楊明輝 李俊儒 付大喜
摘要:位于陡坡段的基樁由于有較長(zhǎng)的自由段以及臨空面土體抗力的缺失,變形具有明顯的P-Δ放大效應(yīng).引入變分原理,考慮陡坡段基樁承載的復(fù)雜性,假定土體位移是沿基樁徑向的非線性衰減模式,建立了陡坡段三維基樁-土體系統(tǒng)總能量控制微分方程.在此基礎(chǔ)上,結(jié)合不同邊界條件及樁土位移協(xié)調(diào)條件,得出了復(fù)雜承載情況下陡坡段基樁變形的半解析差分解答,該解答可充分考慮各項(xiàng)荷載作用下的陡坡段基樁變形的P-Δ效應(yīng).為驗(yàn)證理論的正確性,開(kāi)展了陡坡段基樁的軸橫荷載下單樁的室內(nèi)模型加載試驗(yàn),將理論計(jì)算值與實(shí)測(cè)值進(jìn)行了對(duì)比.結(jié)果表明,理論解答與試驗(yàn)測(cè)試結(jié)果吻合較好.最后,對(duì)影響陡坡段基樁P-Δ放大效應(yīng)的各影響因素進(jìn)行了定量分析.分析表明,陡坡段橋梁基樁的P-Δ放大效應(yīng)隨軸橫向荷載比與樁頂自由長(zhǎng)度增大而顯著增大,隨著土體剛度的增強(qiáng)而有所減小,同時(shí)陡坡坡度角增大對(duì)P-Δ效應(yīng)有明顯的提升作用.
關(guān)鍵詞:陡坡;橋梁基樁;P-Δ效應(yīng);最小勢(shì)能原理;模型試驗(yàn)
中圖分類號(hào):TU473.1文獻(xiàn)標(biāo)志碼:A
Deformation Calculation of Bridge Foundation Pile in Steep Slope Section Considering Load P-4 Effect
YANG Minghui1,LI Junru1,F(xiàn)U Daxi2
(1. College of Civil Engineering,Hunan University,Changsha 410082,China;2. School of Civil Engineering,Beijing Jiaotong University,Beijing 100044,China)
Abstract:Due to the long free section and the lack of soil resistance on the free surface of the foundation pile located on the steep slope,the deformation has an obvious P-Δamplification effect. In this paper,introducing the energy variational principle,considering the complexity of the pile bearing and pile-soil interaction in the steep slope section,and assuming that the soil displacement is a nonlinear attenuation mode along the radial direction of the foundation pile,the total energy control differential equation of the three-dimensional foundation pile-soil system in the steep slope section is established. On this basis,combined with different boundary conditions and the coordination conditions of pile-soil displacement,the semi-analytical energy method solution for the deformation of the foundation piles on steep slopes under complex bearing conditions is obtained based on the finite difference method,andthe solution can fully consider the P-Δeffect of the pile deformation in the steep slope section under various loads. Then,the indoor model loading verification test of the single pile under the axial and lateral load on the steep slope section was carried out,and the theoretical calculation value was compared with the measured value. The comparison results show that the theoretical solution in this paper is in good agreement with the test results. Finally,a quantitative analysis of the influencing factors of the P-Δamplification effect of foundation piles on steep slopes is carried out. The results show that the P-Δamplification effect of bridge foundation piles on steep slopes increases significantly with the axial and lateral load ratio and the free length of the pile top but decreases with the increase of soil stiffness. At the same time,the slope gradient has a significant increase influence on the P-Δeffect.
Key words:steep slope;bridge pile;P-Δeffect;principle of minimum potential energy;model test
隨著西部山區(qū)基礎(chǔ)設(shè)施(如高速公路、高速鐵路等)的大力修建,出現(xiàn)了越來(lái)越多的位于陡坡上的橋梁樁基礎(chǔ).由于特殊的地形特點(diǎn),相比平地基樁,陡坡基樁具有以下三個(gè)突出特點(diǎn)[1-7]:1)橫向承載能力弱,邊坡一側(cè)土體的缺失造成土體的抗力顯著降低,且淺層尤為明顯;2)具有較長(zhǎng)的自由段,樁頂與邊坡垂直距離大而形成較長(zhǎng)自由段;3)承載復(fù)雜,承受豎向自重荷載、橫向邊坡荷載等荷載的耦合作用.因而陡坡基樁的P-Δ效應(yīng)將更為顯著,從而造成安全隱患.可見(jiàn),合理考慮P-Δ放大效應(yīng)成為陡坡段基樁設(shè)計(jì)計(jì)算的關(guān)鍵問(wèn)題.
P-Δ效應(yīng)即結(jié)構(gòu)的側(cè)向位移與豎向荷載引起的二階效應(yīng),屬于經(jīng)典的結(jié)構(gòu)力學(xué)問(wèn)題[1].對(duì)于基樁結(jié)構(gòu)P-Δ效應(yīng),考量的關(guān)鍵則在于土體作用力的合理模擬.近年來(lái),已有大量國(guó)內(nèi)外學(xué)者對(duì)該問(wèn)題進(jìn)行了研究.一方面,如Sastry和Meyerhof等[8-10]對(duì)傾斜荷載下基樁承載力性能進(jìn)行了大量的室內(nèi)模型試驗(yàn)研究,從而給出單樁承載力的半經(jīng)驗(yàn)公式,該公式中包含了P-Δ效應(yīng)的影響;趙明華等[11-12]分別采用m法和C法考慮P-Δ效應(yīng),推導(dǎo)得到了傾斜荷載作用下單層均質(zhì)土中基樁內(nèi)力及位移的冪級(jí)數(shù)解;邢康宇等[13]通過(guò)引入雙曲線型水平荷載傳遞模型考慮樁- 土體系的非線性變形情況,導(dǎo)得可考慮P-Δ效應(yīng)與橫向荷載共同作用下高樁基礎(chǔ)水平響應(yīng)的非線性有限差分解;欒魯寶等[14]給出了黏彈性土中考慮P-Δ效應(yīng)時(shí)基樁水平振動(dòng)的解析解答;Zhang等[15]、Zhu等[16]和Zhang等[17]分別采用水平彈簧和豎向彈簧來(lái)模擬樁-土相互作用,導(dǎo)得了軸、橫向荷載同時(shí)作用時(shí)單樁響應(yīng)的半解析解等.另一方面,不少學(xué)者直接采用半數(shù)值方法建立剛度矩陣來(lái)考慮該問(wèn)題.如鄒新軍等[18]基于地基加權(quán)剛度的概念考慮地基土成層、非均勻性及大變形,建立了傾斜荷載下基樁的有限元-有限層模型;趙明華、李微哲等[19-20]則計(jì)入土體剪切變形,建立了可考慮二階效應(yīng)的桿單元?jiǎng)偠确匠?,并基于MATLAB程序給出了解答.
上述方法均僅針對(duì)平地上的基樁,關(guān)于陡坡基樁的P-Δ效應(yīng)問(wèn)題,目前研究較少.僅有尹平保等[21-22]基于彈性地基梁的假設(shè),給出了陡坡樁樁基承載力的冪級(jí)數(shù)解答,趙明華等[23]在類似假定條件下給出了相應(yīng)的有限差分解答,但二者均假定土體為支撐彈簧,從而無(wú)法考慮土體連續(xù)性以及樁土之間復(fù)雜的三維相互作用,而數(shù)值方法雖可避開(kāi)該問(wèn)題,但顯然求解過(guò)程過(guò)于復(fù)雜,不便于實(shí)際工程應(yīng)用.鑒于此,本文基于變分原理,考慮樁周土體連續(xù)性、樁土整體系統(tǒng)能量轉(zhuǎn)換及P-Δ效應(yīng)導(dǎo)得陡坡段基樁復(fù)雜荷載作用下樁身響應(yīng)的半解析解,并開(kāi)展室內(nèi)小模型試驗(yàn)進(jìn)行驗(yàn)證與對(duì)比分析;最后,對(duì)影響陡坡段基樁P-Δ效應(yīng)的主要因素進(jìn)行了探討,供工程設(shè)計(jì)參考.
1計(jì)算模型
1.1計(jì)算模型分析
如前所述,由于基樁地理位置特點(diǎn)及荷載的復(fù)雜性,基樁水平變形極易引起豎向力附加效應(yīng)(P-Δ效應(yīng)).因此,建立基樁-土體一體化模型,重點(diǎn)分析樁土變形對(duì)二階效應(yīng)的影響,如圖1所示.基樁總長(zhǎng)為L(zhǎng)p,截面半徑為rp,樁身抗彎剛度為EpIp,基樁的自由段長(zhǎng)度以L0表示,并在樁頂分別承受水平向荷載P0、豎向荷載N0以及外部彎矩M0,陡坡的坡角為β.為分析樁周巖土體的非均值性,假定土體分為n層.為方便分析,以樁基自由段樁頂中心為極點(diǎn)建立極坐標(biāo)系.
1.2土體位移模式
在樁-土一體化系統(tǒng)中,計(jì)算土體位移的關(guān)鍵在于確定土體的變形模式.考慮到實(shí)際工程中安全性要求,仍假定樁土始終變形協(xié)調(diào),受荷過(guò)程中樁土界面接觸緊密.樁土位移場(chǎng)域描述為:受到樁身位移影響的土體位移場(chǎng)是以樁身軸線為圓心的圓柱體位移場(chǎng),在遠(yuǎn)離樁基礎(chǔ)一定距離后,土體位移遞減至零[24-30].Sun[28]和Basu等[29]認(rèn)為與側(cè)向荷載相關(guān)的垂直位移uz可以忽略不計(jì),土體的徑向和切向水平位移可以由柱坐標(biāo)r、θ、z表示.為簡(jiǎn)化計(jì)算,本文沿用該模式,且認(rèn)定邊坡始終穩(wěn)定,則在樁身影響范圍內(nèi),土體的位移可以近似寫成:
ur=w(z)φr(r)cosθ
uθ=-w(z)φθ(r)sinθ(1)
uz=0
式中:ur和uθ分別為土體單元在徑向及切向的位移分量;φr(r)和φθ(r)是土體位移衰減函數(shù).土體單元到樁身的距離用r表示,顯然,當(dāng)r增大至臨空面時(shí),土體衰減函數(shù)為零.
由土體位移的方程即可導(dǎo)得土體應(yīng)變和樁身?yè)锨灰频年P(guān)系,見(jiàn)式(2).
2陡坡段樁土體系能量方程建立
2.1系統(tǒng)總能量方程建立
陡坡樁-土體系總勢(shì)能方程由樁身屈曲應(yīng)變能∏pile、陡坡土體應(yīng)變能∏soil以及外部荷載做功∏load組成:
方程(3)中前三項(xiàng)分別為樁身彈性形變能、成層樁周土體應(yīng)變能以及樁底虛土樁土體應(yīng)變能,后三項(xiàng)則為作用在樁頂?shù)乃胶奢d做功、外加彎矩做功以及樁身豎向軸力做功.εpq、σpq分別為應(yīng)力和應(yīng)變張量.將土體應(yīng)力張量方程(2)代入總勢(shì)能方程(3),根據(jù)最小勢(shì)能原理取總勢(shì)能變分為零,則方程(3)可改寫為:
合并所有含有撓度w及其導(dǎo)數(shù)的項(xiàng),利用分部積分法將其中高階變分項(xiàng)改寫成只含有δw和其一階導(dǎo)數(shù)的方程,可以得到:
其中:
再合并總勢(shì)能方程得變分形式(4)中所有含有φθ、φr以及二者相關(guān)導(dǎo)數(shù)項(xiàng):
2.2求解微分控制方程
根據(jù)最小勢(shì)能原理,當(dāng)系統(tǒng)在外力作用下處于穩(wěn)定平衡狀態(tài)時(shí),將存在一組滿足邊界條件的位移使系統(tǒng)的總勢(shì)能最小,即存在一組滿足邊界條件的位移使系統(tǒng)總勢(shì)能的變分等于零,使方程(5)中有關(guān)樁身水平位移變分項(xiàng)為零,將δw前系數(shù)均取為0,從而得到不同區(qū)域樁身控制微分方程及其對(duì)應(yīng)的邊界條件.
當(dāng)0
當(dāng)0
邊界條件:當(dāng)z=0時(shí)(即頂部自由),
當(dāng)z=L0(基樁與陡坡交接處)時(shí),
當(dāng)z=Hi(土層交接處)時(shí),
當(dāng)z=Lp時(shí),則有:
同樣通過(guò)將方程(7)中與衰減函數(shù)相關(guān)項(xiàng)的變分取為0的方式得到關(guān)于土體徑向和切向衰減函數(shù)的控制微分方程以及其邊界條件:
其中:
土體徑向和切向位移在樁身處與樁身位移相等,衰減函數(shù)取值為1,隨著與樁身距離增大,位移逐漸減小至0.由于陡坡斜角β的存在,衰減函數(shù)的邊界條件會(huì)隨著不同土層變化,臨空面以外的土體位移全部視為0,由此可得土體衰減函數(shù)的邊界條件如式(17):
其中rsi為當(dāng)前所在土層Hi中某深度z處對(duì)應(yīng)的基樁節(jié)點(diǎn)到陡坡臨空面的距離.由基樁和陡坡面的幾何關(guān)系可知rsi=(z-L0)/tanβ.
2.3迭代求解
樁身控制方程和土體衰減函數(shù)的控制方程不是通常的高階微分方程,兩個(gè)方程存在一定程度的耦合,利用一般方法無(wú)法得到準(zhǔn)確解析解.因此,采用差分方法寫出差分形式的方程,同時(shí)利用軟件MATLAB編寫計(jì)算程序進(jìn)行迭代計(jì)算得到控制方程的半解析解.
如圖2所示,將樁周土體分為n段,土層以上自由段長(zhǎng)為L(zhǎng)0,同時(shí)將自由段分為k0個(gè)節(jié)點(diǎn),每段長(zhǎng)度為h0,在樁頂以上和地面以下分別取虛擬節(jié)點(diǎn)-2、-1、k0+1、k0+2.將地面以下每個(gè)土層中的樁體劃分為ki段,每段長(zhǎng)度為hi,在每層土層的上下交界處也設(shè)置4個(gè)虛擬節(jié)點(diǎn)-2、-1、ki+1、ki+2.基于上述的節(jié)點(diǎn)網(wǎng)格劃分,將式(9)和式(10)寫成如式(18)和式(19)所示差分形式.
當(dāng)0
當(dāng)L0
樁身控制微分方程在各個(gè)節(jié)點(diǎn)處的邊界條件[式(11)~式(14)],同樣寫成差分方程的形式.樁頂以及樁端的邊界條件差分形式為:
土層交界處考慮虛擬節(jié)點(diǎn)的邊界條件為:
其中:
通過(guò)邊界條件將虛擬節(jié)點(diǎn)用內(nèi)部節(jié)點(diǎn)的位移表示,進(jìn)而可得關(guān)于樁身水平位移的變系數(shù)齊次方程組,即組成Kw=F的形式,其中w為各節(jié)點(diǎn)位移組成的位移向量,K為系數(shù)矩陣,其階數(shù)與網(wǎng)格劃分?jǐn)?shù)量相同.同樣,土體水平位移衰減函數(shù)φr(r)和φθ(r)的控制微分方程亦可寫成相同差分形式進(jìn)行求解.
樁身位移解與土體衰減函數(shù)的解兩者相互關(guān)聯(lián),式(6)與式(16)分別由衰減函數(shù)和撓度函數(shù)決定,因此需要采取迭代算法求解耦合微分方程.在第一次迭代計(jì)算中,將出現(xiàn)在撓度方程組中的系數(shù)γ1至γ6初步假設(shè)為1,通過(guò)上述解法求解出一個(gè)中間解,再由中間解計(jì)算得到衰減函數(shù)的計(jì)算系數(shù),并將得到的衰減函數(shù)的中間解重新代入撓度方程組,進(jìn)入第二次迭代.迭代得到撓度方程的解,誤差小于10-6,迭代停止.求解迭代過(guò)程如圖3所示.
3試驗(yàn)驗(yàn)證
為驗(yàn)證前述方法的合理性,設(shè)計(jì)完成了一組室內(nèi)陡坡單樁模型加載試驗(yàn).模型樁采用直徑為25 mm、壁厚為2.5 mm的鋁管,樁長(zhǎng)100 cm,抗彎剛度EI= 145.11 N·m2,試驗(yàn)中分別設(shè)置不同的自由段進(jìn)行對(duì)比分析.樁周巖土體選用了兩種不同配合比的石膏、水泥、砂的混合料進(jìn)行模擬以反映樁周巖土體的非均質(zhì)性.混合料用量如表1所示.
試驗(yàn)過(guò)程中,保持坡上堆載以及樁頂水平荷載不變,樁頭豎向荷載N0分級(jí)施加(圖4),以容許最大位移作為終止加載標(biāo)準(zhǔn),即樁身地面水平位移或豎向位移達(dá)到0.15倍樁徑時(shí)認(rèn)為局部巖土體塑性破壞,停止加載.通過(guò)在樁頂布設(shè)百分表2、3(量程30 mm)測(cè)定樁頂水平位移.每根樁前后兩面均對(duì)稱布置有應(yīng)變片,每邊各9片洪18片,其尺寸為3mm×5 mm.由樁身布置的應(yīng)力片測(cè)得樁身內(nèi)力響應(yīng)的變化.
圖5為不同自由段長(zhǎng)度時(shí)各級(jí)荷載下樁頂水平向位移的計(jì)算值與測(cè)試值的對(duì)比.由圖5可知,理論計(jì)算曲線與實(shí)測(cè)點(diǎn)的趨勢(shì)完全一致,最大誤差僅為6.7%.
圖6所示為不同自由段長(zhǎng)度時(shí)各級(jí)荷載下樁身彎矩計(jì)算值與測(cè)試值的對(duì)比情況.由圖6可知,理論計(jì)算值與測(cè)試值吻合較好,而不同自由段長(zhǎng)度的陡坡段橋梁基樁內(nèi)力分布規(guī)律基本一致,即樁身彎矩在地面基樁以下較小范圍內(nèi)即達(dá)到最大值,之后,隨著埋深增加急劇減小,在到達(dá)零點(diǎn)之后,出現(xiàn)反向彎矩,最后衰減至零.若不考慮基樁的P-Δ效應(yīng),則無(wú)法考慮豎向荷載與水平荷載的耦合效應(yīng).
4參數(shù)分析
以下對(duì)陡坡段基樁P-Δ放大效應(yīng)的主要因素進(jìn)行分析.基本參數(shù)取值如下:總樁長(zhǎng)Lp=30 m,自由段長(zhǎng)度L0=10 m,樁徑d =1.8 m,樁身彈性模量Ep=18 GPa;土體分兩層,其彈性模量分別取Es1=10 MPa,Es2=20 MPa;樁頂水平向荷載P0=200 kN,外部彎矩M0=200 kN·m.
4.1豎向荷載與水平荷載比值影響分析
根據(jù)結(jié)構(gòu)力學(xué)原理,P-Δ放大效應(yīng)的發(fā)揮與豎向荷載和水平荷載的比值直接相關(guān),該比值是控制桿體單元穩(wěn)定性的重要指標(biāo).圖7、圖8分別為水平向荷載與豎向荷載不同取值情況下的陡坡段基樁的位移及內(nèi)力響應(yīng),為考慮坡度的影響,選擇了3個(gè)不同邊坡角度進(jìn)行分析.
由圖可知,豎向荷載的增大將明顯地增大基樁的水平變形與內(nèi)力值.且其增長(zhǎng)幅度隨豎向荷載的增大而增大,邊坡角度的影響同樣明顯.以水平荷載P0為200 kN為例,豎向荷載取10倍水平荷載,當(dāng)陡坡坡角B為30°時(shí),樁頂最大位移由12.14 mm增加至13.64 mm,而樁身最大彎矩則由1 114.81 kN·m增加到1 131.58 kN·m;當(dāng)坡角增大至60°時(shí),樁頂最大位移增大至16.05 mm,樁身最大彎矩增大到1 187.7 kN·m.由此可以看出隨著坡度角的增大,樁基礎(chǔ)的P-Δ放大效應(yīng)對(duì)位移影響由12.36%增大至17.67%,對(duì)彎矩影響由1.50%增大至4.96%,表明陡坡角度增大會(huì)加劇基樁變形的P-Δ效應(yīng).
4.2自由段長(zhǎng)度的影響分析
位于陡坡段的橋梁基樁,一般具有較大的自由段長(zhǎng)度,而通過(guò)基樁自由段長(zhǎng)度和其與總長(zhǎng)度比值,以及基樁所在陡坡的坡角,可確定基樁與坡面的相對(duì)位置.同時(shí),自由段長(zhǎng)度與樁身水平位移以及樁身最大彎矩有著密切的關(guān)聯(lián)[7].為研究自由段長(zhǎng)度大小對(duì)陡坡基樁P-Δ效應(yīng)的具體影響,在總長(zhǎng)度相同的情況下,分析不同自由段長(zhǎng)度基樁水平位移及其樁身彎矩的變化規(guī)律,見(jiàn)圖9、圖10.
由圖易知,在相同荷載條件下陡坡樁身水平位移和樁身彎矩隨著自由段長(zhǎng)度增大而增大,且自由段長(zhǎng)度與總長(zhǎng)度比大于1/5時(shí),樁身響應(yīng)增長(zhǎng)加快. 但亦可看出邊坡的影響,以自由段長(zhǎng)度10 m為例,相比平地情形(β=0°),邊坡角度β=30°時(shí),考慮P-Δ效應(yīng)與不考慮P-Δ效應(yīng)的最大基樁水平位移差值由4.04 mm增大到4.71 mm,樁身最大彎矩差值則由354.65 kN·m增大到405.26 kN·m;而坡角增大到60°時(shí),該差值則到達(dá)5.78 mm和472.18 kN·m.位移增幅由16.58%增加至22.72%,最大彎矩增幅由14.26% 增加至16.52%.由此可見(jiàn),邊坡坡度的增大加劇了基樁變形的P-Δ效應(yīng),因此在對(duì)位于邊坡上的基樁進(jìn)行受力分析時(shí)該效應(yīng)不容忽視.
4.3土體剛度影響分析
樁周土體的承載弱化效應(yīng)是陡坡段基樁區(qū)別于平地情形的主要特征,為研究該因素對(duì)陡坡段基樁變形P-Δ效應(yīng)的影響,取樁體和平均土層彈性模量比值Ep/Es分別為1 000、2 000、5 000.樁頂水平荷載取為P0=200 kN,彎矩為M0=200 kN·m,豎向荷載取值為N0=4 000 kN.
由圖11、圖12可知,土體剛度的增強(qiáng),可明顯地減小基樁的水平位移與彎矩,表明土體約束的強(qiáng)化是減小P-Δ效應(yīng)的重要原因.以Ep/Es=5 000為例,對(duì)比平層樁和陡坡樁,陡坡基樁最大水平位移由4.67 mm增大至6.08 mm,樁身最大彎矩由23.40 MN·m增大至27.88 MN·m,分別增長(zhǎng)30.19%和19.15%,同時(shí)最大彎矩出現(xiàn)位置會(huì)隨著模量比的增大而下移,進(jìn)一步表示陡坡坡角對(duì)P-Δ效應(yīng)的促進(jìn)作用.
5結(jié)論
本文引入能量變分原理,對(duì)陡坡段基樁變形的P-Δ效應(yīng)進(jìn)行了模擬,從而為該問(wèn)題的解決提供一種新思路,而后開(kāi)展了相應(yīng)的室內(nèi)模型試驗(yàn)進(jìn)行驗(yàn)證,并對(duì)其影響因素進(jìn)行了分析,結(jié)論如下:
1)基于最小勢(shì)能原理,建立了陡坡段基樁-邊坡土體系統(tǒng)的總能量控制微分方程.結(jié)合不同邊界條件及樁土位移條件,得到了可考慮P-Δ放大效應(yīng)的陡坡段基樁變形的半解析解答.
2)開(kāi)展了陡坡段基樁承受復(fù)雜荷載的室內(nèi)加載試驗(yàn).對(duì)比分析表明,本文理論方法所得基樁變形內(nèi)力與實(shí)測(cè)值吻合良好,可較好地模擬復(fù)雜荷載下陡坡段基樁變形的P-Δ放大效應(yīng).
3)對(duì)影響陡坡段基樁P-Δ放大效應(yīng)的主要因素進(jìn)行了對(duì)比分析.計(jì)算結(jié)果表明,陡坡段橋梁基樁的P-Δ放大效應(yīng)與軸橫向荷載比以及樁頂自由段長(zhǎng)度正相關(guān),隨著土體剛度的增強(qiáng)而有所減小.量化分析表明,陡坡坡度角增大對(duì)樁體P-Δ效應(yīng)有明顯的加劇作用,坡角的影響不容忽視.
參考文獻(xiàn)
[1]范文田.軸向與橫向力同時(shí)作用下柔性樁的分析[J].西南交通大學(xué)學(xué)報(bào),1986,21(1):39-44.
FAN W T. Analysis of slender piles under simultaneous axial and transverse loading [J]. Journal of Southwest Jiaotong University,1986,21(1):39-44. (In Chinese)
[2]吳鳴,趙明華.大變形條件下樁土共同工作及試驗(yàn)研究[J].巖土工程學(xué)報(bào),2001,23(4):436-440.
WU M,ZHAO M H. Study on pile-soil interaction under large deflection and its model test[J]. Chinese Journal of Geotechnical Engineering,2001,23(4):436-440. (In Chinese)
[3]趙明華,彭文哲,楊超煒,等.基于Pasternak雙參數(shù)地基模型的陡坡段橋梁基樁內(nèi)力計(jì)算方法[J].水文地質(zhì)工程地質(zhì),2018,45(1):52-59.
ZHAO M H,PENG W Z,YANG C W,et al. Inner-force calculation of bridge pile foundation in a high-steep slope based on the Pasternak double-parameter spring model [J]. Hydrogeology & Engineering Geology,2018,45(1):52-59. (In Chinese)
[4]楊明輝,聶華杰,趙明華.邊坡段水平受荷樁樁前土抗力折減效應(yīng)的模型試驗(yàn)研究[J].湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2019,46(3):114-121.
YANG M H,NIE H J,ZHAO M H. Model testing study on effectof predicament resistance reduction on lateral loaded pile near slope [J]. Journal of Hunan University (Natural Sciences),2019,46(3):114-121. (In Chinese)
[5]尹平保,趙明華,賀煒,等.確定斜坡地基比例系數(shù)m值的模型試驗(yàn)研究[J].湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,44(9):158-164.
YIN P B,ZHAO M H,HE W,et al. Model test study on identification of foundation proportional coefficient m in slope ground[J]. Journal of Hunan University (Natural Sciences),2017,44(9):158-164. (In Chinese)
[6]趙明華,彭文哲,趙衡.陡坡段橋梁樁基研究現(xiàn)狀及展望[J].湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,49(7):1-14.
ZHAO M H,PENG W Z,ZHAO H. Research status and prospect of bridge pile foundation in steep slope section [J]. Journal of Hunan University(Natural Sciences),2022,49(7):1-14.(In Chinese)
[7]楊明輝,李勇智,羅宏.基于能量法的基樁變形P-Δ效應(yīng)模擬分析[J].湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,47(5):48-57.
YANG M H,LIY Z,LUO H. Simulation analysis on P-Δeffect for piles based on energy method[J]. Journal of Hunan Univer- sity(Natural Sciences),2020,47(5):48-57.(In Chinese)
[8]SASTRY V V R N,MEYERHOF G G. Lateral soil pressures and displacements of rigid piles in homogeneous soils under eccentric and inclined loads[J]. Canadian Geotechnical Journal,1986,23 (3):281-286.
[9]MEYERHOF G G,YALCIN A S. Behaviour of flexible batter piles under inclined loads in layered soil[J].Canadian Geotechnical Journal,1993,30(2):247-256.
[10]SASTRY V V R N,MEYERHOF G G,KOUMOTO T. Behaviour of rigid piles in layered soils under eccentric and inclined loads [J].Canadian Geotechnical Journal,1986,23(4):451-457.
[11]趙明華.軸向和橫向荷載同時(shí)作用下的樁基計(jì)算[J].湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),1987,14(2):68-81.
ZHAO M H. The calculation of piles under simultaneous axial and lateral loading[J]. Journal of Hunan University(Natural Science),1987,14(2):68-81 (In Chinese)
[12]趙明華,徐卓君,馬繽輝,等.傾斜荷載下基樁C法的冪級(jí)數(shù)解[J].湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,39(3):1-5.
ZHAO M H,XU Z J,MA B H,et al. Power series solution for pile based on C-method under inclined loads[J]. Journal of Hunan University(Natural Sciences),2012,39(3):1-5.(In Chinese)
[13]邢康宇,陸洪智,陳耀春,等.成層土中軸橫受荷樁水平響應(yīng)的非線性解[J].地質(zhì)科技通報(bào),2021,40(1):166-174.
XING K Y,LU H Z,CHEN Y C,et al.Nonlinear solutions of lateral response for piles under axial and lateral load embedded in layered soils[J]. Bulletin of Geological Science and Technology,2021,40(1):166-174 (In Chinese)
[14]欒魯寶,丁選明,周仕禮,等.考慮豎向荷載的樁基水平振動(dòng)響應(yīng)解析解[J].建筑結(jié)構(gòu),2015,45(19):80-86.
LUAN L B,DING X M,ZHOU S L,et al. Analytical solution of lateral vibration response of an axial loaded pile[J]. Building Structure,2015,45(19):80-86 (In Chinese)
[15]ZHANG L,GONG X N,YANG Z X,et al Elastoplastic solutions for single piles under combined vertical and lateral loads[J]. Journal of Central South University of Technology,2011,18(1):216-222
[16]ZHU M X,ZHANG Y B,GONG W M,et al. Generalized solutions for axially and laterally loaded piles in multilayered soil deposits with transfer matrix method[J]. International Journal of Geomechanics,2017,17(4):1-19
[17]ZHANG L,OU Q,ZHOU S,et al. Semi-analytical solutions for vertically and laterally loaded piles in multilayered soil deposits[J]. Environmental Earth Sciences,2018,77(2):1-14
[18]鄒新軍,魯彭焜.中砂和軟黏土中樁頂豎向力對(duì)樁身水平承載力影響對(duì)比分析[J].湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,45 (11):110-119
ZOU X J,LU P K Contrastive analysis on effect of vertical force on horizontal bearing capacity of a single pile in medium sand and soft clay[J]. Journal of Hunan University(Natural Sciences),2018,45(11):110-119 (In Chinese)
[19]趙明華,李微哲,楊明輝,等.成層地基中傾斜偏心荷載下單樁計(jì)算分析[J].巖土力學(xué),2007,28(4):670-674.
ZHAO M H,LI W Z,YANG M H,et al Analysis of single piles under eccentric and inclined loads in layered soils [J]. Rock and Soil Mechanics,2007,28(4):670-674 (In Chinese)
[20]趙明華,李微哲,單遠(yuǎn)銘,等.成層地基中傾斜荷載樁改進(jìn)有限桿單元法研究[J].工程力學(xué),2008,25 (5 ):79-84.
ZHAO M H,LI W Z,SHAN Y M,et al Behavior analysis of piles in layered clays under eccentric and inclined loads by improved finite pole element method[J]. Engineering Mechanics,2008,25 (5):79-84 (In Chinese)
[21]尹平保,趙明華,趙衡,等.考慮斜坡效應(yīng)的樁柱式橋梁基樁穩(wěn)定性分析[J].湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,43(11):20-25
YIN P B,ZHAO M H,ZHAO H,et al Stability analysis of pilecolumn bridge pile considering slope effect[J]. Journal of Hunan University (Natural Sciences),2016,43 (11):20-25. (In Chinese)
[22]趙明華,劉偉浩,尹平保,等.基于能量法的陡坡段橋梁基樁屈曲穩(wěn)定性分析[J].中南大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,47(2):586-592
ZHAO M H,LIU W H,YIN P B,et al Buckling analysis of bridge piles in steep slopes based on energy method[J]. Journal of Central South University(Scienceand Technology),2016,47 (2):586-592 (In Chinese)
[23]趙明華,鄔龍剛,劉建華.基于p-y曲線法的承重阻滑樁內(nèi)力及位移分析[J].巖石力學(xué)與工程學(xué)報(bào),2007,26(6):1220-1225
ZHAO M H,WU L G,LIU J H Inner-force and displacement analyses of load-bearing and anti-slide piles by p-y curve method [J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(6):1220-1225 (In Chinese)
[24]LIANG F,CHEN H,CHEN S. Influences of axial load on the lateral response of single pile with integral equation method [J]. International Journal for Numerical & Analytical Methods in Geomechanics,2012,36(16):1831-1845.
[25]ZHANG L,GONG X N,YU J L Elastic solutions for partially embedded single piles subjected to simultaneous axial and lateral loading[J]. Journal of Central South University,2014,21(11):4330-4337
[26]LIANG F Y,ZHANG H,WANG J L Variational solution for the effect of vertical load on the lateral response of offshore piles[J]. Ocean Engineering,2015,99:23-33
[27]SEO H,PREZZI M Analytical solutions for a vertically loaded pile in multilayered soil[J]. Geomechanics and Geoengineering,2007,2(1):51-60
[28]SUN K M Laterally loaded piles in elastic media[J]. Journal of Geotechnical Engineering,1994,120(8):1324-1344
[29]BASU D,SALGADO R,PREZZI M A continuum-based model for analysis of laterally loaded piles in layered soils [J]. Glotech- nique,2009,59(2):127-140
[30]HAN F,PREZZI M,SALGADO R Energy-based solutions for nondisplacement piles subjected to lateral loads [J]. International Journal of Geomechanics,2017,17(11):04017104