古泉 俞至權(quán) 邱志堅(jiān)
摘要:以一座典型的四跨鋼筋混凝土連續(xù)橋梁為例,建立三個(gè)液化場地樁-土-橋梁體系平面應(yīng)變有限元模型,考慮飽和土體中孔隙水與土顆粒的動力耦合效應(yīng),探究碎石樁作為橋梁工程抗液化加固措施的效果,通過構(gòu)建液化場地橋梁結(jié)構(gòu)的易損性曲線和地震危險(xiǎn)曲線,在概率理論框架下詮釋碎石樁加固措施對樁基橋梁地震風(fēng)險(xiǎn)的影響,并對有無碎石樁加固措施的計(jì)算結(jié)果進(jìn)行對比分析.結(jié)果表明:碎石樁抗液化效果顯著,可以有效減少土體的超孔隙水壓,進(jìn)而大幅降低液化場地橋梁的整體側(cè)向變形、破損概率和地震風(fēng)險(xiǎn).
關(guān)鍵詞:砂土液化;碎石樁加固;樁-土-橋梁結(jié)構(gòu);易損性;地震風(fēng)險(xiǎn)性
中圖分類號:TU473.1文獻(xiàn)標(biāo)志碼:A
Seismic Risk Assessment of an Liquefaction Ground Bridge System Using Stone Column for Reinforcement
GU Quan,YU Zhiquan,QIU Zhijian
(School of Architecture and Civil Engineering,Xiamen University,Xiamen 361005,China)
Abstract:A typical four-span reinforced concrete continuous bridge is employed as examples in this paper,and a plane strain Finite Element(FE)analysis model is developed for three liquefaction pile-ground-bridge systems. Considering the dynamic coupling effect between the pore water and soil particle in the saturated soil,the effect of stone column as a liquefaction countermeasure on excess pore pressure buildup and overall bridge-ground system seismic response are systematically investigated. In addition,the influences of stone columns on the bridge's seismic fragility and earthquake hazard curves are explored through constructon of the liquefaction ground-bridge structures. Based on the probability theory,the effect of reinforcement measure using the stone column on the seismic risk of the pile-ground-bridge system is established,and the results with/without stone column scenarios are compared. The results show that the stone column has a significant effect on the sand liquefaction. The use of stone columns can significantly reduce the excess pore pressure of soil,thus lowering the bridge-ground system's overall deformation,seismic vulnerability,and earthquake risk.
Key words:sand liquefaction;stone column mitigation method;pile-ground-bridge systems;seismic vulnerability ;earthquake risk
隨著我國城市現(xiàn)代化程度的提高與經(jīng)濟(jì)的快速發(fā)展,公路橋梁安全的重要性越來越突出.樁基礎(chǔ)因其承載力高、穩(wěn)定性好、變形小等優(yōu)點(diǎn)被廣泛應(yīng)用于道路橋梁等重大工程建設(shè)中,被認(rèn)為是預(yù)防地基失效的一種重要抗震措施[1-4].當(dāng)前我國大量樁基橋梁位于河流中下游或?yàn)I海平原,此類地區(qū)通常地下水位較高,表層土多為厚實(shí)的飽和砂土,在地震中易于液化,對樁基橋梁抗震設(shè)防極為不利.近年來,我國受環(huán)太平洋地震帶等強(qiáng)震區(qū)影響,呈現(xiàn)地震頻發(fā)趨勢,因此,液化場地樁基橋梁地震安全評估成為巖土工程抗震研究的熱點(diǎn)和難點(diǎn)[5-8].唐亮等[9]采用多屈服面砂土本構(gòu)建立了液化場地樁基數(shù)值模型,并通過振動臺試驗(yàn)數(shù)據(jù)進(jìn)行了驗(yàn)證;王曉偉等[10]針對我國可液化河谷場地群樁基礎(chǔ)簡支橋梁進(jìn)行了地震反應(yīng)分析,重點(diǎn)研究了場地液化與否對梁橋各部件地震反應(yīng)的影響;Shin等[11]建立了典型的二維河谷場地橋梁模型,主要研究了砂土液化側(cè)擴(kuò)流對河谷兩側(cè)橋臺的動力相互作用.
碎石樁作為一種有效的地基土抗液化加固措施,因其施工簡單、取材方便、成本低廉,在工程中得以廣泛應(yīng)用.目前,國內(nèi)外學(xué)者對碎石樁加固的方法已展開了相關(guān)的研究[12-16].Elgamal等[17-18]探究了碎石樁加固的微傾斜場地側(cè)向變形規(guī)律,分析結(jié)果證明碎石樁能有效降低孔隙水壓力的累積,進(jìn)而減少地震作用下微傾斜場地的側(cè)向變形;鄒佑學(xué)等[19]總結(jié)了碎石樁在改善加固區(qū)抗液化能力的同時(shí),可大幅降低可液化場地建筑物的沉降;唐亮等[20]系統(tǒng)分析了碎石樁直徑和長度等參數(shù)對液化場地高樁碼頭加固效果的影響.當(dāng)前,關(guān)于碎石樁加固的液化場地樁-土-橋梁體系地震反應(yīng)研究較少,且針對該加固措施對樁基橋梁地震風(fēng)險(xiǎn)的影響的研究尚顯不足.
鑒于此,本文以一座典型的四跨連續(xù)橋梁為例,建立三個(gè)液化場地樁-土-橋梁結(jié)構(gòu)平面應(yīng)變有限元模型,采用OpenSees[21]有限元軟件模擬樁-土-橋梁體系,考慮飽和土體中孔隙水與土顆粒的動力耦合效應(yīng),通過構(gòu)建液化場地橋梁結(jié)構(gòu)的易損性曲線和地震風(fēng)險(xiǎn)曲線,對有無碎石樁加固措施的計(jì)算結(jié)果進(jìn)行對比分析;系統(tǒng)詮釋碎石樁作為橋梁工程抗液化加固措施的效果,并在概率理論框架下探究碎石樁加固措施對樁基橋梁地震風(fēng)險(xiǎn)的影響.研究成果可為液化場地樁基橋梁地震安全評價(jià)和橋梁體系抗液化加固措施的選擇提供依據(jù).
1地震風(fēng)險(xiǎn)分析
橋梁結(jié)構(gòu)地震風(fēng)險(xiǎn)分析通常涉及地震危險(xiǎn)性和結(jié)構(gòu)地震易損性[22-24].結(jié)構(gòu)地震易損性分析可以描述某一地震動強(qiáng)度下,結(jié)構(gòu)地震響應(yīng)超過規(guī)定極限狀態(tài)的概率.同時(shí),易損性分析能有效地將多種不確定性因素聯(lián)系在一起,為橋梁地震損失綜合評估提供理論基礎(chǔ).
1.1易損性分析
液化場地橋梁結(jié)構(gòu)地震易損性分析主要包含以下幾步:
1)建立典型的液化場地樁-土-橋梁結(jié)構(gòu)非線性有限元模型;
2)選取符合條件的地震動記錄(IM),輸入到液化場地橋梁有限元模型中;
3)根據(jù)計(jì)算得到的響應(yīng)結(jié)果,采用線性回歸法建立概率地震需求模型ln Sd=ln a+bInIM,式中Sd表示橋梁結(jié)構(gòu)的地震需求,a和b分別表示線性回歸參數(shù);
4)確定橋梁樁基的地震損傷指標(biāo),定義相應(yīng)的極限狀態(tài)SC;
5)計(jì)算在不同強(qiáng)度地震動IM作用下,橋梁結(jié)構(gòu)達(dá)到或超越某一極限狀態(tài)的條件概率P(D≥C丨IM),并繪制橋梁結(jié)構(gòu)地震易損性曲線:
式中:C和d分別表示橋梁結(jié)構(gòu)的抗震能力和地震需求;Φ[·]表示標(biāo)準(zhǔn)正態(tài)分布函數(shù);βD/IM表示結(jié)構(gòu)地震需求的離散程度;βC表示結(jié)構(gòu)抗力的離散程度.
1.2危險(xiǎn)性分析
基于上述概率地震需求模型,液化場地樁基橋梁的地震危險(xiǎn)性曲線[25](即不同損傷狀態(tài)發(fā)生的概率)表達(dá)式如式(2).
式中:HLS表示地震風(fēng)險(xiǎn)函數(shù);a和b為上述概率地震需求模型中的兩個(gè)回歸參數(shù);k0、k分別表示與地震動強(qiáng)度有關(guān)的參數(shù),可利用式(3)(4)進(jìn)行計(jì)算[23].
式中:vDBE和vMCE分別表示中震和大震的年超越概率;IMDBE和IMMCE分別為對應(yīng)的地震動強(qiáng)度.
2樁-土-橋梁結(jié)構(gòu)有限元模型
2.1橋梁結(jié)構(gòu)
本文選用一座典型的四跨鋼筋混凝土連續(xù)橋梁為研究對象,橋全長為60 m,如圖1所示.橋墩為實(shí)心圓形墩,直徑為0.5 m.橋墩截面由核心混凝土、32 mm鋼筋和6 mm厚鋼管組成.基于有限元平臺OpenSees,本文采用非線性梁柱單元forceBeamColumn對樁基進(jìn)行模擬,其纖維截面和彎矩-曲率關(guān)系如圖2所示.橋梁面板假定為線彈性,采用elasticBeamColumn進(jìn)行模擬.
2.2橋梁場地情況
橋梁場地土層分布情況如圖1所示,包括上覆黏土(抗剪強(qiáng)度c=40 kPa)、可液化松砂(相對密度Dr= 30 %)和底層密砂(相對密度Dr= 75%),水位線設(shè)置在可液化松砂頂部.本文采用OpenSees與圍壓相關(guān)的多屈服面彈塑性PDMY02本構(gòu)模型模擬地震作用下飽和砂土的剪縮、剪脹及液化后土體側(cè)向永久變形的累積規(guī)律(表1).上覆黏土采用與圍壓不相關(guān)的多屈服面彈塑性PIMY本構(gòu)模型,其材料的強(qiáng)度破壞主要由偏平面剪切引起(表2).土層單元采用基于Biot土顆粒-水耦合作用理論的u-p公式,即OpenSeesquadUP單元[26],其中u為孔隙水壓力,p表示土顆粒有效圍壓.
2.3有限元模型
本文建立了三個(gè)液化場地樁-土-橋梁體系的平面應(yīng)變有限元模型(圖1),模型總長度為300 m,高度為30 m,共包括3 336個(gè)quadUP單元和3 508個(gè)節(jié)點(diǎn).為近似模擬樁身(直徑= 0.5 m)對土體側(cè)向移動的阻礙效應(yīng),土體單元平面外尺寸取4 m.為合理地模擬橋梁遠(yuǎn)端自由場邊界的動力反應(yīng),有限元模型兩側(cè)的土體平面外尺寸設(shè)置為107m,以產(chǎn)生相似的剪切梁邊界條件(即橋梁遠(yuǎn)端自由場響應(yīng)與剪切梁響應(yīng)相同)[27-28].三個(gè)模型的具體建模方式如下.
模型1:考慮液化場地樁-土-橋梁結(jié)構(gòu)相互作用,無碎石樁加固.
模型2:在橋梁兩側(cè)加入碎石樁(寬度為1 m,長度為13 m),從地表延伸至松砂層底部.
模型3:在模型2的基礎(chǔ)上,對橋梁的中部(即第二和第三跨)也進(jìn)行碎石樁加固(圖1).
本文中飽和松砂和密砂的滲透系數(shù)均取為10-5m/s.在有限元模型2和模型3中,碎石樁仍采用OpenSeesquadUP單元進(jìn)行模擬.為達(dá)到碎石樁的排水效果,其滲透系數(shù)取為0.1 m/s.因此,在地震荷載作用下,碎石樁周邊的液化土體能快速將超孔隙水壓力進(jìn)行消散.此外,碎石樁樁直徑為1 m,長度為13 m,樁距為2 m.為了計(jì)算簡便起見,本文未考慮碎石樁施工過程中對地基土的加固效應(yīng).
2.4加載情況和數(shù)值解法
本文從Center for Engineering Strong Motion Data 數(shù)據(jù)庫中選取了100組較為典型的地震動記錄,其中地震的峰值速度PGV介于0.02~1.8 m/s,震中距R介于2.8~62 km,地震烈度Mw介于5.8~7.3.在獲得合適的地震動記錄后,根據(jù)橋梁場地的土層剖面和特性,采用反演程序(Shake91)對地震動沿深度進(jìn)行反演,得到模型底部加速度并積分為速度vs.通過施加在模型底部的等效節(jié)點(diǎn)力F = 2ρvsCsA,實(shí)現(xiàn)人工透射邊界模擬[29-30],其中ρ、Cs、A分別表示模型基底土層密度、剪切波速和有限元模型底部面積.最終,將地震波通過模型底部等效節(jié)點(diǎn)力的方式施加到有限元模型中.
非線性地震反應(yīng)分析采用Krylov算法和Newmark積分方法,系數(shù)分別為γ=0.6和β=0.302 5.由于樁-土-橋梁體系的主要阻尼來自土體非線性應(yīng)力-應(yīng)變的滯回響應(yīng),因此本文采用相對較低的與初始剛度相關(guān)黏性阻尼來提高數(shù)值穩(wěn)定性(系數(shù)= 0.003)[27-28].此外,樁和土之間采用剛性連接,即equalDOF.
3計(jì)算結(jié)果與分析
本節(jié)采用1989 Loma Prieta地震記錄作為輸入(加速度PGA = 0.63g,峰值速度PGV = 0.55 m/s),分別從液化場地殘余超孔隙水壓力比、震后樁-土-橋梁體系整體變形、橋梁結(jié)構(gòu)側(cè)向變形和曲率等四個(gè)方面,系統(tǒng)分析碎石樁作為橋梁工程抗液化加固措施對橋梁體系地震反應(yīng)的影響.
3.1殘余超孔隙水壓比
圖3給出了三個(gè)模型的殘余超孔隙水壓比ru,即超孔隙水壓力/初始圍壓.由圖可見,模型1的飽和松砂層殘余超孔隙水壓比峰值達(dá)到了1,表明地震結(jié)束時(shí)該松砂層發(fā)生了完全液化.受松砂層底部液化的影響,密砂層頂?shù)膔u峰值約為0.5~0.7,說明該層頂部發(fā)生輕微的液化.通過在模型2和模型3中采用碎石樁進(jìn)行抗液化加固,可以看到碎石樁排水效果顯著,橋梁兩側(cè)和中部殘余超孔隙水壓比接近0,未引起松砂層液化.因此,該土層抗剪強(qiáng)度并未喪失,從而能極大程度地約束地震作用下橋梁的側(cè)向變形,并為橋梁提供足夠的承載力.
3.2樁-土-橋梁體系整體變形
結(jié)合圖3和圖4可知,當(dāng)橋梁兩側(cè)加入碎石樁后,加固區(qū)地基土的超孔隙水壓比明顯降低,橋墩兩側(cè)場地的側(cè)向變形顯著減小.通過在樁-土-橋梁結(jié)構(gòu)有限元模型中考慮碎石樁加固措施,樁基礎(chǔ)側(cè)向變形也有很大程度的降低.此外,在本橋梁模型的第二跨和第三跨中也進(jìn)行碎石樁加固,可以有效降低橋梁中部場地的超孔隙水壓比.
究其原因,主要是由于碎石樁的排水作用,使得地震過程中場地孔隙水壓力下降幅度增大,其液化程度也就減小,地震過程土體變形越小,進(jìn)而限制了地震過程中橋梁樁基礎(chǔ)的側(cè)向變形,提高了橋梁結(jié)構(gòu)的整體抗震能力.
3.3液化場地橋梁結(jié)構(gòu)的震后變形
圖5和圖6給出了液化場地橋梁結(jié)構(gòu)的震后側(cè)向變形和曲率.可以看出,采用碎石樁加固后的橋梁整體變形顯著下降,尤其是兩側(cè)的橋梁樁基,較大的曲率值只出現(xiàn)在樁頂和松砂與密砂的交界處.由此可知,碎石樁不僅能有效地改善松砂層加固區(qū)的抗液化能力,同時(shí)可以大幅降低橋梁結(jié)構(gòu)的側(cè)向變形和曲率.
4液化場地橋梁結(jié)構(gòu)地震風(fēng)險(xiǎn)分析
4.1橋梁結(jié)構(gòu)損傷指標(biāo)
本文以混凝土受壓破壞應(yīng)變所對應(yīng)的曲率作為描述橋梁結(jié)構(gòu)損傷的指標(biāo).基于圖2的彎矩-曲率關(guān)系和對應(yīng)的混凝土壓應(yīng)變,橋梁結(jié)構(gòu)的地震破壞可分為四種破壞狀態(tài),即輕微損傷、中等損傷、嚴(yán)重?fù)p傷和完全損傷.其中,輕微損傷定義為核心混凝土受壓開裂(即應(yīng)變ε=0.5%),對應(yīng)的曲率為φ=0.04 m-1;嚴(yán)重?fù)p傷定義為核心混凝土受壓破裂(即應(yīng)變ε=1.8 %),對應(yīng)的曲率為φ=0.15 m-1;中等損傷定義為輕微損傷和嚴(yán)重?fù)p傷的平均值,即φ=0.095 m-1.由于鋼管混凝土截面有較大的延性,因此完全損傷對應(yīng)的曲率為φ=0.3 m-1.此外,對于結(jié)構(gòu)能力的不確定性(式(1)和(2)),本文采用對數(shù)標(biāo)準(zhǔn)差βC=0.15來反映結(jié)構(gòu)抗力的離散程度.
4.2地震易損性曲線
基于非線性動力分析結(jié)果,以PGV作為地震動強(qiáng)度參數(shù),建立橋梁概率地震需求模型.由于該橋梁是一座對稱的四跨鋼筋混凝土連續(xù)橋梁,因此本文以樁P1頂部、樁P2密砂和松砂交界處的曲率為例(圖6箭頭所指位置),計(jì)算結(jié)果如圖7所示.可以看出,在考慮碎石樁加固措施后,模型2和模型3的整體曲率顯著降低.利用式(1)和上述曲率損傷指標(biāo),可以進(jìn)一步得到液化場地橋梁結(jié)構(gòu)在不同損傷狀態(tài)下的超越概率,并建立易損性曲線(圖8).
由圖8可知,橋梁結(jié)構(gòu)的損傷概率隨PGV的增大而增大,且輕微破壞和中等破壞的發(fā)生概率及增長速度要遠(yuǎn)大于嚴(yán)重破壞和完全破壞發(fā)生概率.通過對比三個(gè)模型的地震易損性分析結(jié)果,可以看出,在橋梁兩側(cè)加入碎石樁(模型2)對應(yīng)的損傷概率明顯低于不加碎石樁的情況(模型1).在橋墩兩側(cè)及中部考慮碎石樁加固的模型所對應(yīng)的損傷概率將進(jìn)一步降低,表明碎石樁能有效降低橋梁結(jié)構(gòu)在某一地震強(qiáng)度下的破損概率.
4.3地震危險(xiǎn)性分析結(jié)果
通過式(2),圖9探究了橋墩P1和P2(圖6箭頭所指位置)的橋梁結(jié)構(gòu)地震風(fēng)險(xiǎn)曲線.其中,根據(jù)中國地震動參數(shù)區(qū)劃圖可知,中震vDBE=1/475,IMDBE=0.2g;大震vMCE=1/2 475,IMMCE=0.38g.從圖9可以看出,隨著曲率的增大,橋梁結(jié)構(gòu)的地震風(fēng)險(xiǎn)明顯減小,且三個(gè)模型的降低趨勢相似.在橋梁兩側(cè)進(jìn)行碎石樁加固后(模型2),通過對比無碎石樁加固的橋梁模型計(jì)算結(jié)果(模型1),可以看出橋梁結(jié)構(gòu)的地震風(fēng)險(xiǎn)概率顯著降低.此外,在第二跨和第三跨中加入碎石樁,橋梁結(jié)構(gòu)地震風(fēng)險(xiǎn)概率將進(jìn)一步降低.因此,本節(jié)分析結(jié)果可以充分證明,碎石樁不僅能作為有效的場地抗液化措施,還能顯著地降低橋梁結(jié)構(gòu)的地震風(fēng)險(xiǎn)概率.
5結(jié)論
本文首先建立了二維液化場地樁-土-橋梁結(jié)構(gòu)整體化有限元模型,考慮飽和土體中孔隙水與土顆粒的動力耦合效應(yīng),采用試驗(yàn)數(shù)據(jù)標(biāo)定的OpenSees多屈服面PDMY02本構(gòu)對飽和砂土液化過程進(jìn)行模擬.在概率理論框架下探究了碎石樁加固措施對樁基橋梁地震風(fēng)險(xiǎn)的影響,系統(tǒng)詮釋了碎石樁作為橋梁工程抗液化加固措施的效果.通過構(gòu)建液化場地橋梁結(jié)構(gòu)的易損性曲線和地震風(fēng)險(xiǎn)曲線,對有無碎石樁加固措施的計(jì)算結(jié)果進(jìn)行對比分析.基于有限元數(shù)值分析結(jié)果,本文主要結(jié)論如下:
1)碎石樁加固措施抗液化效果顯著,能有效地降低加固區(qū)附近液化土體的超孔隙水壓.
2)由于碎石樁加固區(qū)附近的土體未發(fā)生液化,即強(qiáng)度未喪失,因此能極大程度地約束橋梁結(jié)構(gòu)的側(cè)向變形,并為橋梁提供足夠的承載力.
3)通過采用碎石樁抗液化加固措施,可以大幅降低液化場地橋梁結(jié)構(gòu)的地震風(fēng)險(xiǎn)概率和破損概率,為液化場地樁基橋梁地震安全評價(jià)和橋梁體系抗液化加固措施的選擇提供依據(jù).
參考文獻(xiàn)
[1]杜修力,韓強(qiáng).橋梁抗震研究若干進(jìn)展[J].地震工程與工程振動,2014,34(4):1-14.
DU X L,HAN Q. Research progress on seismic design of bridges [J]. Earthquake Engineering and Engineering Dynamics,2014,34(4):1-14. (in Chinese)
[2]許成順,賈科敏,杜修力,等.液化側(cè)向擴(kuò)展場地-樁基礎(chǔ)抗震研究綜述[J].防災(zāi)減災(zāi)工程學(xué)報(bào),2021,41(4):768-791.
XU C S,JIA K M,DU X L,et al. Review on seismic behavior of pile foundation subjected to liquefaction induced lateral spreading [J]. Journal of Disaster Prevention and Mitigation Engineering,2021,41(4):768-791.(in Chinese)
[3]吳琪,徐雨,陳國興.我國近20年11次地震的土壤液化災(zāi)害回顧[J/OL].防災(zāi)減災(zāi)工程學(xué)報(bào):1-16(2022-02-25)https://doi.org/10.13409/j.cnki.jdpme.20220107002.
WU Q,XU Y,CHEN G X. Review of soil liquefaction manifestation and its consequences for 11 earthquakes in China over the last 20 years[J/OL]. Journal of Disaster Prevention and Mitigation Engineering:1-16 (2022-02-25)https://doi.org/10.13409/j.cnki.jdpme.20220107002. (in Chinese)
[4]凌賢長,唐亮,蘇雷,等.中日規(guī)范中關(guān)于液化和側(cè)向擴(kuò)流場地橋梁樁基抗震設(shè)計(jì)考慮之比較[J].防災(zāi)減災(zāi)工程學(xué)報(bào),2011,31(5):490-495.
LING X Z,TANG L,SU L,et al. Comparison of seismic design considerations between Chinese and Japanese seismic design codes for bridge pile foundations in liquefying ground and lateral spreading ground [J]. Journal of Disaster Prevention and Mitigation Engineering,2011,31(5):490-495. (in Chinese)
[5]陳國興,吳琪,孫蘇豫,等.土壤地震液化評價(jià)方法研究進(jìn)展[J].防災(zāi)減災(zāi)工程學(xué)報(bào),2021,41(4):677-709.
CHEN G X,WU Q,SUN S Y,et al Advances in soil liquefaction triggering procedures during earthquakes:retrospect and prospect [J]. Journal of Disaster Prevention and Mitigation Engineering,2021,41(4):677-709.(in Chinese)
[6]黃茂松,邊學(xué)成,陳育民,等.土動力學(xué)與巖土地震工程[J].土木工程學(xué)報(bào),2020,53(8):64-86.
HUANG M S,BIAN X C,CHEN Y M,et al. Soil dynamics and geotechnical earthquake engineering [J]. China Civil Engineering Journal,2020,53(8):64-86.(In Chinese)
[7]王睿,張建民,張嘎.液化地基側(cè)向流動引起的樁基礎(chǔ)破壞分析[J].巖土力學(xué),2011,32(S1):501-506.
WANG R,ZHANG J M,ZHANG G. Analysis of failure of piled foundation due to lateral spreading in liquefied soils [J]. Rock and Soil Mechanics,2011,32(S1):501-506. (In Chinese)
[8]劉漢龍.土動力學(xué)與土工抗震研究進(jìn)展綜述[J]. 土木工程學(xué)報(bào),2012,45(4):148-164.
LIU H L. A review of recent advances in soil dynamics and geotechnical earthquake engineering[J]. China Civil Engineering Journal,2012,45(4):148-164.(In Chinese)
[9]唐亮,凌賢長,徐鵬舉,等.液化場地樁-土地震相互作用振動臺試驗(yàn)數(shù)值模擬[J].土木工程學(xué)報(bào),2012,45(S1):302-306.
TANG L,LING X Z,XU P J,et al. Numerical simulation of shaking table test for seismic pile-soil interaction in liquefying ground [J]. China Civil Engineering Journal,2012,45(S1):302-306. (In Chinese)
[10]王曉偉,葉愛君,李闖.可液化河谷場地不同形式梁式橋的地震反應(yīng)[J].同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,46(6):759-766.
WANG X W,YE A J,LI C. Seismic response of girder bridges in liquefiable river valleys with different structural configurations[J]. Journal of Tongji University (Natural Science),2018,46(6):759-766.(In Chinese)
[11]SHIN H S,ARDUINO P,KRAMER S L,et al. Seismic response of a typical highway bridge in liquefiable soil [C]//Geotechnical Earthquake Engineering and Soil Dynamics IV. Sacramento,Cali- fornia,United States,2008:1-11.
[12]鄭剛,龔曉南,謝永利,等.地基處理技術(shù)發(fā)展綜述[J].土木工程學(xué)報(bào),2012,45(2):127-146.
ZHENG G,GONG X N,XIE Y L,et al. Scientific and technological innovation[J]. China Civil Engineering Journal,2012,45(2):127-146.(In Chinese)
[13]劉漢龍,趙明華.地基處理研究進(jìn)展[J].土木工程學(xué)報(bào),2016,49(1):96-115.
LIU H L,ZHAO M H. Review of ground improvement technical and its application in China[J].China Civil Engineering Journal,2016,49(1):96-115.(In Chinese)
[14]ADALIER K,ELGAMAL A,MENESES J,et al. Stone columns as liquefaction countermeasure in non-plastic silty soils[J]. Soil Dynamicsand Earthquake Engineering,2003,23(7):571-584.
[15]譚鑫,馮龍健,胡政博,等.豎向荷載下軟土中碎石單樁破壞模式及承載力計(jì)算[J].湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2021,48 (9):10-19.
TAN X,F(xiàn)ENG L J,HU Z B,et al. Failure mode and calculation method of ultimate bearing capacity of a single stone column in soft soil under vertical loading[J]. Journal of Hunan University (Natural Sciences),2021,48(9):10-19.(In Chinese)
[16]張玲,陳哲,趙明華.筋箍碎石樁復(fù)合地基樁土應(yīng)力比的計(jì)算與分析[J].湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,44(1):136-142.
ZHANG L,CHEN Z,ZHAO M H. Study on pile-soil stress ratio of composite foundation reinforced with geosynthetic encased stone columns[J]. Journal of Hunan University(Natural Sciences),2017,44(1):136-142.(In Chinese)
[17]LU J C,KAMATCHI P,ELGAMAL A. Using stone columns tomitigate lateral deformation in uniform and stratified liquefiable soil strata [J]. International Journal of Geomechanics,2019,19 (5):04019026.
[18]ELGAMAL A,LU J C,RORCELLINI D. Mitigation of liquefaction-induced lateral deformation in a sloping stratum:Three-dimensional numerical simulation[J]. Journal of Geotechnical and Geoenvironmental Engineering,2009,135(11):1672- 1682.
[19]鄒佑學(xué),王睿,張建民.可液化場地碎石樁復(fù)合地基地震動力響應(yīng)分析[J].巖土力學(xué),2019,40(6):2043-2055.
ZOU Y X,WANG R,ZHANG J M. Analysis on the seismic response of stone columns composite foundation in liquefiable soils [J]. Rock and Soil Mechanics,2019,40(6):2043-2055.(In Chinese)
[20]唐亮,劉鵬,劉書幸,等.碎石樁加固液化場地高樁碼頭抗震性能分析[J].地震工程學(xué)報(bào),2022,44(2):336-343.
TANG L,LIU P,LIU S X,et al. Seismic performance of high-piled wharf improved by stone columns in ground of liquefaction[J]. China Earthquake Engineering Journal,2022,44(2):336-343. (In Chinese)
[21]MCKENNA F,SCOTT M H,F(xiàn)ENVES G L. Nonlinear finite- element analysis software architecture using object composition [J]. Journal of Computing in Civil Engineering,2010,24(1):95-107.
[22]LUPOI A,F(xiàn)RANCHIN P,SCHOTANUS M. Seismic risk evaluation of RC bridge structures [J]. Earthquake Engineering & Structural Dynamics,2003,32(8):1275-1290.
[23]PADGETT J E,DESROCHES R,NILSSON E. Regional seismic risk assessment of bridge network in Charleston,South Carolina [J]. Journal of Earthquake Engineering,2010,14(6):918-933.
[24]呂大剛,劉洋,于曉輝.第二代基于性能地震工程中的地震易損性模型及正逆概率風(fēng)險(xiǎn)分析[J].工程力學(xué),2019,36(9):1-11.
LU D G,LIU Y,YU X H. Seismic fragility models and forward-backward probabilistic risk analysis in second-generation performance-based earthquake engineering[J].Engineering Me- chanics,2019,36(9):1-11.(In Chinese)
[25]BRADLEY B A,DHAKAL R P,CUBRINOVSKI M,et al. Improved seismic hazard model with application to probabilistic seismic demand analysis[J]. Earthquake Engineering & Structural Dynamics,2007,36(14):2211-2225.
[26]YANG Z H,LU J C,ELGAMAL A. OpenSees soil models and solid-fluid fully coupled elements,User's manual:Version 1 [M]. La Jolla,CA:University of California,2008.
[27]SU L,LU J C,ELGAMAL A,et al.Seismic performance of a pile- supported wharf:Three-dimensional finite element simulation[J]. Soil Dynamics and Earthquake Engineering,2017,95:167-179.
[28]QIU Z J,EBEIDO A,ALMUTAIRI A,et al. Aspects of bridgeground seismic response and liquefaction-induced deformations [J]. Earthquake Engineering & Structural Dynamics,2020,49 (4):375-393.
[29]ZHANG Y Y,CONTE J P,YANG Z H,et al. Two-dimensional nonlinear earthquake response analysis of a bridge-foundation- ground system[J].Earthquake Spectra,2008,24(2):343-386.
[30]ELGAMAL A,YAN L J,YANG Z H,et al. Three-dimensional seismic response of Humboldt Bay bridge-foundation-ground system[J]. Journal of Structural Engineering,2008,134(7):1165- 1176.