陳昌富 李偉 張嘉睿 廖佳卉 呂曉璽
摘要:隨著我國(guó)高速公路建設(shè)不斷向中西部山區(qū)延伸,形成了大量高陡邊坡,打破了原有山體的地質(zhì)和生態(tài)平衡,極易誘發(fā)滑坡、坍塌、泥石流等地質(zhì)災(zāi)害,嚴(yán)重威脅人民的生命和財(cái)產(chǎn)安全.因此,山區(qū)高陡邊坡的穩(wěn)定性分析、設(shè)計(jì)、處治、監(jiān)測(cè)等問(wèn)題一直是巖土工程中研究的熱點(diǎn)和難點(diǎn).由于巖土高陡邊坡具有高不確定性、強(qiáng)非線性和動(dòng)態(tài)演化的特征,基于經(jīng)典理論的分析和計(jì)算方法對(duì)上述問(wèn)題進(jìn)行研究難以獲得合理的解答,而人工智能技術(shù)方法具有處理非線性復(fù)雜系統(tǒng)的獨(dú)特優(yōu)勢(shì),現(xiàn)已成為解決公路邊坡工程問(wèn)題的有效手段.本文總結(jié)了最近10余年山區(qū)公路邊坡工程中邊坡穩(wěn)定性智能分析計(jì)算與評(píng)價(jià)方法、邊坡防護(hù)與加固智能設(shè)計(jì)計(jì)算方法、邊坡智能監(jiān)測(cè)技術(shù)、滑坡智能識(shí)別和預(yù)測(cè)、巖質(zhì)邊坡結(jié)構(gòu)面智能識(shí)別以及巖士體參數(shù)智能反演等方面的主要研究進(jìn)展,并簡(jiǎn)要說(shuō)明了在山區(qū)公路邊坡穩(wěn)定性分析與加固設(shè)計(jì)、現(xiàn)場(chǎng)監(jiān)測(cè)和滑坡預(yù)測(cè)等方面推進(jìn)智能化建設(shè)的進(jìn)一步發(fā)展方向.
關(guān)鍵詞:邊坡;人工智能;智能算法;機(jī)器學(xué)習(xí);深度學(xué)習(xí);神經(jīng)網(wǎng)絡(luò);穩(wěn)定性;邊坡防護(hù)與加固;邊坡監(jiān)測(cè)與預(yù)測(cè)
中圖分類(lèi)號(hào):U418.5文獻(xiàn)標(biāo)志碼:A
State-of-the-Art of Intelligent Analysis and Design in Slope Engineering of Highways in Mountainous Areas
CHEN Changfu1,2,LI Wei1,2,ZHANG Jiarui1,2,LIAO Jiahui1,2,LU Xiaoxi1,2
(1. Key Laboratory of Building Safety and Energy Efficiency of Ministry of Education (Hunan University),Changsha 410082,China;2. College of Civil Engineering,Hunan University,Changsha 410082,China)
Abstract:As the construction of highways extend to the mountainous areas in the central and western regions in China,a large number of high-steep slopes have been generated. The construction process not only broke the geological and ecological balance of the original mountains,but also easily to induce geological disasters such as land - slides,collapses and debris flows,which seriously threaten people's lives and property safety. Therefore,some problems of high-steep slopes in mountainous areas have always been the key and difficult points in geotechnical engineering,including stability analysis,design,treatment and monitoring. However,due to the characteristics of high uncertainty,strong nonlinearity and dynamic evolution of high-steep slopes,it is difficult to obtain reasonable answers to the above problems based on analysis and calculation methods of classical theory. Artificial intelligencetechnology has the unique advantage of dealing with nonlinear complex systems,and it has become an effective means to solve slope engineering problems in highway. Therefore,this paper summarizes the main research progress in several fields of slope engineering of highway in mountainous areas in the past 10 years,including intelligent analysis calculation and evaluation method of slope stability,calculation method for intelligent design of slope protection and reinforcement,intelligent monitoring technology of slope,intelligent identification and prediction of landslides,intelligent inversion of rock and soil parameters,intelligent identification of rock slope structural planes,and so on. Furthermore,the further development direction of intelligent construction of slope engineering in highway is briefly explained in the fields of slope stability analysis and reinforcement design,on-site monitoring and landslide prediction.
Key words:slope;artificial intelligence;intelligent algorithm;machine learning;deep learning;neural network;stability;protection and reinforcement of slope;monitoring and prediction of slope
隨著我國(guó)高速公路建設(shè)不斷向主要由丘陵或山地組成的中西部山區(qū)延伸,不可避免地需要進(jìn)行大填大挖,從而必然形成大量的高陡邊坡.高陡邊坡的開(kāi)挖施工不僅打破了地表原有的地質(zhì)和生態(tài)平衡,對(duì)公路沿線周邊的地質(zhì)和生態(tài)環(huán)境產(chǎn)生重要影響,而且在強(qiáng)降雨或地震荷載作用下,高陡邊坡極易誘發(fā)滑坡、坍塌、泥石流等地質(zhì)災(zāi)害,嚴(yán)重威脅人民的生命和財(cái)產(chǎn)安全.因此,國(guó)內(nèi)外學(xué)者為確保山區(qū)公路邊坡安全,在邊坡穩(wěn)定性分析、防護(hù)與加固設(shè)計(jì)、現(xiàn)場(chǎng)監(jiān)測(cè)和滑坡預(yù)測(cè)等方面做了大量的研究,并取得了豐碩的成果.
邊坡穩(wěn)定性分析的關(guān)鍵是邊坡中最危險(xiǎn)滑動(dòng)面的搜索.然而,山區(qū)公路邊坡因受到復(fù)雜地形地質(zhì)條件和各種工程等因素的綜合影響,具有高度不確定性、強(qiáng)非線性和動(dòng)態(tài)演化的特征,這導(dǎo)致在最危險(xiǎn)滑動(dòng)面搜索過(guò)程中經(jīng)常面臨安全系數(shù)計(jì)算公式為隱函數(shù)、目標(biāo)函數(shù)為高維且具有多極值點(diǎn)的非凸函數(shù)等突出問(wèn)題,采用經(jīng)典的分析計(jì)算方法難以求解. 近年來(lái),隨著人工智能(AI)技術(shù)的快速發(fā)展,智能算法和機(jī)器學(xué)習(xí)模型被廣泛應(yīng)用到邊坡工程的穩(wěn)定性分析中,建立了大量收斂能力強(qiáng)、計(jì)算精度高、搜索速度快的全局優(yōu)化搜索方法[1-6],可有效解決復(fù)雜邊坡的穩(wěn)定性分析和最危險(xiǎn)滑動(dòng)面搜索問(wèn)題.
對(duì)于欠穩(wěn)定或已失穩(wěn)邊坡(滑坡),為保證工程安全,必須對(duì)其進(jìn)行加固處理.在工程中,由于邊坡處治涉及的因素眾多、建模困難、計(jì)算復(fù)雜,如何合理選擇邊坡處治加固形式并對(duì)其進(jìn)行優(yōu)化設(shè)計(jì),以獲得經(jīng)濟(jì)合理、技術(shù)可靠的邊坡加固設(shè)計(jì)方案,一直是邊坡處治的重點(diǎn)和難點(diǎn).為此,一些學(xué)者采用智能算法[7]、機(jī)器學(xué)習(xí)[8]、模糊計(jì)算[9]、自適應(yīng)神經(jīng)模糊推理系統(tǒng)[10]等人工智能方法,對(duì)邊坡處治進(jìn)行智能設(shè)計(jì),取得了良好的效果.
滑坡和泥石流是山區(qū)公路的高發(fā)地質(zhì)災(zāi)害,防災(zāi)減災(zāi)任務(wù)十分艱巨.其中,滑坡的精準(zhǔn)監(jiān)測(cè)和預(yù)測(cè)預(yù)警是邊坡防災(zāi)減災(zāi)的關(guān)鍵環(huán)節(jié).隨著航空航天和光學(xué)遙感技術(shù)的發(fā)展,新型的邊坡監(jiān)測(cè)技術(shù)不斷涌現(xiàn),并逐漸向高精度、自動(dòng)化、智能化、遠(yuǎn)程化的方向發(fā)展[11].同時(shí),監(jiān)測(cè)內(nèi)容也日益豐富,除最常見(jiàn)的位移外,還拓展到裂縫、地下水、氣象等多項(xiàng)監(jiān)測(cè)指標(biāo)[12].智能監(jiān)測(cè)雖然可獲得大量多維度的、非線性的、高分辨率的多源監(jiān)測(cè)數(shù)據(jù),但也使多源數(shù)據(jù)的融合和關(guān)鍵信息的識(shí)別和提取成為技術(shù)難點(diǎn).而機(jī)器學(xué)習(xí)方法可以在復(fù)雜的數(shù)據(jù)中建立目標(biāo)對(duì)象與屬性特征之間的關(guān)系框架;智能算法可以?xún)?yōu)化模型參數(shù),提高搜索能力.因此,它們被廣泛應(yīng)用于滑坡的智能識(shí)別與預(yù)測(cè)預(yù)警、巖體結(jié)構(gòu)面的智能辨識(shí)等研究中,并且成效顯著.
為展示國(guó)內(nèi)外山區(qū)公路邊坡智能分析和設(shè)計(jì)方面的最近研究進(jìn)展,本文在查閱大量文獻(xiàn)的基礎(chǔ)上,重點(diǎn)對(duì)最近10余年來(lái)公路邊坡穩(wěn)定性智能分析與設(shè)計(jì)計(jì)算方法、邊坡處治智能設(shè)計(jì)計(jì)算方法、邊坡智能化監(jiān)測(cè)技術(shù)、滑坡的智能預(yù)測(cè)、巖土體參數(shù)智能反演以及巖質(zhì)邊坡結(jié)構(gòu)面智能識(shí)別等方面的研究進(jìn)展進(jìn)行較系統(tǒng)的總結(jié),并就人工智能用于解決山區(qū)公路復(fù)雜邊坡穩(wěn)定性分析與加固設(shè)計(jì)、現(xiàn)場(chǎng)監(jiān)測(cè)與滑坡預(yù)測(cè)等問(wèn)題的發(fā)展方向給予展望.
1山區(qū)公路邊坡智能分析與設(shè)計(jì)計(jì)算方法研究進(jìn)展
1.1概述
邊坡穩(wěn)定性分析是公路邊坡設(shè)計(jì)和施工的理論基礎(chǔ).目前,常用的邊坡穩(wěn)定性分析方法眾多,其分類(lèi)如表1所示.本節(jié)將系統(tǒng)地回顧人工智能方法應(yīng)用于邊坡的確定性分析和非確定性(可靠性)分析,以及工程邊坡優(yōu)化設(shè)計(jì)的最新研究進(jìn)展.
1.2山區(qū)公路邊坡穩(wěn)定性智能分析方法
邊坡穩(wěn)定性分析的實(shí)質(zhì)是尋找一條使邊坡的安全系數(shù)最小的滑動(dòng)路徑,這條路徑可稱(chēng)為最危險(xiǎn)滑動(dòng)面(亦稱(chēng)臨界滑動(dòng)面).由于邊坡系統(tǒng)的復(fù)雜性,臨界滑動(dòng)面的目標(biāo)函數(shù)通常是一個(gè)復(fù)雜且不可微的多峰函數(shù),采用傳統(tǒng)的搜索方法極易陷入局部最優(yōu)解.近年來(lái),諸多學(xué)者基于人工智能算法和機(jī)器學(xué)習(xí),提出了眾多收斂能力強(qiáng)、高效、穩(wěn)定的全局優(yōu)化分析方法來(lái)定位邊坡臨界滑動(dòng)面和計(jì)算邊坡的穩(wěn)定性.在智能算法方面,有遺傳算法[1]、模擬退火算法[2]、進(jìn)化算法[3]、改進(jìn)徑向移動(dòng)算法[4]、群優(yōu)化算法(粒子群算法[15]、蟻群算法[14]、萬(wàn)有引力算法[15]、人工蜂群算法[16]、鯨魚(yú)算法[17]、灰狼優(yōu)化算法[18])等;在機(jī)器學(xué)習(xí)方面,有單模型(如支持向量機(jī)[5])、聚類(lèi)算法、概率模型、神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)[19]、集成學(xué)習(xí)[20]等,詳細(xì)分類(lèi)如圖1所示.上述人工智能模型均可獨(dú)立用于解決邊坡穩(wěn)定性問(wèn)題,但也各有不完善之處,因此諸多學(xué)者通過(guò)對(duì)它們進(jìn)行不同方式的組合或融合,提出了一些適應(yīng)性更強(qiáng)的改進(jìn)算法.
1.2.1基于遺傳算法(GA)的邊坡穩(wěn)定性分析
針對(duì)傳統(tǒng)遺傳算法(GA)的局部尋優(yōu)能力不足,易因選擇壓力過(guò)大而產(chǎn)生早熟收斂的問(wèn)題[21],Zhu 和Chen[22]將局部禁忌搜索策略植入遺傳算法的重組和循環(huán)中,提高了局部尋優(yōu)速度.Cen等[23]將遺傳算法和模擬退火算法相結(jié)合,對(duì)生成的每個(gè)子滑面采用模擬退火操作,實(shí)現(xiàn)了快速收斂.Zhou等[24]通過(guò)在上一代最優(yōu)解區(qū)域附近生成新種群,并與初始種群遺傳重組的方式擴(kuò)大種群多樣性,加快了收斂速度.Xu等[25]結(jié)合改進(jìn)的量子遺傳算法和隨機(jī)森林回歸方法,通過(guò)動(dòng)態(tài)調(diào)整策略控制種群的更新和演化方向得到全局最優(yōu)解,有效地避免了過(guò)早收斂.
1.2.2基于模擬退火算法(SA)的邊坡穩(wěn)定性分析
1983年,Kirkpatrick等[26]將熱力學(xué)中的退火思想引入組合優(yōu)化領(lǐng)域,提出了一種求解大規(guī)模組合優(yōu)化問(wèn)題的有效近似算法——模擬退火算法(SA).然而,由于在模擬退火過(guò)程中很難保證退火充分,導(dǎo)致在解的搜索過(guò)程中極易陷入局部最優(yōu)解,全局搜索能力較差.Cheng[2]提出了一種動(dòng)態(tài)邊界模擬退火技術(shù),可準(zhǔn)確且快速地確定圓弧和非圓弧滑動(dòng)面的最小安全系數(shù).劉華強(qiáng)等[27]通過(guò)增加算法的記憶功能和聯(lián)合搜索能力,給出了一套邊坡穩(wěn)定分析的非圓弧滑動(dòng)面搜索方法.李亮等[28]引入禁忌搜索技術(shù),避免了對(duì)退火中新解的重復(fù)、迂回搜索,形成了全局尋優(yōu)能力極強(qiáng)的禁忌模擬退火復(fù)合形法.
1.2.3基于粒子群算法(PSO)的邊坡穩(wěn)定性分析
粒子群算法(PSO)[13]是采用速度-位置搜索模型,各粒子代表解空間中的一個(gè)候選解,通過(guò)定義適應(yīng)值函數(shù)來(lái)評(píng)價(jià)各粒子的優(yōu)劣程度,該算法的適應(yīng)性和兼容性較強(qiáng),但也存在計(jì)算時(shí)比較依賴(lài)慣性因子的取值、易陷入局部最優(yōu)解、計(jì)算量大等缺點(diǎn).李亮等[29]借鑒和聲算法直接模擬群體的位置更新,通過(guò)對(duì)簡(jiǎn)化Janbu法的拓展,實(shí)現(xiàn)了對(duì)邊坡三維臨界滑動(dòng)面的快速搜索.徐飛等[30]結(jié)合投影尋蹤算法、粒子群優(yōu)化算法和邏輯斯諦曲線函數(shù),建立了邊坡穩(wěn)定性評(píng)價(jià)的粒子群優(yōu)化投影尋蹤模型(PSO-PP).楊善統(tǒng)等[31]通過(guò)變異操作增強(qiáng)了粒子群跳出局部最優(yōu)解的能力,并用二次序列規(guī)劃加速局部搜索,大大提高了粒子群算法獲得全局最優(yōu)的能力.
1.2.4基于蟻群算法(ACO)的邊坡穩(wěn)定性分析
蟻群算法(ACO)[14]具有開(kāi)放性、魯棒性、并行性和全局收斂性等優(yōu)點(diǎn),但也存在早熟收斂、收斂速度慢和求解質(zhì)量差等問(wèn)題.為了克服原有算法的缺點(diǎn),陳昌富等[32]引入混沌擾動(dòng)算子,改變了螞蟻的選擇機(jī)制,增加解的多樣性,提高了全局尋優(yōu)能力.石露等[33]對(duì)蟻群算法的結(jié)構(gòu)和螞蟻轉(zhuǎn)移概率計(jì)算方式進(jìn)行了改進(jìn),并與遺傳算法結(jié)合,克服了蟻群算法初期因信息素匱乏導(dǎo)致計(jì)算速度慢的不足.Gao[34]引入獎(jiǎng)懲策略,增加較優(yōu)路徑與普通路徑的信息素差異,加快了收斂速度,也避免早熟收斂;他還基于螞蟻正反向搜索相遇形成完整路徑的原理,提出了一種相遇蟻群算法,提高了搜索效率和精度[35].Yang等[35]將MAX-MIN蟻群優(yōu)化算法應(yīng)用于穩(wěn)定性分析的滑動(dòng)面搜索上,提出一種基于數(shù)值流行法的數(shù)值模型,算例表明其具有較好的適用性.
1.2.5基于萬(wàn)有引力算法(GSA)的邊坡穩(wěn)定性分析
萬(wàn)有引力算法(GSA)是由Rashedi等人提出,利用萬(wàn)有引力定律和模擬物體間的相互作用,得到一種粒子群體智能優(yōu)化算法.考慮到萬(wàn)有引力算法局部搜索能力不足,易出現(xiàn)最優(yōu)值振蕩發(fā)散的現(xiàn)象,Khajehzadeh等[15]采用自適應(yīng)最大速度約束,提高了全局探索能力和收斂速度.Raihan等[37]將萬(wàn)有引力算法與順序二次規(guī)劃(SQP)相結(jié)合,提出了一種GSA-SQP優(yōu)化算法.蔣建國(guó)等[38]通過(guò)限制粒子的速度和更改算法參數(shù)對(duì)萬(wàn)有引力算法進(jìn)行改進(jìn),顯著提高了算法中粒子的探索與開(kāi)發(fā)能力.
1.2.6基于新型群優(yōu)化算法的邊坡穩(wěn)定性分析
目前新的群優(yōu)化算法層出不窮,而且不斷被應(yīng)用于邊坡穩(wěn)定性分析中.比如:Ma等[39]根據(jù)仿生學(xué)原理和海豚的捕食行為,基于領(lǐng)導(dǎo)者海豚群算法(LDHA)創(chuàng)建了邊坡穩(wěn)定性分析的非線性多目標(biāo)優(yōu)化模型,計(jì)算結(jié)果表明LDHA在計(jì)算精度和效率上明顯優(yōu)于其他算法.Li等[40]比較了8種新型優(yōu)化算法[灰狼優(yōu)化算法(GWO)、粒子群優(yōu)化算法(PSO)、鯨魚(yú)優(yōu)化算法(WOA)、Salp群算法(SSA)、多元優(yōu)化算法(MVO)、螞蟻獅子優(yōu)化算法(ALO)、布谷鳥(niǎo)搜索算法(CS)和平衡優(yōu)化算法(EO)]確定邊坡臨界滑坡面的能力,結(jié)果表明,平衡優(yōu)化算法在解的質(zhì)量、收斂速率和魯棒性方面優(yōu)于其他算法.
1.2.7基于支持向量機(jī)(SVM)的邊坡穩(wěn)定性分析
支持向量機(jī)(SVM)是一種支持小樣本的機(jī)器學(xué)習(xí),以結(jié)構(gòu)風(fēng)險(xiǎn)最小化為準(zhǔn)則,縮小模型泛化誤差,提高泛化能力,但在求解大規(guī)模樣本數(shù)據(jù)時(shí),具有效率低、魯棒性差等問(wèn)題[5].考慮到SVM的準(zhǔn)確性與核函數(shù)和懲罰參數(shù)的取值相關(guān),陳光耀等[41]基于正態(tài)云模型改進(jìn)果蠅算法,并用于求解SVM分類(lèi)模型的最優(yōu)參數(shù)組合,提出了一種有效、可行的邊坡穩(wěn)定性評(píng)價(jià)方法.Suykens等[42]通過(guò)在目標(biāo)函數(shù)中增加誤差平方和項(xiàng),將原有的不等式約束求解過(guò)程變成等式方程求解,節(jié)省計(jì)算時(shí)間,提出了最小二乘支持向量機(jī)(LSSVM)方法,加快了求解速度.Xue[43]采用PSO算法改進(jìn)LSSVM方法,在收斂速度和精度上較經(jīng)典的遺傳算法和粒子群算法更優(yōu).Zeng等[44]采用引力搜索算法和鯨魚(yú)優(yōu)化算法分別討論了LSSVM方法的正確控制參數(shù).Cai等[45]采用混沌遺傳算法對(duì)LSSVM參數(shù)進(jìn)行優(yōu)化,提高了并行計(jì)算和全局優(yōu)化搜索的能力.Li等[46]提出了基于量子化粒子群(QPSO)的LSSVM算法,相比于PSO-LSSVM和LSSVM算法,具有更快的搜索速度和最佳的收斂性能,更適合于邊坡穩(wěn)定性分析.
1.2.8基于人工神經(jīng)網(wǎng)絡(luò)(ANN)的邊坡穩(wěn)定性分析
人工神經(jīng)網(wǎng)絡(luò)(ANN)是一種模擬人腦神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)和功能的計(jì)算模型,通常由一層或多層互連的神經(jīng)元或節(jié)點(diǎn)組成.人工神經(jīng)網(wǎng)絡(luò)能夠充分考慮各因素間的非線性關(guān)系,實(shí)現(xiàn)對(duì)任意函數(shù)的逼近,已經(jīng)得到了較為廣泛的應(yīng)用[19].但是,人工神經(jīng)網(wǎng)絡(luò)模型在訓(xùn)練中易出現(xiàn)信息重疊和過(guò)擬合現(xiàn)象,從而導(dǎo)致泛化能力差等問(wèn)題.陳昌富和楊宇[47]采用基于人工神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)構(gòu)建的T-S型模糊推理系統(tǒng),利用混合遺傳算法訓(xùn)練該模型,避免了隸屬函數(shù)難以確定的問(wèn)題,提高了搜索效率.Gordan等[48]借助粒子群算法(PSO)確定ANN的權(quán)重和偏差問(wèn)題,提出一種PSO-ANN模型來(lái)預(yù)測(cè)邊坡的穩(wěn)定安全系數(shù),提高了搜索精度.Das等[49]分別采用差分進(jìn)化神經(jīng)網(wǎng)絡(luò)(DENN)、貝葉斯正則化法神經(jīng)網(wǎng)絡(luò)(BRNN)和Levenberg-Marquardt神經(jīng)網(wǎng)絡(luò)(LMNN)模型計(jì)算邊坡的安全系數(shù),對(duì)比計(jì)算結(jié)果發(fā)現(xiàn),DENN模型計(jì)算精度更高.Khajehzadeh等[50]提出了一種ANN模型與自適應(yīng)正余弦算法結(jié)合的智能分析方法,并用于評(píng)估和預(yù)測(cè)均質(zhì)邊坡在靜態(tài)和動(dòng)態(tài)載荷下的安全系數(shù).Foong和Moayedi[51]使用平衡優(yōu)化和渦流搜索算法優(yōu)化多層感知器神經(jīng)網(wǎng)絡(luò)模型來(lái)預(yù)測(cè)單層土坡的安全系數(shù).
誤差反饋神經(jīng)網(wǎng)絡(luò)(BPNN)[52]是一種改進(jìn)的人工神經(jīng)網(wǎng)絡(luò)模型,在其輸入層和輸出層之間至少有一個(gè)隱含層,每個(gè)互連都分配有一個(gè)關(guān)聯(lián)權(quán)重,具有向前和向后傳遞兩個(gè)過(guò)程,因而能夠?qū)⑤敵鰧硬粶?zhǔn)確的結(jié)果向前傳遞,通過(guò)更新連接權(quán)重使誤差最小化,提高預(yù)測(cè)精度.胡軍等[53]結(jié)合協(xié)調(diào)粒子群算法和BP神經(jīng)網(wǎng)絡(luò),建立了邊坡穩(wěn)定性與各影響因素之間復(fù)雜的非線性關(guān)系,避免了BP神經(jīng)網(wǎng)絡(luò)易陷入局部最優(yōu)的問(wèn)題.考慮到卷積神經(jīng)網(wǎng)絡(luò)(CNN)在圖像分析方面具有更好的表現(xiàn),Hsiao等[54]將CNN模型與ANN模型用于隨機(jī)場(chǎng)邊坡的安全系數(shù)和臨界滑動(dòng)面搜索,以平均絕對(duì)誤差來(lái)判斷性能差異,結(jié)果表明,CNN模型在復(fù)雜邊坡情況下精確度比ANN模型更高,同時(shí)縮短了運(yùn)算時(shí)間.
1.2.9基于集成學(xué)習(xí)的邊坡穩(wěn)定性分析
集成學(xué)習(xí)[20]通過(guò)構(gòu)建并結(jié)合多個(gè)弱學(xué)習(xí)器,形成基于個(gè)體學(xué)習(xí)的強(qiáng)學(xué)習(xí)器,它可以獲得更準(zhǔn)確的預(yù)測(cè)結(jié)果,具有更好的泛化性能和更廣泛的應(yīng)用. Qi和Tang[55]采用自適應(yīng)增強(qiáng)決策樹(shù)(ABDT)、二次判別分析、支持向量機(jī)(SVM)、人工神經(jīng)網(wǎng)絡(luò)(ANN)、高斯過(guò)程回歸(GPR)和k-最近鄰(KNN)作為弱學(xué)習(xí)器,通過(guò)加權(quán)多數(shù)投票法組合構(gòu)建了集成學(xué)習(xí)分類(lèi)器.另外,他們也采用螢火蟲(chóng)算法調(diào)整超參數(shù),并驗(yàn)證和討論了6種綜合方法[Logistic回歸、隨機(jī)森林(RF)、決策樹(shù)、梯度提升機(jī)(GBM)、多層感知器神經(jīng)網(wǎng)絡(luò)和支持向量機(jī)(SVM)]在邊坡穩(wěn)定性預(yù)測(cè)中的可行性,結(jié)果表明,集成學(xué)習(xí)方法大大提高了邊坡穩(wěn)定性預(yù)測(cè)性能[56].Sun等[57]提出了貝葉斯優(yōu)化的集成學(xué)習(xí)算法,對(duì)4種回歸算法的超參數(shù)進(jìn)行優(yōu)化,提高了邊坡安全系數(shù)的預(yù)測(cè)精度.
1.2.10基于其他機(jī)器學(xué)習(xí)方法的邊坡穩(wěn)定性分析
不同的機(jī)器學(xué)習(xí)方法對(duì)同一類(lèi)型的數(shù)據(jù)有不同的敏感度,同一類(lèi)別的數(shù)據(jù)在不同方法下的分類(lèi)精度也會(huì)有所不同,每個(gè)分類(lèi)方法都有其獨(dú)特性和局限性.因此,Lin等[58]基于349個(gè)邊坡案例的數(shù)據(jù)集,評(píng)價(jià)了11種用于邊坡穩(wěn)定性評(píng)價(jià)的機(jī)器學(xué)習(xí)模型在不同輸入?yún)?shù)組合下預(yù)測(cè)邊坡安全系數(shù)的能力,通過(guò)數(shù)理統(tǒng)計(jì)分析發(fā)現(xiàn)支持向量機(jī)(SVM)、梯度提升回歸(GBR)和裝袋(Bagging)方法是相對(duì)較好的回歸方法.Mahmoodzadeh等[59]基于高斯過(guò)程回歸(GPR)、支持向量回歸(SVR)、決策樹(shù)(DT)、長(zhǎng)短期記憶(LSTM)神經(jīng)網(wǎng)絡(luò)、卷積神經(jīng)網(wǎng)絡(luò)(CNN)和k-最近鄰(KNN)模型分析327個(gè)案例邊坡的穩(wěn)定性,并與數(shù)值分析計(jì)算結(jié)果對(duì)比發(fā)現(xiàn),GPR模型的預(yù)測(cè)更加準(zhǔn)確.Karir等[60]基于支持向量回歸(SVR)、人工神經(jīng)網(wǎng)絡(luò)(ANN)、隨機(jī)森林(RF)、梯度提升(GB)和極端梯度提升(XGBoost)機(jī)器學(xué)習(xí)方法,建模并分析了邊坡安全系數(shù),與數(shù)值分析計(jì)算結(jié)果對(duì)比發(fā)現(xiàn),RF、GB和XGB模型等基于樹(shù)的算法具有出色的預(yù)測(cè)性能.Lin等[61]對(duì)比了4種監(jiān)督學(xué)習(xí)算法[隨機(jī)森林(RF)、萬(wàn)有引力算法(GSA)、支持向量機(jī)(SVM)和樸素貝葉斯算法]在邊坡穩(wěn)定性評(píng)價(jià)中的性能差異,其中萬(wàn)有引力算法可以獲得最好的結(jié)果.目前的研究表明,還沒(méi)有完善的機(jī)器學(xué)習(xí)方法能夠?qū)τ绊戇吰路€(wěn)定性的眾多因素進(jìn)行較全面和有效的分析,仍需要不斷尋找精度更高、適用性強(qiáng)的機(jī)器學(xué)習(xí)方法來(lái)建立邊坡穩(wěn)定性評(píng)價(jià)模型,以獲得更好的預(yù)測(cè)結(jié)果.
1.3山區(qū)公路邊坡可靠度智能分析方法
自然邊坡受長(zhǎng)期風(fēng)化、搬運(yùn)、沉積、后沉積等地質(zhì)作用的影響,土體強(qiáng)度參數(shù)往往具有隨機(jī)性和不確定性.而常用的穩(wěn)定性分析僅是在確定性參數(shù)條件下求解安全系數(shù),不能有效地考慮實(shí)際荷載和邊坡參數(shù)的隨機(jī)性和不確定性,易使評(píng)價(jià)結(jié)果偏離實(shí)際.因此,國(guó)內(nèi)外衍生出許多以概率表征的邊坡可靠度分析方法,它們能夠定量、客觀地考慮這些不確定性因素對(duì)邊坡穩(wěn)定性的影響.而隨著計(jì)算機(jī)和智能技術(shù)的蓬勃發(fā)展,引入人工智能技術(shù)的邊坡可靠度分析研究也在日益增加.
邊坡可靠度計(jì)算問(wèn)題可以分為兩類(lèi)[62]:一類(lèi)是極限狀態(tài)方程是基本隨機(jī)變量的顯式功能函數(shù);另一類(lèi)是極限狀態(tài)方程是基本隨機(jī)變量的隱式功能函數(shù),后者更為常見(jiàn).當(dāng)功能函數(shù)為不易求解的高度非線性的隱式函數(shù)時(shí),一般采用代理模型法構(gòu)建隨機(jī)變量與功能函數(shù)之間的映射關(guān)系,如響應(yīng)面法[63]、支持向量機(jī)(SVM)模型[64-65]等,并在此基礎(chǔ)上應(yīng)用各種可靠度計(jì)算方法來(lái)計(jì)算邊坡可靠度指標(biāo).在代理模型的建立中運(yùn)用人工智能技術(shù),可大大提高計(jì)算效率,減少時(shí)間成本.Li等[64]基于支持向量機(jī)(SVM)代理模型構(gòu)建功能函數(shù),然后采用蒙特卡洛方法計(jì)算邊坡可靠度指標(biāo),提出了一種基于SVM的邊坡可靠度分析方法.Samui等[66]建立了相關(guān)向量機(jī)(RVM)在隱式功能函數(shù)的極限狀態(tài)下的可靠性分析模型.蘇永華等[67]基于Kriging模型建立了各向異性關(guān)聯(lián)映射方法,再結(jié)合蒙特卡洛模擬和主動(dòng)學(xué)習(xí)方法求解了邊坡的失效概率.Kang等[68]提出了一種基于最小二乘向量機(jī)(LSSVM)和粒子群算法(PSO)結(jié)合的土質(zhì)邊坡系統(tǒng)失效概率評(píng)估可靠度方法.朱彬等[69]基于高斯過(guò)程回歸算法構(gòu)建代理模型,并用蒙特卡洛模擬求解邊坡失穩(wěn)概率,在保證計(jì)算精度的同時(shí)減少了對(duì)邊坡穩(wěn)定性分析程序的調(diào)用.張?zhí)忑埖萚70]提出了基于主動(dòng)學(xué)習(xí)徑向基函數(shù)的代理模型,加快了模型訓(xùn)練的收斂速度,然后結(jié)合蒙特卡洛模擬計(jì)算邊坡的系統(tǒng)失穩(wěn)概率.謝夢(mèng)龍等[71]引入LASSO算法壓縮數(shù)據(jù)系數(shù),消除變量間的共線性問(wèn)題,建立了邊坡土體強(qiáng)度參數(shù)與安全系數(shù)的關(guān)系,與普通線性回歸算法相比,其預(yù)測(cè)效果更有優(yōu)勢(shì).
巖土體變異性包括地層變異性和巖土體參數(shù)的空間變異性[72].針對(duì)巖土體參數(shù)變異性對(duì)邊坡穩(wěn)定性分析的影響,許多學(xué)者引入隨機(jī)場(chǎng)模擬不均勻參數(shù)的分布,并對(duì)穩(wěn)定性進(jìn)行了大量的探討,提出了許多有效的可靠度評(píng)估方法[73].Li等[74]基于理論自相關(guān)函數(shù),提出了一種考慮巖土體抗剪強(qiáng)度參數(shù)空間變異性的多響應(yīng)面邊坡可靠性分析方法.Qin等[75]考慮了土體參數(shù)的空間變異性對(duì)開(kāi)挖邊坡變形行為的影響,提出了一種基于隨機(jī)有限元方法的貝葉斯更新框架,能夠根據(jù)現(xiàn)場(chǎng)測(cè)量數(shù)據(jù)對(duì)邊坡進(jìn)行有效的安全性評(píng)估.楊智勇等[76]采用概率故障樹(shù)模型構(gòu)建了邊坡多失效模式系統(tǒng)可靠度分析模型.姬建等[77]建立邊坡土體隨機(jī)場(chǎng)數(shù)字圖像與功能函數(shù)值之間隱式關(guān)系的卷積神經(jīng)網(wǎng)絡(luò)(CNN)代理模型,顯著提高了考慮隨機(jī)場(chǎng)模擬的邊坡可靠度分析計(jì)算效率.Zai等[78]提出了廣義概率密度演化方法來(lái)評(píng)估邊坡的系統(tǒng)可靠性,對(duì)于隱式函數(shù)和多參數(shù)變量的復(fù)雜斜坡分析具有很好的適應(yīng)性.另外,在考慮巖土體地層軟硬交替的變異性方面,Li等[79]根據(jù)鉆孔資料結(jié)合耦合馬爾可夫鏈模型模擬地層的不確定性,并對(duì)邊坡進(jìn)行穩(wěn)定性分析,表明地層變異性對(duì)安全系數(shù)和失效概率不確定性有重要影響.Liu等基于現(xiàn)場(chǎng)有限的鉆孔數(shù)據(jù),采用一維馬爾可夫鏈模型研究了地層邊界不確定和土體參數(shù)空間變異性對(duì)邊坡可靠性分析的影響.鄧志平等[72]提出了同時(shí)考慮地層變異性和土體參數(shù)固有變異性的邊坡可靠度分析方法,有效地反映了這兩種土體變異性對(duì)邊坡可靠度的影響.
對(duì)于呈線狀分布的山區(qū)高速公路,因其線路長(zhǎng)、場(chǎng)地勘察難度大,有關(guān)巖土參數(shù)的數(shù)據(jù)獲取困難,導(dǎo)致用于可靠度分析的數(shù)據(jù)嚴(yán)重不足.為了解決數(shù)據(jù)樣本量不足的問(wèn)題,Yi等[81]在Kriging建模中引入粒子群算法以獲得最優(yōu)相關(guān)參數(shù),通過(guò)對(duì)未監(jiān)測(cè)點(diǎn)的插值和外推,可以增加初始數(shù)據(jù),有效解決了小樣本的參數(shù)不足.Xiao等[82]將改進(jìn)的自適應(yīng)遺傳算法與時(shí)空Kriging插值法相結(jié)合來(lái)解決監(jiān)測(cè)數(shù)據(jù)缺失的問(wèn)題,其插值精度較傳統(tǒng)時(shí)空Kriging和高斯過(guò)程回歸(GPR)方法提高了約1倍.姬建等[83]運(yùn)用概率密度權(quán)重法對(duì)邊坡系統(tǒng)可靠度進(jìn)行概率分析,實(shí)現(xiàn)了在低樣本量下對(duì)高維、隱式極限狀態(tài)方程的邊坡可靠度的分析.另外,也有一些學(xué)者借助貝葉斯網(wǎng)絡(luò)框架建立代理模型對(duì)樣本數(shù)據(jù)進(jìn)行合理的更新.比如,Yao等[84]提出了基于結(jié)構(gòu)可靠度和貝葉斯更新的邊坡可靠度更新方法,可以基于較少的樣本數(shù)據(jù),進(jìn)行有效和準(zhǔn)確的邊坡可靠性分析;Contreras和Brown[85]基于貝葉斯方法構(gòu)建了多維后驗(yàn)概率分布來(lái)推斷邊坡參數(shù),并采用馬爾科夫鏈蒙特卡洛方法進(jìn)行了邊坡可靠度分析;劉陽(yáng)等[86]以貝葉斯網(wǎng)絡(luò)為框架,結(jié)合模糊理論與支持向量機(jī)模型,提出了一種公路邊坡地震失穩(wěn)規(guī)模的評(píng)估方法,克服了樣本量少引起網(wǎng)絡(luò)參數(shù)誤差過(guò)大的缺陷.
1.4山區(qū)公路邊坡智能設(shè)計(jì)方法
在給定的工程場(chǎng)地(地質(zhì)地形條件已知)和荷載條件下,山區(qū)公路邊坡設(shè)計(jì)的關(guān)鍵是合理確定坡形和坡角.但由于影響邊坡穩(wěn)定性的地層物理力學(xué)參數(shù)和工程荷載等因素通常具有隨機(jī)性、模糊性及離散性,故邊坡的設(shè)計(jì)是一個(gè)復(fù)雜的非線性問(wèn)題[87].在邊坡坡角的智能設(shè)計(jì)中,張志軍等[88]根據(jù)邊坡的巖土力學(xué)參數(shù)及邊坡高度,采用人工神經(jīng)網(wǎng)絡(luò)(ANN)方法和自適應(yīng)神經(jīng)模糊推理系統(tǒng)(ANFIS)方法,在滿(mǎn)足安全系數(shù)要求下對(duì)圓弧破壞邊坡的邊坡角反演設(shè)計(jì),結(jié)果發(fā)現(xiàn)ANFIS反演設(shè)計(jì)效果更好.徐沖等[87]采用基于組合核函數(shù)的高斯過(guò)程回歸網(wǎng)絡(luò)模型對(duì)邊坡坡角進(jìn)行智能設(shè)計(jì),提高了預(yù)測(cè)精度和泛化能力,同時(shí)可較好地處理坡角設(shè)計(jì)中的非線性問(wèn)題.Zhou等[89]將貝葉斯推理、概率運(yùn)動(dòng)學(xué)分析和立體投影應(yīng)用于不連續(xù)性控制的巖石邊坡不穩(wěn)定性分析,計(jì)算出各開(kāi)挖邊坡潛在不穩(wěn)定區(qū)塊的破壞角. Yan等[90]結(jié)合運(yùn)動(dòng)學(xué)分析、貝葉斯估計(jì)和蒙特卡洛模擬,提出了一種確定邊坡節(jié)理巖邊坡的最大安全角的方法.Xie等[91]基于影響巖質(zhì)邊坡角的10個(gè)主要影響因素,構(gòu)建了一種基于隨機(jī)森林算法預(yù)測(cè)巖質(zhì)邊坡穩(wěn)定坡角的新方法.
2山區(qū)公路邊坡處治智能設(shè)計(jì)計(jì)算方法研究進(jìn)展
2.1概述
山區(qū)公路修建時(shí),不可避免地要對(duì)沿線邊坡進(jìn)行開(kāi)挖、削坡和爆破等施工作業(yè),會(huì)形成大量的深路塹和高路堤邊坡.不僅破壞了沿線的生態(tài)景觀,也容易引發(fā)水土流失、滑坡和坍塌等災(zāi)害,影響邊坡的穩(wěn)定性.為了保證公路安全、邊坡穩(wěn)定、生態(tài)平衡,應(yīng)采取科學(xué)合理的邊坡處治措施.而在邊坡處治設(shè)計(jì)中往往涉及的因素眾多,導(dǎo)致建模困難、計(jì)算復(fù)雜,因此,一些學(xué)者采用智能算法和機(jī)器學(xué)習(xí)模型方法對(duì)邊坡處治進(jìn)行智能設(shè)計(jì),取得了良好的效果. 本節(jié)將對(duì)邊坡不同防護(hù)與加固形式的智能設(shè)計(jì)研究進(jìn)展進(jìn)行較為詳細(xì)的闡述.
2.2山區(qū)公路邊坡植物防護(hù)智能分析計(jì)算方法
邊坡防護(hù)主要有工程防護(hù)和植物防護(hù)兩種形式,工程防護(hù)主要有噴護(hù)、錨桿掛網(wǎng)噴漿和砌塊防護(hù)等,由于這些措施景觀效果不好,已經(jīng)不提倡使用,因此邊坡防護(hù)的主要途徑以植物防護(hù)為主[92].目前有關(guān)山區(qū)公路邊坡防護(hù)智能分析計(jì)算方法的研究很少.Sari等[10]針對(duì)草、灌木和喬木防護(hù)的邊坡,考慮根系加固作用,提出了一種高性能低誤差的邊坡穩(wěn)定性ANFIS分析方法.隨后,Safa等[93]考慮根系拉力作用,分別采用ANN、ANFIS和ABC-ANN(人工蜂群與神經(jīng)網(wǎng)絡(luò)混合)算法,對(duì)生態(tài)防護(hù)的黏性土質(zhì)邊坡的安全系數(shù)進(jìn)行計(jì)算,結(jié)果發(fā)現(xiàn),ANFIS算法具有更好的性能.此外,Liu等[94]建立了公路植物邊坡穩(wěn)定性評(píng)價(jià)指標(biāo)體系,并運(yùn)用粗糙集理論和層次分析法確定了邊坡評(píng)價(jià)指標(biāo)的權(quán)重,提出了一種有效且可靠的預(yù)測(cè)公路植物邊坡防護(hù)質(zhì)量的評(píng)價(jià)模型.Liu等[95]提出了一種結(jié)合遺傳算法和BP神經(jīng)網(wǎng)絡(luò)回歸的模型,結(jié)合氣象和土壤濕度監(jiān)測(cè)數(shù)據(jù),可以對(duì)生態(tài)防護(hù)高邊坡的水分進(jìn)行合理預(yù)測(cè).
2.3山區(qū)公路邊坡加固智能分析計(jì)算方法
由于場(chǎng)地工程地質(zhì)和工程條件的復(fù)雜性,邊坡加固方式千差萬(wàn)別.目前,常用的公路邊坡加固方法有加筋土坡、重力式或加筋土擋墻、土釘支護(hù)(土釘墻)、錨桿(索)擋墻、抗滑樁等.
加筋土坡因填方量少、施工期短、經(jīng)濟(jì)安全、抗震性能好等優(yōu)點(diǎn),在邊坡工程中應(yīng)用廣泛,其相關(guān)的研究也較多.Ponterosso和Fox[7]提出了一種基于遺傳算法的加筋土坡優(yōu)化設(shè)計(jì)方法,并發(fā)現(xiàn)應(yīng)用遺傳算法可有效節(jié)省加固費(fèi)用.Farshidfar等[96]采用遺傳算法搜索加筋土坡的臨界滑動(dòng)面,提出了一種水平條分的加筋土邊坡穩(wěn)定性分析方法.Shinoda和Miyata[97]采用粒子群優(yōu)化算法計(jì)算加筋土坡的安全系數(shù),驗(yàn)證了案例邊坡的穩(wěn)定性,提高了計(jì)算精度和設(shè)計(jì)效率.Bahootoroody等[98]利用分層貝葉斯和馬爾科夫鏈蒙特卡洛方法來(lái)評(píng)價(jià)土工布加筋土坡的失穩(wěn)概率,提出了一種加固邊坡可靠度分析計(jì)算方法.
擋土墻結(jié)構(gòu)因抗滑能力強(qiáng)、布置靈活、施工方便、結(jié)構(gòu)形式多樣等優(yōu)點(diǎn)而應(yīng)用廣泛.Gandomi等[99]采用加速粒子群優(yōu)化、螢火蟲(chóng)算法和布谷鳥(niǎo)搜索等三種群體智能優(yōu)化算法對(duì)懸臂式擋土墻的幾何形狀參數(shù)進(jìn)行優(yōu)化設(shè)計(jì),發(fā)現(xiàn)在低成本和低耗材設(shè)計(jì)優(yōu)化方面,布谷鳥(niǎo)搜索算法更精確.侯超群等[100]采用遺傳算法確定地震作用下臨水加筋土擋墻的臨界滑動(dòng)面,在滿(mǎn)足其內(nèi)部穩(wěn)定條件下,得到了筋材拉力系數(shù)的優(yōu)化設(shè)計(jì)結(jié)果.
土釘支護(hù)(土釘墻)的穩(wěn)定性分析中多采用極限平衡法計(jì)算土釘支護(hù)結(jié)構(gòu)穩(wěn)定性安全系數(shù).朱劍鋒等[101]提出一種新型的自適應(yīng)禁忌變異遺傳搜索優(yōu)化算法,該算法能獲取土釘墻任意形狀最危險(xiǎn)滑動(dòng)面及相應(yīng)安全系數(shù),快速確定邊坡的穩(wěn)定性.董建華和朱彥鵬[102]提出了地震作用下土釘支護(hù)邊坡永久位移計(jì)算方法,其中采用遺傳算法搜索土釘支護(hù)邊坡的臨界滑動(dòng)面.惠趁意等[103]運(yùn)用遺傳算法對(duì)復(fù)合土釘支護(hù)結(jié)構(gòu)邊坡的最危險(xiǎn)滑動(dòng)面進(jìn)行動(dòng)態(tài)搜索,加快了設(shè)計(jì)速度.房光文等[104]為了切實(shí)反映土釘加固邊坡的實(shí)際狀態(tài),考慮土體參數(shù)模糊隨機(jī)性和邊坡模糊過(guò)渡區(qū)間,提出了一種土釘加固邊坡可靠度分析方法.
對(duì)于錨桿(索)擋墻的設(shè)計(jì),可先假定錨桿長(zhǎng)度為一定值,然后通過(guò)逐步試算安全系數(shù)確定最優(yōu)設(shè)計(jì)方案.羅輝等[105]應(yīng)用可靠度反分析法設(shè)計(jì)邊坡錨桿,采用遺傳算法求得目標(biāo)可靠度下的錨桿優(yōu)化設(shè)計(jì)長(zhǎng)度.尹志凱等[106]基于改進(jìn)的差分進(jìn)化算法,對(duì)三維邊坡錨固位置進(jìn)行合理優(yōu)化,優(yōu)化后可有效節(jié)約錨桿數(shù)量.周蘇華等[9]建立了預(yù)應(yīng)力錨索加固順層邊坡的穩(wěn)定性評(píng)價(jià)指標(biāo)體系,提出了基于模糊層次分析法的邊坡穩(wěn)定性評(píng)定模型,并通過(guò)數(shù)值正交試驗(yàn)發(fā)現(xiàn)結(jié)構(gòu)面強(qiáng)度和坡后角(即坡頂?shù)孛鎯A角)比邊坡的高度和坡度對(duì)邊坡的穩(wěn)定性影響要顯著. 謝全敏等[107]基于灰色關(guān)聯(lián)度分析與模糊識(shí)別理論,建立了既有加固邊坡錨桿結(jié)構(gòu)健康狀態(tài)診斷方法,其評(píng)估結(jié)果能夠較全面、系統(tǒng)地反映既有錨桿加固邊坡工程的整體健康狀態(tài).
抗滑樁是邊坡支護(hù)中廣泛采用的支擋結(jié)構(gòu)形式.在抗滑樁設(shè)計(jì)時(shí),一般是在指定的安全系數(shù)下計(jì)算出抗滑樁受到的下滑力,并據(jù)此設(shè)計(jì)確定樁距、樁徑、樁長(zhǎng)和配筋.唐曉松等[8]、楊波等[108]采用GASVM算法對(duì)埋入式和雙排全長(zhǎng)式抗滑樁的合理樁位和樁長(zhǎng)進(jìn)行了分析計(jì)算.梁冠亭等[109]基于改進(jìn)M-P法建立了抗滑樁支護(hù)邊坡的穩(wěn)定性分析模型,并引入自適應(yīng)遺傳優(yōu)化算法,實(shí)現(xiàn)了最危險(xiǎn)滑動(dòng)面的自動(dòng)搜索.Gong等[110]基于隨機(jī)馬爾可夫隨機(jī)場(chǎng)方法,研究了地層不確定性對(duì)抗滑樁加固邊坡失穩(wěn)概率的影響,以最小化加固邊坡的失穩(wěn)概率和樁的成本為雙目標(biāo)函數(shù),優(yōu)化設(shè)計(jì)了單排抗滑樁的設(shè)計(jì)參數(shù),提高了加固邊坡的性能.
3山區(qū)公路邊坡智能監(jiān)測(cè)與滑坡預(yù)測(cè)研究進(jìn)展
3.1邊坡智能監(jiān)測(cè)
山區(qū)公路運(yùn)營(yíng)期間,公路邊坡可能出現(xiàn)不同程度的變形,甚至發(fā)生滑坡、坍塌等強(qiáng)破壞性災(zāi)害,嚴(yán)重影響公路的正常使用.監(jiān)測(cè)邊坡的位移、土體內(nèi)部應(yīng)力、地下水和外部誘發(fā)因素,對(duì)邊坡的穩(wěn)定性評(píng)價(jià)和滑坡等災(zāi)害的預(yù)測(cè)和預(yù)警意義重大.
近年來(lái),邊坡監(jiān)測(cè)技術(shù)取得了長(zhǎng)足發(fā)展,并逐漸向高精度、自動(dòng)化、智能化的方向邁進(jìn).常用的公路邊坡監(jiān)測(cè)技術(shù)主要有光纖光柵傳感技術(shù)(FBG)、三維激光掃描技術(shù)、數(shù)字化近景攝影測(cè)量技術(shù)、合成孔徑雷達(dá)干涉技術(shù)(inSAR)和全球?qū)Ш叫l(wèi)星系統(tǒng)(GNSS)等[12]高新技術(shù),它們?cè)诠愤吰卤O(jiān)測(cè)中都有成功應(yīng)用.比如,李時(shí)宜等[111]開(kāi)發(fā)了分布式布里淵光纖傳感技術(shù),可以擴(kuò)展光纜對(duì)局部變形的耐受度,同時(shí)提高了監(jiān)測(cè)的準(zhǔn)確度;謝謨文等[112]運(yùn)用三維激光掃描技術(shù)對(duì)金坪子滑坡表面變形進(jìn)行了監(jiān)測(cè)研究;賈曙光等[113]基于無(wú)人機(jī)攝影測(cè)量技術(shù),實(shí)現(xiàn)了高陡邊坡的數(shù)字化巖體產(chǎn)狀測(cè)量;王慧敏等[114]基于GNSS高速公路自動(dòng)化監(jiān)測(cè)系統(tǒng),實(shí)現(xiàn)了地表位移和深層位移的實(shí)時(shí)管理和分析.凌建明等[12]對(duì)上述五種智能化監(jiān)測(cè)技術(shù)的特點(diǎn)、適用性以及發(fā)展和應(yīng)用現(xiàn)狀進(jìn)行了詳細(xì)的回顧,并展望了該領(lǐng)域的發(fā)展方向.也有學(xué)者提出了一些其他的監(jiān)測(cè)技術(shù),比如:江勝華等[115]基于磁測(cè)原理,采用磁性標(biāo)簽制作智能石頭,通過(guò)磁力梯度儀和智能石頭建立邊坡變形監(jiān)測(cè)系統(tǒng),并通過(guò)改進(jìn)遺傳算法,反演智能石頭的運(yùn)動(dòng)軌跡,實(shí)現(xiàn)了基于磁場(chǎng)梯度的磁性目標(biāo)定位,進(jìn)而得到邊坡的位移狀態(tài);梁苗等[116]基于LoRa區(qū)域無(wú)線傳輸技術(shù)實(shí)現(xiàn)區(qū)域聚集監(jiān)測(cè)數(shù)據(jù),再傳輸至后臺(tái)處理的深部位移監(jiān)測(cè)系統(tǒng),實(shí)現(xiàn)了對(duì)西南山區(qū)某高速公路邊坡變形遠(yuǎn)程自動(dòng)化監(jiān)測(cè),成功解決了偏遠(yuǎn)山區(qū)網(wǎng)絡(luò)信號(hào)差和監(jiān)測(cè)數(shù)據(jù)回傳難的問(wèn)題.
3.2滑坡智能預(yù)測(cè)
基于已有邊坡監(jiān)測(cè)數(shù)據(jù)對(duì)邊坡變形進(jìn)行快速、合理的預(yù)測(cè)是一項(xiàng)關(guān)鍵工作,它有助于進(jìn)一步快速評(píng)價(jià)邊坡失穩(wěn)風(fēng)險(xiǎn)和對(duì)未來(lái)滑坡災(zāi)害進(jìn)行中長(zhǎng)期預(yù)測(cè).邊坡因受到巖土體材料特性、工程水文地質(zhì)條件、荷載條件、地表植被等多因素影響,其變形發(fā)展變化規(guī)律以及災(zāi)變過(guò)程難以用傳統(tǒng)方法進(jìn)行快速、準(zhǔn)確預(yù)測(cè).機(jī)器學(xué)習(xí)方法具有很強(qiáng)的處理非線性問(wèn)題的能力,它在邊坡智能預(yù)測(cè)中得到了廣泛應(yīng)用,尤其以人工神經(jīng)網(wǎng)絡(luò)(ANN)和支持向量機(jī)(SVM)模型為基礎(chǔ)的機(jī)器學(xué)習(xí)方法在邊坡預(yù)測(cè)中應(yīng)用最為普遍,并發(fā)展出不同的改進(jìn)方法.
在各類(lèi)神經(jīng)網(wǎng)絡(luò)的應(yīng)用方面,Chen等[117]基于模糊神經(jīng)網(wǎng)絡(luò)對(duì)監(jiān)測(cè)數(shù)據(jù)進(jìn)行位移預(yù)測(cè),具有較高的預(yù)測(cè)精度和適用性.Cheng和Hoang[118]采用模糊k最近鄰算法和螢火蟲(chóng)算法結(jié)合來(lái)優(yōu)化模型超參數(shù),提出了一種新型的預(yù)測(cè)邊坡坍塌的模型——基于實(shí)例學(xué)習(xí)的群優(yōu)化模糊(SOFIL)模型;相似地,他們還基于貝葉斯框架和k最近鄰算法,提出了邊坡坍塌評(píng)估的概率分析方法[119],并采用我國(guó)臺(tái)灣地區(qū)高速公路的邊坡樣本數(shù)據(jù)驗(yàn)證了該方法的有效性.Wang等[120]采用基于人工魚(yú)群算法(AFSA)的Elman神經(jīng)網(wǎng)絡(luò)模型對(duì)無(wú)人機(jī)攝影測(cè)量的位移數(shù)據(jù)進(jìn)行訓(xùn)練并預(yù)測(cè)位移變化,與現(xiàn)有的Elman網(wǎng)絡(luò)方法相比,具有更好的精度和收斂性,適用于邊坡關(guān)鍵測(cè)點(diǎn)的位移預(yù)測(cè).
在深度學(xué)習(xí)的應(yīng)用方面,Yin等[121]利用卷積神經(jīng)網(wǎng)絡(luò)(CNN)處理心電圖儀(ECG)輸出信號(hào)的方法創(chuàng)建了一種空間預(yù)測(cè)模型,并選取合理的空間預(yù)測(cè)因子,在GIS的支持下對(duì)博山區(qū)公路邊坡的滑坡易發(fā)性進(jìn)行了預(yù)測(cè).Das等[122]基于貝葉斯邏輯回歸對(duì)印度公路沿線的滑坡敏感性進(jìn)行了評(píng)估.黃武彪等[123]基于層數(shù)自適應(yīng)、通道加權(quán)的CNN方法對(duì)川藏交通廊道沿線滑坡易發(fā)性進(jìn)行了評(píng)價(jià).
由于支持向量機(jī)(SVM)模型可以較好地解決監(jiān)測(cè)數(shù)據(jù)量不足、維數(shù)高和非線性等一系列問(wèn)題,因此,鄭志成等[124]通過(guò)構(gòu)造基于混合核函數(shù)改進(jìn)的最小二乘支持向量機(jī)(LSSVM)模型,并引入粒子群算法(PSO),提出了邊坡位移時(shí)序預(yù)測(cè)的PSO-LSSVM算法,同時(shí)提高了預(yù)測(cè)精度和泛化能力;而Gong等[125]提出了一種結(jié)合雙輸出最小二乘支持向量機(jī)和粒子群優(yōu)化算法的滑坡位移區(qū)間預(yù)測(cè)新方法,該方法可為滑坡位移的中長(zhǎng)期區(qū)間預(yù)測(cè)提供準(zhǔn)確、可靠的結(jié)果.
另外,一些其他的智能方法也應(yīng)用到滑坡預(yù)測(cè)中,王志穎等[126]構(gòu)造一種基于PSO-Prophet的邊坡變形分析與預(yù)測(cè)模型,較好地解決了邊坡變形分析與預(yù)測(cè)中周期項(xiàng)提取方法不確定性大和組合預(yù)測(cè)模型復(fù)雜度高的問(wèn)題.仉文崗等[127]采用多元自適應(yīng)回歸樣條曲線和集成學(xué)習(xí)LightGBM模型構(gòu)建了一種基于數(shù)理-機(jī)制雙驅(qū)動(dòng)的滑坡變形預(yù)測(cè)方法,可在考慮巖土體參數(shù)不確定性的基礎(chǔ)上對(duì)邊坡坡腳變形進(jìn)行預(yù)測(cè).Liu等[128]先采用粗糙集理論和核主成分分析方法(RS-KPCA)提取輸入數(shù)據(jù),然后采用量子化粒子群算法和最小二乘支持向量機(jī)方法(QPSO- LSSVM)創(chuàng)建優(yōu)化預(yù)測(cè)模型,最后采用蒙特卡洛模擬法校正預(yù)測(cè)結(jié)果,從而提出了一套邊坡位移預(yù)測(cè)模型和預(yù)警方法,該模型方法具有良好的精度、收斂性和泛化能力.
地震是滑坡的主要誘因之一,常用Newmark滑塊位移法來(lái)計(jì)算邊坡的震后位移[129].該方法雖然原理簡(jiǎn)單、計(jì)算方便且適用性強(qiáng),但若要考慮邊坡土體強(qiáng)度參數(shù)變化、地震動(dòng)強(qiáng)度、屈服加速度、地下水位等多因素對(duì)邊坡震動(dòng)位移預(yù)測(cè)的影響,機(jī)器學(xué)習(xí)方法則更為靈活.Gade等[130]基于數(shù)據(jù)驅(qū)動(dòng)的人工神經(jīng)網(wǎng)絡(luò)模型,構(gòu)建了一種新的Newmark滑動(dòng)位移預(yù)測(cè)方程,可用于考慮地震震級(jí)、焦點(diǎn)機(jī)理、破裂距離、土壤頂部30 m平均橫波速度和邊坡屈服加速度因素下邊坡位移預(yù)測(cè).Nayek和Gade[131]采用相同的方法,針對(duì)地震動(dòng)強(qiáng)度參數(shù)和邊坡屈服加速度值的不同組合預(yù)測(cè)了邊坡位移.Cho等[132]基于邊坡位移有限元數(shù)據(jù),采用ANN模型和經(jīng)典回歸模型對(duì)邊坡地震位移進(jìn)行預(yù)測(cè),對(duì)比分析結(jié)果表明,ANN模型預(yù)測(cè)的位移隨參數(shù)變化更平滑.Huang等[133]基于大規(guī)模振動(dòng)臺(tái)試驗(yàn)數(shù)據(jù),分別采用簡(jiǎn)化的循環(huán)神經(jīng)網(wǎng)絡(luò)(Simple-RNN)模型、長(zhǎng)短期記憶(LSTM)神經(jīng)網(wǎng)絡(luò)模型和循環(huán)門(mén)單元(GRU)神經(jīng)網(wǎng)絡(luò)模型對(duì)地震荷載動(dòng)態(tài)響應(yīng)的時(shí)序位移進(jìn)行預(yù)測(cè),結(jié)果表明,Simple- RNN模型在分析邊坡的地震動(dòng)力響應(yīng)方面表現(xiàn)較好.Wang等[134]提出了一個(gè)利用極端梯度提升模型(XGBoost)和子集仿真(SS)的機(jī)器學(xué)習(xí)框架(SS- XGBoost)來(lái)預(yù)測(cè)邊坡滑動(dòng)位移.Macedo等[135]提出了多種機(jī)器學(xué)習(xí)模型來(lái)估計(jì)地震引起的邊坡位移量,其中,Logistic回歸和Bray-Macedo模型(即BM2019模型)出錯(cuò)率較低.
3.3滑坡智能識(shí)別
在大面積滑坡災(zāi)害發(fā)生時(shí)快速獲取滑坡區(qū)域分布、數(shù)量、規(guī)模等災(zāi)情信息對(duì)救援決策和防災(zāi)減災(zāi)都有著重要意義[136]隨著航空航天技術(shù)和光學(xué)遙感技術(shù)的發(fā)展,高分辨率、多/高光譜、多平臺(tái)、多時(shí)相遙感成像為滑坡的檢測(cè)識(shí)別和災(zāi)情快速提取提供了新的技術(shù)手段.滑坡的識(shí)別結(jié)果可以反映滑坡分布情況,是滑坡易發(fā)性等風(fēng)險(xiǎn)評(píng)價(jià)研究的基礎(chǔ)[137].巨袁臻等[138]利用掩膜區(qū)域卷積神經(jīng)網(wǎng)絡(luò)(Mask R- CNN)目標(biāo)檢測(cè)模塊對(duì)中國(guó)典型黃土滑坡進(jìn)行了自動(dòng)識(shí)別.陳善靜等[136]提出了一種基于多源遙感時(shí)空譜特征融合的滑坡災(zāi)害檢測(cè)方法,其中基于SVM實(shí)現(xiàn)了對(duì)滑坡目標(biāo)地物的精確識(shí)別.余加勇等[139]基于無(wú)人機(jī)傾斜攝影測(cè)量數(shù)據(jù),重構(gòu)了公路邊坡三維實(shí)景模型和三維點(diǎn)云模型,引入多尺度模型與模型點(diǎn)云比較(M3C2)算法對(duì)三維點(diǎn)云數(shù)據(jù)進(jìn)行分析,實(shí)現(xiàn)了滑坡、坍塌、落石等災(zāi)害場(chǎng)景的自動(dòng)識(shí)別.
3.4巖質(zhì)邊坡結(jié)構(gòu)面智能識(shí)別
巖體中結(jié)構(gòu)面調(diào)查和產(chǎn)狀分析是開(kāi)展巖體穩(wěn)定性分析研究的基礎(chǔ).隨著監(jiān)測(cè)和測(cè)量技術(shù)的不斷發(fā)展,新型的非接觸式測(cè)量技術(shù)被廣泛用于規(guī)模較大、地質(zhì)環(huán)境復(fù)雜的邊坡工程,具有便捷、可靠、安全的特點(diǎn).比如,三維激光掃描技術(shù)可以短時(shí)間內(nèi)獲得巖體結(jié)構(gòu)面的高精度點(diǎn)云數(shù)據(jù)[140];無(wú)人機(jī)攝影測(cè)量技術(shù)隨著運(yùn)動(dòng)恢復(fù)結(jié)構(gòu)(SfM)和多視圖立體匹配(MVS)算法的成熟,可以輕松地對(duì)拍攝照片進(jìn)行三維模型重建,更加適應(yīng)復(fù)雜地形的監(jiān)測(cè)[141].而后,基于生成的點(diǎn)云數(shù)據(jù)或三維巖體結(jié)構(gòu)模型智能識(shí)別結(jié)構(gòu)面參數(shù)的研究也快速發(fā)展起來(lái).Chen等[142]基于k均值聚類(lèi)算法,提出了一種從三維點(diǎn)云中自動(dòng)提取不連續(xù)性方向的新方法.葛云峰等[143]利用改進(jìn)的區(qū)域生長(zhǎng)法與解析幾何理論對(duì)點(diǎn)云數(shù)據(jù)處理,實(shí)現(xiàn)了巖體結(jié)構(gòu)面智能識(shí)別與信息提取.寧浩等[144]通過(guò)基于霍夫空間變換算法和深度學(xué)習(xí)計(jì)算了點(diǎn)云的法向量,并對(duì)點(diǎn)云進(jìn)行賦色,提出了一種自動(dòng)識(shí)別結(jié)構(gòu)面及產(chǎn)狀信息的方法.王培濤等[145]基于敏感性參數(shù)近鄰點(diǎn)數(shù)、夾角閾值和過(guò)濾因子的結(jié)構(gòu)面識(shí)別算法,實(shí)現(xiàn)了對(duì)三維復(fù)雜點(diǎn)云的優(yōu)勢(shì)結(jié)構(gòu)面傾向、傾角產(chǎn)狀信息快速識(shí)別.陳昌富等[146]基于k最近鄰(KNN)聚類(lèi)算法及主成分分析法(PCA)確定了邊坡三維模型中結(jié)構(gòu)面的位置和產(chǎn)狀參數(shù).
在充足的數(shù)據(jù)樣本下,深度學(xué)習(xí)方法的識(shí)別效果更有優(yōu)勢(shì),王鵬宇和王述紅[147]基于Tensorflow建立了巖質(zhì)邊坡圖像分析的CNN模型,并對(duì)模型進(jìn)行了訓(xùn)練和測(cè)試,實(shí)現(xiàn)了巖質(zhì)邊坡巖石的自動(dòng)識(shí)別與分類(lèi),該模型具有良好的魯棒性.張紫杉等[148]采用空洞卷積算法與高斯混合模型-最大期望算法(GMM-EM)結(jié)合,對(duì)巖體坡面裂隙網(wǎng)絡(luò)進(jìn)行快速智能識(shí)別與參數(shù)化表征,達(dá)到了較高的準(zhǔn)確率.
3.5巖土體力學(xué)參數(shù)智能反演
巖土體參數(shù)的分析與確定是邊坡穩(wěn)定性評(píng)價(jià)和設(shè)計(jì)的基礎(chǔ).反演分析方法可為準(zhǔn)確估計(jì)巖土體參數(shù)提供有效的手段.近年來(lái),隨著計(jì)算技術(shù)和人工智能技術(shù)的發(fā)展,ANN、GA、SA、SVM等人工智能方法被廣泛引入反分析領(lǐng)域,巖土工程反分析正朝著多維化、智能化和高效化方向發(fā)展.
邊坡位移反分析法是確定邊坡巖土體參數(shù)值的一種有效方法.漆祖芳等[149]基于粒子遷徙和變異的粒子群優(yōu)化算法(MVPSO)搜索最佳的支持向量機(jī)(v-SVR)模型參數(shù),提出了一種位移反分析方法,該法與基于遺傳算法BP神經(jīng)網(wǎng)絡(luò)模型(BP-GA)和v-SVR-GA相比,反演精度和效率更高.Liu等[150]基于梯度提升決策樹(shù)算法構(gòu)建元模型,分別構(gòu)建了以頻率推理的確定性反分析和以貝葉斯推理的概率反分析兩種位移反分析方法.由于兩種方法對(duì)參數(shù)空間具有不同的敏感度,可以互補(bǔ)分析邊坡的參數(shù)與位移關(guān)系.
概率反分析方法可以更好地考慮地質(zhì)力學(xué)參數(shù)的不確定性.Zhang等[151]在貝葉斯框架下評(píng)估了邊坡土體中水力參數(shù)、黏聚力和內(nèi)摩擦角的不確定性及其對(duì)邊坡穩(wěn)定性預(yù)測(cè)的影響.Wang等[152]基于最大似然估計(jì)和馬爾可夫鏈蒙特卡羅模擬(MCMC)反算了臺(tái)北3號(hào)高速公路滑坡中巖土體的內(nèi)摩擦角和錨固力參數(shù).Li等[153]集成貝葉斯方法和多輸出支持矢量機(jī)模型提出了一種概率反分析方法,并合理地應(yīng)用于龍?zhí)端娬編r質(zhì)邊坡的楊氏模量和側(cè)壓系數(shù)分析.Jiang等[154]提出基于結(jié)構(gòu)可靠度進(jìn)行貝葉斯更新(BUS)的方法,對(duì)空間變異的土體不排水抗剪強(qiáng)度參數(shù)進(jìn)行概率反分析和邊坡可靠性更新,有效地避免了“維數(shù)災(zāi)難”和似然乘數(shù)評(píng)估,顯著提高了計(jì)算精度.江巍等[155]提出了利用BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)巖土體抗剪強(qiáng)度參數(shù)的逆向迭代修正反演的方法.Liu等[156]使用基于子集模擬的貝葉斯更新的方法和邊坡監(jiān)測(cè)數(shù)據(jù),反演出土體的水力參數(shù).仇文崗等[127]基于有限的孔壓實(shí)測(cè)數(shù)據(jù),運(yùn)用DREAM_zs算法,對(duì)降雨入滲非飽和土坡的巖土體變形、水力和強(qiáng)度參數(shù)進(jìn)行了概率反演和有效更新,該方法計(jì)算效率高且收斂速度快.
4展望
1)在邊坡的確定性分析方法中,基于中值安全系數(shù)的極限平衡法或極限分析法仍然是最重要的兩種分析手段,但由于其在建模時(shí)假定條件較多,無(wú)法較全面地考慮山區(qū)復(fù)雜的地質(zhì)條件和環(huán)境因素對(duì)公路邊坡穩(wěn)定性的影響,導(dǎo)致其對(duì)山區(qū)公路邊坡穩(wěn)定性的評(píng)價(jià)往往與工程實(shí)際不符.雖然基于智能算法和機(jī)器學(xué)習(xí)的分析方法,可以考慮多種因素對(duì)邊坡穩(wěn)定性的影響,但由于其理論尚不完善、計(jì)算相對(duì)繁瑣、實(shí)用性不強(qiáng),目前尚未被業(yè)界廣泛接受.因此,對(duì)于復(fù)雜環(huán)境和工況下的山區(qū)公路邊坡,亟須發(fā)展方法可靠、計(jì)算高效、適用性強(qiáng)的穩(wěn)定性分析智能計(jì)算方法.
2)雖然業(yè)界已普遍認(rèn)識(shí)到山區(qū)公路邊坡穩(wěn)定性分析中存在大量的隨機(jī)性和不確定性因素,并逐漸接受了采用可靠度方法來(lái)評(píng)價(jià)邊坡的穩(wěn)定性,而且大量智能算法和機(jī)器學(xué)習(xí)方法也在邊坡可靠度計(jì)算中得到成功應(yīng)用,但由于對(duì)山區(qū)巖土體物理力學(xué)參數(shù)的統(tǒng)計(jì)分析嚴(yán)重缺乏,導(dǎo)致可靠度分析結(jié)果往往與實(shí)際差異較大.因此,應(yīng)引入現(xiàn)代試驗(yàn)技術(shù)與方法、數(shù)據(jù)挖掘技術(shù)和人工智能方法,大力開(kāi)展公路邊坡巖土體參數(shù)的數(shù)理統(tǒng)計(jì)分析,并加強(qiáng)對(duì)邊坡可靠度計(jì)算模型和可靠性評(píng)價(jià)標(biāo)準(zhǔn)的研究.
3)在山區(qū)公路邊坡處治智能設(shè)計(jì)方面,人工智能技術(shù)的應(yīng)用還不夠成熟,相關(guān)的研究還較少.今后應(yīng)加強(qiáng)引入人工智能方法和智能試驗(yàn)技術(shù),開(kāi)展邊坡加固結(jié)構(gòu)工作機(jī)理和實(shí)用的智能優(yōu)化設(shè)計(jì)計(jì)算方法研究.
4)在山區(qū)公路邊坡智能監(jiān)測(cè)和預(yù)測(cè)方面,嘗試采用基于人工智能的“天-空-地”一體化聯(lián)合監(jiān)測(cè)方法對(duì)公路沿線邊坡開(kāi)展多層次、多角度、系統(tǒng)性的監(jiān)測(cè),實(shí)時(shí)監(jiān)控并分析邊坡的變形發(fā)育特征,及時(shí)識(shí)別滑坡災(zāi)害并做出預(yù)測(cè)預(yù)警.
參考文獻(xiàn)
[1]SENGUPTA A,UPADHYAY A. Locating the critical failure surface in a slope stability analysis by genetic algorithm [J]. Applied Soft Computing,2009,9(1):387-392.
[2]CHENG Y M. Global optimization analysis of slope stability by simulated annealing with dynamic bounds and Dirac function[J]. Engineering Optimization,2007,39(1):17-32.
[3]陳昌富,楊宇.邊坡穩(wěn)定性分析水平條分法及其進(jìn)化計(jì)算[J].湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2004,31(3):72-75.
CHEN C F,YANG Y. Horizontal slice method of slope stability analysis based on evolutionary algorithm [J]. Journal of Hunan University (Natural Sciences),2004,31(3):72-75. (In Chinese)
[4]金亮星,馮琦璇,潘卓夫.基于Morgenstern-Price法和改進(jìn)徑向移動(dòng)算法的邊坡穩(wěn)定性分析[J].中國(guó)公路學(xué)報(bào),2018,31 (2):39-47.
JIN L X,F(xiàn)ENG Q X,F(xiàn)AN Z F. Slope stability analysis based on Morgenstern-Price method and improved radial movement optimization algorithm [J]. China Journal of Highway and Transport,2018,31(2):39-47. (In Chinese)
[5]SAMUI P. Slope stability analysis:a support vector machine ap- proach[J]. Environmental Geology,2008,56(2):255-267.
[6]SINGH J,BANKA H,VERMA A K. A BBO-based algorithm for slope stability analysis by locating critical failure surface[J]. Neural Computing and Applications,2018,31(10):6401-6418.
[7]PONTEROSSO P,F(xiàn)OX D S. Optimization of reinforced soil embankments by genetic algorithm [J]. International Journal for Numerical and Analytical Methods inGeomechanics,2000,24(4):425-433.
[8]唐曉松,鄭穎人,段永勝,等.人工智能在埋入式抗滑樁設(shè)計(jì)中的應(yīng)用[J].地下空間與工程學(xué)報(bào),2010,6(2):375-381.
TANG X S,ZHENG YR,DUAN YS,et al. Application of artifi- cal intelligence in the design of embedded anti-slide piles[J]. Chinese Journal of Underground Space and Engineering,2010,6 (2):375-381.(In Chinese)
[9]周蘇華,邢靜康,張運(yùn)強(qiáng),等.基于模糊層次分析法的預(yù)應(yīng)力錨索加固順層邊坡穩(wěn)定性評(píng)價(jià)[J].安全與環(huán)境學(xué)報(bào),2020,20 (5):1695-1704.
ZHOU S H,XING J K,ZHANG Y Q,et al. An assessment model based on the hierarchical fuzzy analysis process for the bedding slope with the prestressed anchor cable frame reinforcement[J]. Journal of Safety and Environment,2020,20(5):1695-1704. (In Chinese)
[10]SARI P A,SUHATRIL M,OSMAN N,et al. Developing a hybrid adoptive neuro-fuzzy inference system in predicting safety of factors of slopes subjected to surface eco-protection techniques [J]. Engineering with Computers,2019,36(4):1347-1354.
[11]何滿(mǎn)潮,任樹(shù)林,陶志剛.滑坡地質(zhì)災(zāi)害牛頓力遠(yuǎn)程監(jiān)測(cè)預(yù)警系統(tǒng)及工程應(yīng)用[J].巖石力學(xué)與工程學(xué)報(bào),2021,40(11):2161-2172.
HE M C,REN S L,TAO Z G. Remote monitoring and forecasting system of Newton force for landslide geological hazards and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(11):2161-2172.(In Chinese)
[12]凌建明,張玉,滿(mǎn)立,等.公路邊坡智能化監(jiān)測(cè)體系研究進(jìn)展[J].中南大學(xué)學(xué)報(bào)(自然科學(xué)版),2021,52(7):2118-2136.
LING J M,ZHANG Y,MAN L,et al. Research progress of intelligent monitoring system for highway slope[J]. Journal of Central South University (Scienceand Technology),2021,52(7):2118-2136.(In Chinese)
[13]KENNEDY J,EBERHART R. Particle swarm optimization [C]//Proceedings of ICNN,95. New York:IEEE,1995:1942-1948.
[14]DORIGO M,GAMBARDELLA L M. Ant colony system:a cooperative learning approach to the travelling salesman problem[J]. IEEE Transactions on Evolutionary Computation,1997,1(1):53-66.
[15]KHAJEHZADEH M,TAHA M R,EL-SHAFIE A,et al. A modified gravitational search algorithm for slope stability analysis[J]. Engineering Applications of Artificial Intelligence,2012,25(8):1589-1597.
[16]KANG F,LI J,MA Z. An artificial bee colony algorithm for locating the critical slip surface in slope stability analysis[J]. Engineering Optimization,2013,45(2):207-223.
[17]LISH,WULZ,LUO X H. A novel method for locating the critical slip surface of a soil slope[J]. Engineering Applications of Artificial Intelligence,2020,94(1):103733.
[18]HIMANSHU N,KUMAR V,BURMAN A,et al. Grey wolf optimization approach for searching critical failure surface in soil sloped[J]. Engineering with Computers,2020,37(3):2059-2072.
[19]NI S H,LU P C,JUANG C H. A fuzzy neural network approach to evaluation of slope failure potential[J]. Computer-Aided Civil and Infrastructure Engineering,1996,11(1):59-66.
[20]LIN S,ZHENG H,HAN B,et al. Comparative performance of eight ensemble learning approaches for the development of models of slope stability prediction[J]. Acta Geotechnica,2022,17(4):1477-1502.
[21]GOH A T. Genetic algorithm search for critical slip surface in multiple-wedge stability analysis[J]. Canadian Geotechnical Jour- nal,1999,36(2):382-391.
[22]ZHU J F,CHEN C F. Search for circular and noncircular critical slip surfaces in slope stability analysis by hybrid genetic algorithm [J]. Journal of Central South University,2014,21(1):387-397.
[23]CEN W,LUO J,YU J,et al. Slope stability analysis using genetic simulated annealing algorithm in conjunction with finite element method[J]. KSCE Journal of Civil Engineering,2019,24 (1):30-37.
[24]ZHOU X P,HUANG X C,ZHAO X F. Optimization of the critical slip surface of three-dimensional slope by using an improved genetic algorithm [J]. International Journal of Geomechanics,2020,20(8):04020120.
[25]XU Z,ZHOU X. Determination of the critical slip surface of slope based on the improved quantum genetic algorithm and random forest [J]. KSCE Journal of Civil Engineering,2022,26(5):2126- 2138.
[26]KIRKPATRICK S,GELATT C D J,VECCHI M P. Optimization by simulated annealing[J].Science,1983,220(4598):671-680.
[27]劉華強(qiáng),陸明志,殷宗澤.基于模擬退火算法的邊坡臨界滑面搜索方法[J].巖石力學(xué)與工程學(xué)報(bào),2008,27(S2):3686-3691.
LIUHQ,LUMZ,YINZ Z. Analytical method of searching noncircular slip surface based on simulated annealing optimization algorithm [J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(S2):3686-3691. (InChinese)
[28]李亮,遲世春,林皋.禁忌模擬退火復(fù)合形法及其在邊坡穩(wěn)定性分析中的應(yīng)用[J].巖石力學(xué)與工程學(xué)報(bào),2006,24(18):3342-3349.
LI L,CHI S C,LIN G. Tabu simulated annealing complex method and its application to slope stability analysis[J]. Chinese Journal of Rock Mechanics and Engineering,2006,24(18):3342-3349. (In Chinese)
[29]李亮,陳祖煜,遲世春,等.基于NURBS表示的三維土坡穩(wěn)定分析[J].巖土工程學(xué)報(bào),2008,30(2):212-218.
LI L,CHEN Z Y,CHI S C,et al. Three-dimensional slope stability analysis based on NURBS simulation[J]. Chinese Journal of Geotechnical Engineering,2008,30(2):212-218.(In Chinese)[30]徐飛,徐衛(wèi)亞,劉造保,等.基于PSO-PP的邊坡穩(wěn)定性評(píng)價(jià)[J].巖土工程學(xué)報(bào),2011,33(11):1708-1713.
XU F,XU W Y,LIU Z B,et al. Slope stability evaluation based on PSO-PP [J]. Chinese Journal of Geotechnical Engineering,2011,33(11):1708-1713.(In Chinese)
[31]楊善統(tǒng),姜清輝,尹濤,等.邊坡臨界滑面搜索的改進(jìn)粒子群優(yōu)化算法[J].巖土工程學(xué)報(bào),2015,37(8):1411-1417.
YANG S T,JIANG Q H,YIN T,et al. Search of critical slip surface of slopes using improved particle swarm optimization method [J]. Chinese Journal of Geotechnical Engineering,2015,37(8):1411-1417.(In Chinese)
[32]陳昌富,龔曉南.混沌擾動(dòng)啟發(fā)式蟻群算法及其圓弧臨界滑動(dòng)面搜索中的應(yīng)用[J].巖石力學(xué)與工程學(xué)報(bào),2003,23(20):3450-3453.
CHEN C F,GONG X N. Heuristic ant colony algorithm involving chaos operator and its application to search for critical slip surface of slope[J]. Chinese Journal of Rock Mechanics and Engineering,2003,23(20):3450-3453.(In Chinese)
[33]石露,李小春,任偉,等.蟻群算法與遺傳算法融合及其在邊坡臨界滑動(dòng)面搜索中的應(yīng)用[J].巖土力學(xué),2009,30(11):3486-3492.
SHI L,LI X C,REN W,et al. Hybrid of ant colony algorithm and genetic algorithm and its application to searching critical slope slip surface[J]. Rock and Soil Mechanics,2009,30(11):3486- 3492.(In Chinese)
[34]GAO W. Premium-penalty ant colony optimization and its application in slope stability analysis[J]. Applied Soft Computing,2016:480-488.
[35]GAO W. Determination of the noncircular critical slip surface in slope stability analysis by meeting ant colony optimization[J]. Journal of Computing in Civil Engineering,2016,30(2):1-10.
[36]YANG Y,WU W,ZHANG J,et al. Determination of critical slip surface and safety factor of slope using the vector sum numerical manifold method and MAX-MIN ant colony optimization algorithm [J]. Engineering Analysis with Boundary Elements,2021,127:64-74.
[37]RAIHAN T M,MOHAMMAD K,MAHDIYEH E. A new hybrid algorithm for global optimization and slope stability evaluation[J]. Journal of Central South University,2013,20(11):3265-3273.
[38]蔣建國(guó),譚雅,董立明,等.改進(jìn)的萬(wàn)有引力搜索算法在邊坡穩(wěn)定分析中的應(yīng)用[J].巖土工程學(xué)報(bào),2016,38(3):419-425. JIANG J G,TAN Y,DONG L M,WANG C,et al. Application of modified gravitational search algorithm in slope stability analysis [J]. Chinese Journal of Geotechnical Engineering,2016,38(3):419-425.(In Chinese)
[39]MA L,ZHAO J,ZHANG J,et al. Slope stability analysis based on leader dolphins herd algorithm and simplified bishop method [J]. IEEE Access,2021,9:28251-28259.
[40]LI S,ZHONG C,LUO X. Locating critical slip surfaces of soil slopes with heuristic algorithms:a comparative study[J]. Expert Systems with Applications,2022,191:116214.
[41]陳光耀,汪明武,金菊良.基于CMFOA-SVM的邊坡穩(wěn)定性評(píng)價(jià)模型[J/OL].長(zhǎng)江科學(xué)院院報(bào):1-9(2021-09-02)[2022-07- 01].http://kns.cnki.net/kcms/detail/42.1171.TV.20210902.1602.008.html.
CHEN G Y,WANG M W,JIN J L. CMFOA-SVM model for the evaluation of slope stability[J/OL]. Journal of Yangtze River Scientific Research Institute:1-9(2021-09-02)[2022-07-01]. http://kns.cnki.net/kcms/detail/42.1171.TV.20210902.1602.008.htm.(In Chinese)
[42]SUYKENS JAK,VANDEW ALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters,1999,9(3):293-300.
[43]XUE X. Prediction of slope stability based on hybrid PSO and LSSVM[J]. Journal of Computing in Civil Engineering,2017,31 (1):1-10.
[44]ZENG F,NAIT A M,MOHAMMED A S,et al. Improving the performance of LSSVM model in predicting the safety factor for circular failure slope through optimization algorithms[J]. Engineering with Computers,2021:1-12.
[45]CAI Z L,MENG Y D,WANG R Y,et al. Slope stability forecast of LS-SVM based on chaos genetic algorithm optimization[J]. Applied Mechanics and Materials,2013,405/406/407/408:2384- 2390.
[46]LI B,LI D,ZHANG Z,et al. Slope stability analysis based on quantum-behaved particle swarm optimization and least squares support vector machine[J]. Applied Mathematical Modelling,2015,39(17):5253-5264.
[47]陳昌富,楊宇.基于HGA-ANN驅(qū)動(dòng)邊坡穩(wěn)定評(píng)價(jià)T-S型模糊推理系統(tǒng)[J].巖石力學(xué)與工程學(xué)報(bào),2005,24(19):61-66. CHEN C F,YANG Y. Fuzzy reasoning system driven by HGA- ANN for estimation of slope stability[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(19):61-66.(In Chinese)
[48]GORDAN B,JAHED ARMAGHANI D,HAJIHASSANI M,et al. Prediction of seismic slope stability through combination of particle swarm optimization and neural network[J]. Engineering with Computers,2015,32(1):85-97.
[49]DAS S K,BISWAL R K,SIVAKUGAN N,et al. Classification ofslopes and prediction of factor of safety using differential evolution neural networks [J]. Environmental Earth Sciences,2011,64 (1):201-210.
[50]KHAJEHZADEH M,TAHA M R,KEAWSAWASVONG S,et al. An effective artificial intelligence approach for slope stability evaluation[J]. IEEE Access,2022,10:5660-5671.
[51]FOONG L K,MOAYEDI H. Slope stability evaluation using neural network optimized by equilibrium optimization and vortex search algorithm [J]. Engineering with Computers,2021,38 (S2):1269-1283.
[52]LIAO Z,LIAO Z. Slope stability evaluation using backpropagation neural networks and multivariate adaptive regression splines [J]. Open Geosciences,2020,12(1):1263-1273.
[53]胡軍,董建華,王凱凱,等.邊坡穩(wěn)定性的CPSO-BP模型研究[J].巖土力學(xué),2016,37(S1):577-582.
HU J,DONG J H,WANG K K,et al. Research on CPSO-BP model of slope stability [J]. Rock and Soil Mechanics,2016,37 (S1):577-582.(In Chinese)
[54]HSIAO C H,CHEN A Y,GE L,et al. Performance of artificial neural network and convolutional neural network on slope failure prediction using data from the random finite element method[J]. Acta Geotechnica,2022:1-11.
[55]QI C,TANG X. A hybrid ensemble method for improved prediction of slope stability[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2018,42(15):1823-1839.
[56]QI C,TANG X. Slope stability prediction using integrated metaheuristic and machine learning approaches:a comparative study [J]. Computers and Industrial Engineering,2018,118:112-122.
[57]SUN J,WU S,ZHANG H,et al. Based on multi-algorithm hybrid method to predict the slope safety factor-stacking ensemble learning with bayesian optimization[J]. Journal of Computational Science,2022,59:101587.
[58]LIN S,ZHENG H,HAN C,et al. Evaluation and prediction of slope stability using machine learning approaches[J]. Frontiers of Structural and Civil Engineering,2021,15(4):821-833.
[59]MAHMOODZADEH A,MOHAMMADI M,F(xiàn)ARID H A H,et al. Prediction of safety factors for slope stability:comparison of machine learning techniques[J]. Natural Hazards,2021,111(2):1771-1799.
[60]KARIR D,RAY A,KUMAR B A,et al. Stability prediction ofa natural and man-made slope using various machine learning algo- rithms[J]. Transportation Geotechnics,2022,34:1-13.
[61]LIN Y,ZHOU K,LI J. Prediction of Slope Stability Using Four Supervised Learning Methods [J]. IEEE Access,2018,6:31169-31179.
[62]李典慶,唐小松,周創(chuàng)兵.含相關(guān)非正態(tài)變量邊坡可靠度分析的認(rèn)知聚類(lèi)分區(qū)方法[J].巖土工程學(xué)報(bào),2011,33 (6):875-882.
LI D Q,TANG X S,ZHOU C B,Reliability analysis of slope stability involving correlated non-normal variables using knowledgebased clustered partitioning method[J]. Chinese Journal of Geotechnical Engineering,2011,33(6):875-882.(In Chinese)
[63]蘇永華,趙明華,蔣德松,等.響應(yīng)面方法在邊坡穩(wěn)定可靠度分析中的應(yīng)用[J].巖石力學(xué)與工程學(xué)報(bào),2006,25(7):14171424.
SU Y H,ZHAO M H,JIANG D S,et al. Application of response surface method to reliability analysis of slope stability[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(7):1417-1424.(In Chinese)
[64]LI S,ZHAO H B,RU Z. Slope reliability analysis by updated support vector machine and Monte Carlo simulation[J]. Natural Hazards,2013,65(1):707-722.
[65]毛鳳山,陳昌富,朱世民.代理模型方法及其在巖土工程中的應(yīng)用綜述[J].地基處理,2020,2(4):295-306.
MAO F S,CHEN C F,ZHU S M. Surrogate model method and its application in geotechnical engineering[J]. Journal of Ground Improvement,2020,2(4):295-306.(In Chinese)
[66]SAMUI P,LANSIVAARA T,KIM D. Utilization relevance vector machine for slope reliability analysis[J]. Applied Soft Computing,2011,11(5):4036-4040.
[67]蘇永華,羅正東,張盼鳳,等.基于Kriging的邊坡穩(wěn)定可靠度主動(dòng)搜索法[J].巖土工程學(xué)報(bào),2013,35(10):1863-1869.
SU Y H,LUO Z D,ZHANG P F,et al. Active searching algorithm for slope stability reliability based on Kriging model[J]. Chinese Journal of Geotechnical Engineering,2013,35(10):1863- 1869.(In Chinese)
[68]KANG F,LI J S,LI J J. System reliability analysis of slopes using least squares support vector machines with particle swarm optimization[J]. Neurocomputing,2016,209:46-56.
[69]朱彬,裴華富,楊慶.基于高斯過(guò)程回歸的響應(yīng)面法及邊坡可靠度分析[J].巖土工程學(xué)報(bào),2019,41(S1):209-212.
ZHU B,PEI H F,YANG Q. Gaussian process regression-based response surface method and reliability analysis of slopes[J]. Chinese Journal of Geotechnical Engineering,2019,41(S1):209- 212.(In Chinese)
[70]張?zhí)忑?,曾鵬,李天斌,等.基于主動(dòng)學(xué)習(xí)徑向基函數(shù)的邊坡系統(tǒng)可靠度分析[J].巖土力學(xué),2020,41(9):3098-3108.
ZHANG T L,ZENG P,LI T B,et al. System reliability analyses of slopes based on active-learning radial basis function[J]. Rock and Soil Mechanics,2020,41(9):3098-3108.(In Chinese)
[71]謝夢(mèng)龍,葉新宇,張升,等.LASSO算法及其在邊坡穩(wěn)定性分析中的應(yīng)用[J].巖土工程學(xué)報(bào),2021,43(9):1724-1729.
XIE M L,YE X Y,ZHANG S,et al. LASSO algorithm and its application in slope stability analysis[J]. Chinese Journal of Geotechnical Engineering,2021,43(9):1724-1729.(In Chinese)[72]鄧志平,李典慶,曹子君,等.考慮地層變異性和土體參數(shù)變異性的邊坡可靠度分析[J].巖土工程學(xué)報(bào),2017,39(6):986-995.
DENG Z P,LI D Q,CAO Z J,et al. Slope reliability analysis considering geological uncertainty and spatial variability of soil parameters[J]. Chinese Journal of Geotechnical Engineering,2017,39 (6):986-995.(In Chinese)
[73]GRIFFITHS D V,HUANG J,F(xiàn)ENTON G A. Probabilistic infinite slope analysis[J]. Computers and Geotechnics,2011,38(4):577-584.
[74]LI D Q,JIANG S H,CAO Z J,et al. A multiple response-surface method for slope reliability analysis considering spatial variability of soil properties [J]. Engineering Geology,2015,187:60-72.
[75]QIN Y,ZHU F,XU D. Effect of the spatial variability of soil parameters on the deformation behavior of excavated slopes [J]. (Computers and Geotechnics,2021,136:1-15.
[76]楊智勇,李典慶,曹子君,等.基于廣義子集模擬樣本加權(quán)法的邊坡多失效模式可靠度分析[J].巖石力學(xué)與工程學(xué)報(bào),2018,37(3):630-641.
YANG Z Y,LI D Q,CAO Z J,et al. Efficient analysis of slope reliability with multiple failure modes using sample weighting method in generalized subset simulation [J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(3):630-641. (In Chinese )
[77]姬建,姜振,殷鑫,等.邊坡隨機(jī)場(chǎng)數(shù)字圖像特征CNN深度學(xué)習(xí)及可靠度分析[J/OL].巖土工程學(xué)報(bào):1-11(2022-02-16)http://kns.cnki.net/kcms/detail/32.1124.TU.20220216.1457.002.html.
JI J,JIANG Z,YIN X,et al. Slope reliability analysis based on deep learning of digital images of random fields using CNN[J/OL]. Chinese Journal of Geotechnical Engineering:1-11(2022-02-16)http://kns.cnki.net/kcms/detail/32.1124.TU.20220216.1457.002.html.(In Chinese)
[78]ZAI D,PANG R,XU B,et al. Slope system stability reliability analysis with multi-parameters using generalized probability density evolution method[J]. Bulletin of Engineering Geology and the Environment,2021,80(11):8419-8431.
[79]LI D Q,QI X H,CAO Z J,et al. Evaluating slope stability uncertainty using coupled Markov chain[J]. Computers and Geotech- nics,2016,73:72-82.
[80]LIU L L,CHENG Y M,PAN Q J,et al. Incorporating stratigraphic boundary uncertainty into reliability analysis of slopes in spatially variable soils using one-dimensional conditional Markov chain model[J]. Computers and Geotechnics,2020,118:1-13.
[81]YI P,WEI K,KONG X,et al. Cumulative PSO-Kriging model for slope reliability analysis[J]. Probabilistic Engineering Mechan- ics,2015,39:39-45.
[82]XIAO H,ZHANG Z,CHEN L,et al. An improved spatio-temporal kriging interpolation algorithm and its application in slope[J]. IEEE Access,2020,8:90718-90729.
[83]姬建,王樂(lè)沛,廖文旺,等.基于WUS概率密度權(quán)重法的邊坡穩(wěn)定系統(tǒng)可靠度分析[J].巖土工程學(xué)報(bào),2021,43(8):1492-1501.
JI J,WANG L P,LIAO W W,et al. System reliability analysis of slopes based on weighted uniform simulation method[J]. Chinese Journal of Geotechnical Engineering,2021,43(8):1492-1501. (In Chinese)
[84]YAO W,LI C,YAN C,et al. Slope reliability analysis through Bayesian sequential updating integrating limited data from multiple estimation methods[J]. Landslides,2022,19(5):1101-1117.
[85]CONTRERAS L F,BROWN E T. Slope reliability and back analysis of failure with geotechnical parameters estimated using Bayesian inference[J]. Journal of Rock Mechanics and Geotechnical Engineering,2019,11(3):628-643.
[86]劉陽(yáng),張建經(jīng),李孟芳,等.基于模糊理論與SVM的邊坡地震失穩(wěn)規(guī)模貝葉斯網(wǎng)絡(luò)評(píng)估方法[J].巖石力學(xué)與工程學(xué)報(bào),2019,38(S1):2807-2815.
LIU Y,ZHANG J J,LI M F,et al. Fuzzy theory- and SVM- based Bayesian network assessment method for slope seismic instability scale[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(S1):2807-2815.(In Chinese)
[87]徐沖,劉保國(guó),劉開(kāi)云,等.基于組合核函數(shù)的高斯過(guò)程邊坡角智能設(shè)計(jì)[J].巖土力學(xué),2010,31(3):821-826.
XU C,LIU B G,LIU K Y,et al. Slope angle intelligent design based on Gaussian process with combinatorial kernel function[J]. Rock and Soil Mechanics,2010,31(3):821-826.(In Chinese)[88]張志軍,熊正為,丁德馨,等.圓弧破壞邊坡反演設(shè)計(jì)的ANN方法與ANFIS方法的比較研究J].巖土力學(xué),2006,27(1):159-162.
ZHANG Z J,XIONG Z W,DING D X,et al. A comparative study of ANN-based and ANFIS-based approaches for inverse design of circular failure slopes[J]. Rock and Soil Mechanics,2006,27 (1):159-162.(In Chinese)
[89]ZHOU X,CHEN J,CHEN Y,et al. Bayesian-based probabilistic kinematic analysis of discontinuity-controlled rock slope instabilities[J]. Bulletin of Engineering Geology and the Environment,2016,76(4):1249-1262.
[90]YAN J,CHEN J,LI Y,et al. Kinematic-based failure angle analysis for discontinuity-controlled rock slope instabilities:a case study of Ren Yi Peak Cluster in Fusong County,China[J]. Natural Hazards,2021,111(3):2281-2296.
[91]XIE H,DONG J,DENG Y,et al. Prediction model of the slope angle of rocky slope stability based on random forest algorithm [J]. Mathematical Problems in Engineering,2022,2022:9441411.
[92]《中國(guó)公路學(xué)報(bào)》編輯部.中國(guó)路基工程學(xué)術(shù)研究綜述·2021 [J].中國(guó)公路學(xué)報(bào),2021,34(3):1-49.
Editorial Department of China Journal of Highway and Transport. Review on China's subgrade engineering research·2021 [J]. China Journal of Highway and Transport,2021,34(3):1-49.(In Chinese)
[93]SAFA M,SARI P A,SHARIATI M,et al. Development of neuro- fuzzy and neuro-bee predictive models for prediction of the safety factor of eco-protection slopes[J]. Physica A:Statistical Mechanics and its Applications,2020,550:1-18.
[94]LIU L,DOU Y,QIAO J. Evaluation method of highway plant slope based on rough set theory and analytic hierarchy process:a case study in Taihang Mountain,Hebei,China[J]. Mathematics,2022,10(8):1-17.
[95]LIU D,LIU C,TANG Y,et al. A GA-BP neural network regression model for predicting soil moisture in slope ecological protection[J]. Sustainability,2022,14(3):1386-1399.
[96]FARSHIDFAR N,KESHAVARZ A,MIRHOSSEINI S M. Pseudo-static seismic analysis of reinforced soil slopes using the horizontal slice method [J]. Arabian Journal of Geosciences,2020,13(7):283-296.
[97]SHINODA M,MIYATA Y. PSO-based stability analysis of unreinforced and reinforced soil slopes using non-circular slip surface [J].Acta Geotechnica,2018,14(3):907-919.
[98]BAHOOTOROODY F,KHALAJ S,LEONI L,et al. Reliability estimation of reinforced slopes to prioritize maintenance actions [J]. International Journal of Environmental Research and Public Health,2021,18(2):373-384.
[99]GANDOMI A H,KASHANI A R,ROKE D A,et al. Optimization of retaining wall design using recent swarm intelligence techniques [J]. EngineeringStructures,2015,103:72-84.
[100]侯超群,檀奕,阮曉波,等.基于遺傳算法的臨水加筋土擋墻擬靜力內(nèi)部穩(wěn)定分析[J].公路交通科技,2022,39(1):65-71.
HOU C Q,TAN Y,RUAN X B,et al. Analysis on seismic internal stability of waterfront reinforced retaining wall using pseudostatic approach based on genetic algorithm[J]. Journal of Highway and Transportation Research and Development,2022,39(1):65-71.(In Chinese)
[101]朱劍鋒,陳昌富,徐日慶.土釘墻內(nèi)部穩(wěn)定性分析自適應(yīng)禁忌變異遺傳算法[J].巖土力學(xué),2010,31(5):1663-1669.
ZHU JF,CHEN C F,XU R Q. Application of ATMGA to interior stability analysis of soil-nailing wall [J]. Rock and Soil Mechanics,2010,31(5):1663-1669.(In Chinese).
[102]董建華,朱彥鵬.地震作用下土釘支護(hù)邊坡永久位移計(jì)算方法研究[J].工程力學(xué),2011,28(10):101-110.
DONG J H,ZHU Y P. Permanent displacement assessment of slope protected by soil nailing retaining wall under earthquake[J]. Engineering Mechanics,2011,28(10):101-110.(In Chinese)
[103]惠趁意,朱彥鵬,葉帥華.預(yù)應(yīng)力錨桿復(fù)合土釘支護(hù)邊坡穩(wěn)定性分析[J].巖土工程學(xué)報(bào),2013,35(S2):325-329.
HUI C Y,ZHU Y P,YE S H. Stability analysis of composite soilnailing wall with prestressed anchors[J]. Chinese Journal of Geotechnical Engineering,2013,35(S2):325-329.(In Chinese)
[104]房光文,朱彥鵬,葉帥華,等.考慮模糊隨機(jī)性的土釘加固邊坡可靠度分析[J].巖土工程學(xué)報(bào),2021,43(S1):122-126.
FANG G W,ZHU Y P,YE S H,et al. Reliability analysis of soil nailing-reinforced slopes considering fuzzy randomness[J]. Chinese Journal of Geotechnical Engineering,2021,43(S1):122- 126.(In Chinese)
[105]羅輝,楊仕教,喻清,等.基于FEM-RSM-GA的邊坡錨桿設(shè)計(jì)可靠性反問(wèn)題研究[J].武漢理工大學(xué)學(xué)報(bào),2010,32(9):93-96.
LUO H,YANG S J,YU Q,et al. Research on inverse problem of slope anchor parameters design based on FEM-RSM-GA method [J]. Journal of Wuhan University of Technology,2010,32(9):93-96.(In Chinese)
[106]尹志凱,盧坤林,石峰,等.基于改進(jìn)差分進(jìn)化算法的三維邊坡錨固位置優(yōu)化[J].巖土工程學(xué)報(bào),2020,42(7):1322-1330.
YIN Z K,LU K L,SHI F,et al. Optimization of anchorage location of three dimensional slopes based on improved differential evolution algorithm[J]. Chinese Journal of Geotechnical Engineering,2020,42(7):1322-1330.(In Chinese)
[107]謝全敏,徐善柱,但山林,等.既有加固邊坡錨桿結(jié)構(gòu)健康狀態(tài)診斷方法及其應(yīng)用研究[J].湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,45(S0):69-73.
XIE Q M,XU S Z,DAN S L,et al. Study on diagnosing methods and applications of health status for anchor structure in an existing reinforced slope[J]. Journal of Hunan University(Natural Sciences),2018,45(S0):69-73.(In Chinese)
[108]楊波,鄭穎人,唐曉松,等.人工智能在雙排全長(zhǎng)式抗滑樁設(shè)計(jì)中的應(yīng)用[J].地下空間與工程學(xué)報(bào),2010,6(2):358-363.
YANG B,ZHENG Y R,TANG X S,et al. Application of artifical intelligence in the design of full-length anti-slide pile[J]. Chinese Journal of Underground Space and Engineering,2010,6 (2):358-363.(In Chinese)
[109]梁冠亭,陳昌富,朱劍鋒,等.基于M-P法的抗滑樁支護(hù)邊坡穩(wěn)定性分析[J].巖土力學(xué),2015,36(2):451-469.
LIANG G T,CHEN C F,ZHU J F,et al. Stability analysis of pile stabilized slope based on Morgenstern-Price method[J]. Rock and Soil Mechanics,2015,36(2):451-469.(In Chinese)
[110]GONG W,TANG H,WANG H,et al. Probabilistic analysis and design of stabilizing piles in slope considering stratigraphic uncertainty[J]. Engineering Geology,2019,259:1-14.
[111]李時(shí)宜,李浩,季文斌.基于布里淵光時(shí)域反射儀的邊坡監(jiān)測(cè)光纖傳感器結(jié)構(gòu)[J].光子學(xué)報(bào),2021,50(9):0906005.
LI S Y,LI H,JI W B,et al. Optical fiber sensing structure for slope monitoring based on brillouin optical time domain reflectometer [J]. Acta PhotonicaSinica,2021,50(9):0906005.(In Chinese)
[112]謝謨文,胡嫚,王立偉.基于三維激光掃描儀的滑坡表面變形監(jiān)測(cè)方法:以金坪子滑坡為例[J].中國(guó)地質(zhì)災(zāi)害與防治學(xué)報(bào),2013,24(4):85-92.
XIE M W,HU M,WANG L W. Landslide monitoring by threedimensional laser scanner-case study of the displacement detection of the Jinpingzi landslide(Southwest,China)[J]. ZhongguoDizhizaihai Yu FangzhiXuebao,2013,24(4):85-92.(In Chinese)
[113]賈曙光,金愛(ài)兵,趙怡晴.無(wú)人機(jī)攝影測(cè)量在高陡邊坡地質(zhì)調(diào)查中的應(yīng)用[J].巖土力學(xué),2018,39(3):1130-1136.
JIA S G,JIN A B,ZHAO Y Q. Application of UAV oblique photogrammetry in the field of geology survey at the high and steep slope [J]. Rock and Soil Mechanics,2018,39(3):1130-1136.(In Chinese)
[114]王慧敏,羅忠行,肖映城,等.基于GNSS技術(shù)的高速公路邊坡自動(dòng)化監(jiān)測(cè)系統(tǒng)[J].中國(guó)地質(zhì)災(zāi)害與防治學(xué)報(bào),2020,31(6):60-68.
WANG H M,LUO Z X,XIAO Y C,et al. Automatic monitoring system on highway slopes based on GNSS technique[J]. The Chinese Journal of Geological Hazard and Control,2020,31(6):60- 68.(In Chinese)
[115]江勝華,周智,歐進(jìn)萍.基于磁場(chǎng)梯度定位的邊坡變形監(jiān)測(cè)原理[J].巖土工程學(xué)報(bào),2012,34(10):1944-1949.
JIANG S H,ZHOU Z,OU J P. Slope deformation monitoring principle based on magnetic gradient tensor[J]. Chinese Journal of Geotechnical Engineering,2012,34(10):1944-1949.(In Chinese)
[116]梁苗,鄔凱,邵江,等.LoRa技術(shù)在公路邊坡監(jiān)測(cè)中的應(yīng)用研究[J].地下空間與工程學(xué)報(bào),2020,16(S2):1011-1016.
LIANG M,WU K,SHAO J,et al. Application study on LoRa technology in highway slope monitoring[J]. Chinese Journal of Underground Space and Engineering,2020,16(S2):1011-1016. (In Chinese)
[117]CHEN Y,WANG S,CHEN N,et al. Forecasting cohesionless soil highway slope displacement using modular neural network[J]. Discrete Dynamics in Nature and Society,2012,2012:504574.
[118]CHENG M Y,HOANG N D. A swarm-optimized fuzzy instancebased learning approach for predicting slope collapses in mountain roads[J]. Knowledge-Based Systems,2015,76:256-263.
[119]CHENG M Y,HOANG N D. Slope corpse prediction using bayesian framework with k-nearest neighbor density estimation:case study in Taiwan[J]. Journal of Computing in Civil Engineering,2016,30(1):1-8.
[120]WANG S,ZHANG Z,REN Y,et al. UAV photogrammetry and AFSA-Elman neural network in slopes displacement monitoring and forecasting[J]. KSCE Journal of Civil Engineering,2019,24 (1):19-29.
[121]YIN C,WANG Z,ZHAO X. Spatial prediction of highway slope disasters based on convolution neural networks[J]. Natural Haz- ards,2022:1-19.
[122]DAS I,STEIN A,KERLE N,et al. Landslide susceptibility mapping along road corridors in the Indian Himalayas using Bayesian logistic regression models [J]. Geomorphology,2012,179:116-125.
[123]黃武彪,丁明濤,王棟,等.基于層數(shù)自適應(yīng)加權(quán)卷積神經(jīng)網(wǎng)絡(luò)的川藏交通廊道沿線滑坡易發(fā)性評(píng)價(jià)[J].地球科學(xué),2022,47(6):2015-2030.
HUANG W B,DING M T,WANG D,et al. Evaluation of landslide susceptibility based on layer adaptive weighted convolutional neural network model along Sichuan-tibet traffic corridor[J]. Earth Science,2022,47(6):2015-2030.(In Chinese)
[124]鄭志成,徐衛(wèi)亞,徐飛,等.基于混合核函數(shù)PSO-LSSVM的邊坡變形預(yù)測(cè)[J].巖土力學(xué),2012,33(5):1421-1426.
ZHENG Z C,XU W Y,XU F,et al. Forecasting of slope displacement based on PSO-LSSVM with mixed kernel[J]. Rock and Soil Mechanics,2012,33(5):1421-1426.(In Chinese)
[125]GONG W,TIAN S,WANG L,et al. Interval prediction of landslide displacement with dual-output least squares support vector machine and particle swarm optimization algorithms[J]. Acta Geotechnica,2022:1-19.
[126]王志穎,李宗春,許文學(xué).用于邊坡變形分析與預(yù)測(cè)的PSO- Prophet模型[J].巖石力學(xué)與工程學(xué)報(bào),2021,40(S1):2643-2652.
WANG Z Y,LI Z C,XU W X. PSO-Prophet model for slope deformation analysis and prediction[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(S1):2643-2652.(In Chinese)
[127]仉文崗,顧鑫,劉漢龍,等.基于貝葉斯更新的非飽和土坡參數(shù)概率反演及變形預(yù)測(cè)[J].巖土力學(xué),2022,43(4):11121122.
ZHANG W G,GU X,LIU H L,et al. Probabilistic back analysisof soil parameters and displacement prediction of unsaturated slopes using Bayesian updating[J]. Rock and Soil Mechanics,2022,43(4):1112-1122.(In Chinese)
[128]LIU C,JIANG Z,HAN X,et al. Slope displacement prediction using sequential intelligent computing algorithms [J]. Measurement,2019,134:634-648.
[129]陳春舒,夏元友.基于極限分析的邊坡實(shí)時(shí)動(dòng)態(tài)Newmark滑塊位移法[J].巖石力學(xué)與工程學(xué)報(bào),2016,35(12):2507-2515.
CHEN C S,XIA Y Y. A real-time dynamic Newmark sliding block method for slopes[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(12):2507-2515.(In Chinese)
[130]GADE M,NAYEK P S,DHANYA J. A new neural networkbased prediction model for Newmark's sliding displacements [J]. Bulletin of Engineering Geology and the Environment,2020,80 (1):385-397.
[131]NAYEK P S,GADE M. Artificial neural network-based fully data-driven models for prediction of newmark sliding displacement of slopes[J]. Neural Computing and Applications,2022,34 (11):9191-9203.
[132]CHO Y,KHOSRAVIKIA F,RATHJE E M. Acomparison of artificial neural network and classical regression models for earthquake-induced slope displacements[J]. Soil Dynamics and Earthquake Engineering,2022,152:1-12.
[133]HUANG Y,HAN X,ZHAO L. Recurrent neural networks for complicated seismic dynamic response prediction of a slope system [J]. Engineering Geology,2021,289:106198.
[134]WANG M X,HUANG D,WANG G,et al. SS-XGBoost:a machine learning framework for predicting newmark sliding displacements of slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering,2020,146(9):1-17.
[135]MACEDO J,LIU C,SOLEIMANI F. Machine-learning-based predictive models for estimating seismically-induced slope displacements [J]. Soil Dynamics and Earthquake Engineering,2021,148:106795.
[136]陳善靜,向朝參,康青,等.基于多源遙感時(shí)空譜特征融合的滑坡災(zāi)害檢測(cè)方法[J].計(jì)算機(jī)研究與發(fā)展,2020,57(9):1877-1887.
CHEN S J,XIANG C C,KANG Q,et al. Multi-source remote sensing based accurate landslide detection leveraging spatial- temporal-spectral feature fusion[J]. Journal of Computer Research and Development,2020,57(9):1877-1887.(In Chinese)
[137]GUZZETTI F,REICHENBACH P,ARDIZZONE F,et al. Estimating the quality of landslide susceptibility models[J]. Geomorphology,2006,81(1/2):166-184.
[138]巨袁臻,許強(qiáng),金時(shí)超,等.使用深度學(xué)習(xí)方法實(shí)現(xiàn)黃土滑坡自動(dòng)識(shí)別[J].武漢大學(xué)學(xué)報(bào)(信息科學(xué)版),2020,45(11):1747-1755.
JU Y Z,XU Q,JIN S C,et al. Automatic object detection of loess landslide based on deep learning[J]. Geomatics and Information Science of Wuhan University,2020,45(11):1747-1755.(In Chinese)
[139]余加勇,薛現(xiàn)凱,陳昌富,等.基于無(wú)人機(jī)傾斜攝影的公路邊坡三維重建與災(zāi)害識(shí)別方法[J].中國(guó)公路學(xué)報(bào),2021,35 (4):77-86.
YU J Y,XUE X K,CHEN C F,et al. Three-dimensional reconstruction and disaster identification of highway slope using unmanned aerial vehicle-based oblique photography technique [J]. China Journal of Highway and Transport,2021,35(4):77-86. (In Chinese)
[140]FENG Q. Measuring fracture orientation at exposed rock faces by using a non-reflector total station [J]. Engineering Geology,2001,59:133-146.
[141]FONSTAD M A,DIETRICH J T,COURVILLE B C,et al. Topographic structure from motion:a new development in photogrammetric measurement [J]. Earth Surface Processes and Landforms,2013,38(4):421-430.
[142]CHEN J,ZHU H,LIX. Automatic extraction of discontinuity orientation from rock mass surface 3D point cloud[J]. Computers and Geosciences,2016,9:18-31.
[143]葛云峰,夏丁,唐輝明,等.基于三維激光掃描技術(shù)的巖體結(jié)構(gòu)面智能識(shí)別與信息提取[J].巖土力學(xué)與工程學(xué)報(bào),2017,36 (12):3051-3061.
GE Y F,XIA D,TANG H M,et al. Intelligent identification and extraction of geometric properties of rock discontinuities based on terrestrial laser scanning[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(12):3051-3061.(In Chinese)
[144]寧浩,董秀軍,劉謙,等.利用點(diǎn)云法向量實(shí)現(xiàn)巖體結(jié)構(gòu)面識(shí)別[J/OL].武漢大學(xué)學(xué)報(bào)(信息科學(xué)版):1-13.(2021-10-29)[2022-07-01]. http://kns.cnki.net/kcms/detail/42.1676.tn.20211028.1541.027.html.
NING H,DONG X J,LIU Q,et al. Using point cloud normal vector to realize rock mass structural plane recognition [J/OL]. Geomatics and Information Science of Wuhan University:1-13. (2021-10-29)[2022-07-01].http://kns.cnki.net/kcms/detail/42.1676.tn.20211028.1541.027.html.(In Chinese)
[145]王培濤,覃拓,黃正均,等.基于三維點(diǎn)云的巖體結(jié)構(gòu)面信息快速化識(shí)別方法研究[J].巖土力學(xué)與工程學(xué)報(bào),2021,40 (3):503-519.
WANG PT,QINT,HUANG ZJ,et al. Fast identification of geometric properties of rock discontinuities based on 3D point cloud [J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(3):503-519.(In Chinese)
[146]陳昌富,何曠宇,余加勇,等.基于無(wú)人機(jī)貼近攝影的高陡邊坡結(jié)構(gòu)面識(shí)別[J].湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,49(1):145-154.
CHEN C F,HE K Y,YU J Y,et al. Identification of discontinuities of high steep slope based on UAV nap-of-the-object photog- raphy[J]. Journal of Hunan University(Natural Sciences),2022,49(1):145-154.(In Chinese)
[147]王鵬宇,王述紅.四類(lèi)常見(jiàn)邊坡巖石類(lèi)別識(shí)別和邊界范圍確定的方法[J].巖土工程學(xué)報(bào),2019,41(8):1505-1512.
WANG P Y,WANG S H. Method for identifying four common rock types of slopes and determining boundary range[J]. Chinese Journal of Geotechnical Engineering,2019,41(8):1505-1512. (In Chinese)
[148]張紫杉,王述紅,王鵬宇,等.巖坡坡面裂隙網(wǎng)絡(luò)智能識(shí)別與參數(shù)提取[J].巖土工程學(xué)報(bào),2021,43(12):2240-2248.
ZHANG Z S,WANG S H,WANG P Y,et al. Intelligent identification and extraction of geometric parameters for surface fracture networks of rocky slopes[J]. Chinese Journal of Geotechnical En- gineering,2021,43(12):2240-2248.(In Chinese)
[149]漆祖芳,姜清輝,周創(chuàng)兵,等.基于lSVR和MVPSO算法的邊坡位移反分析方法及其應(yīng)用[J].巖石力學(xué)與工程學(xué)報(bào),2013,32(6):1185-1196.
QI Z F,JIANG Q H,ZHOU C B,et al. A new slope displacement back analysis method based on v-SVR and MVPSO algorithm and its application[J]. Chinese Journal of Rock Mechanics and Engi- neering,2013,32(6):1185-1196.(In Chinese)
[150]LIU Y,REN W,LIU C,et al. Displacement-based back- analysis frameworks for soil parameters of a slope:using Frequentist inference and Bayesian inference[J]. International Journal of Geomechanics,2022,22(4):04022026.
[151]ZHANG L L,ZUO Z B,YE G L,et al. Probabilistic parameter estimation and predictive uncertainty based on field measurements for unsaturated soil slope[J]. Computers and Geotechnics,2013,48:72-81.
[152]WANG L,HWANG J H,LUO Z,et al. Probabilistic back analysis of slope failure-A case study in Taiwan[J]. Computers and Geotechnics,2013,51:12-23.
[153]LI S,ZHAO H,RU Z,et al. Probabilistic back analysis based on Bayesian and multi-output support vector machine for a high cut rock slope[J]. Engineering Geology,2015,203:178-190.
[154]JIANG S H,HUANG J,QI X H,et al. Efficient probabilistic back analysis of spatially varying soil parameters for slope reliability assessment[J]. Engineering Geology,2020,271:105597.
[155]江巍,歐陽(yáng)曄,閆金洲,等.邊坡巖土體抗剪強(qiáng)度的逆向迭代修正反演方法[J].巖土力學(xué),2022,43(8):1-9.
JIANG W,OUYANG Y,YAN J Z,et al. Inversion iterative correction method for estimating shear strength of rock and soil mass in slope engineering[J]. Rock and Soil Mechanics,2022,43(8):1-9.(In Chinese)
[156]LIU X,WANG Y. Bayesian selection of slope hydraulic model and identification of model parameters using monitoring data and subset simulation[J]. Computers and Geotechnics,2021,139:104428.