因克隆與表達分析[J]. 果樹學(xué)報,2022,39(5):701-711.
WANG Jiyuan,WANG Li,JIU Songtao,SUN Wanxia,XU Yan,LIU Xunju,ZHANG Caixi. Cloning and expression analysis of PavMYC2 gene in Prunus avium L.[J]. Journal of Fruit Science,2022,39(5):701-711.
[47] 李世貴,馬瑞,王芳芳,劉維剛,楊江偉,唐勛,張寧,司懷軍. 植物NF-Y轉(zhuǎn)錄因子研究進展[J]. 植物生理學(xué)報,2021,57(2):248-256.
LI Shigui,MA Rui,WANG Fangfang,LIU Weigang,YANG Jiangwei,TANG Xun,ZHANG Ning,SI Huaijun. Research progresses on plant NF-Y transcription factors [J]. Plant Physiology Journal,2021,57(2):248-256.
[48] ZANETTI M E,R?PODAS C,NIEBEL A. Plant NF-Y transcription factors:Key players in plant-microbe interactions,root development and adaptation to stress[J]. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms,2017,1860(5):645-654.
[49] WANG Y Q,ZHANG Z Y,LU X Y,ZONG H,ZHUGE B. Transcription factor Hap5 induces gsh2 expression to enhance 2-phenylethanol tolerance and production in an industrial yeast Candida glycerinogenes[J]. Applied Microbiology and Biotechnology,2020,104(9):4093-4107.
[50] LI L L,YU Y L,WEI J,HUANG G X,ZHANG D,LIU Y,ZHANG L Y. Homologous HAP5 subunit from Picea wilsonii improved tolerance to salt and decreased sensitivity to ABA in transformed Arabidopsis[J]. Planta,2013,238(2):345-356.
[51] SHI H T,CHAN Z L. AtHAP5A modulates freezing stress resistance in Arabidopsis independent of the CBF pathway[J]. Plant Signaling & Behavior,2014,9(7):e29109.
[52] SHI H T,YE T T,ZHONG B,LIU X,JIN R,CHAN Z L. AtHAP5A modulates freezing stress resistance in Arabidopsis through binding to CCAAT motif of AtXTH21[J]. New Phytologist,2014,203(2):554-567.
[53] YU Y L,LI Y Z,HUANG G X,MENG Z D,ZHANG D,WEI J,YAN K,ZHENG C C,ZHANG L Y. PwHAP5,a CCAAT-binding transcription factor,interacts with PwFKBP12 and plays a role in pollen tube growth orientation in Picea wilsonii[J]. Journal of Experimental Botany,2011,62(14):4805-4817.
[54] XING Q K,ZHENG Z M,ZHOU X G,CHEN X J,GUO Z J. Ds9 was isolated encoding as OsHAP3H and its C-terminus was required for interaction with HAP2 and HAP5[J]. Journal of Plant Biology,2015,58(1):26-37.