馮欣怡, 孫祥凱
(重慶工商大學(xué) 數(shù)學(xué)與統(tǒng)計學(xué)院 經(jīng)濟社會應(yīng)用統(tǒng)計重慶市重點實驗室,重慶 400067)
作為非線性優(yōu)化問題的一個重要模型,分式優(yōu)化在資源分配、投資組合和生產(chǎn)計劃等問題中具有廣泛的應(yīng)用,因此在過去幾十年里引起眾多學(xué)者的廣泛關(guān)注,如文獻[1-5].在研究分式優(yōu)化問題時,近似解的最優(yōu)性條件和對偶理論是其研究的重點內(nèi)容,近些年取得了豐碩成果,如文獻[6-9].
值得注意的是,上述文獻在研究近似解的最優(yōu)性和對偶性時,常常需要假定所考慮優(yōu)化問題模型的數(shù)據(jù)是精確的.然而由于實際應(yīng)用中測量或制作誤差、以及不精確信息的存在等諸多原因,許多優(yōu)化問題都會涉及到不確定數(shù)據(jù).這些不確定數(shù)據(jù)對問題求解有著不同程度的影響.因此,帶不確定參數(shù)的優(yōu)化問題引起了廣泛關(guān)注.譬如,Li 等[10]建立了帶不確定參數(shù)的凸優(yōu)化問題與其不確定共軛對偶問題之間的魯棒強對偶關(guān)系,并應(yīng)用到數(shù)據(jù)分類問題中;Sun 等[11]借助一種標量化方法,刻畫了不確定多目標優(yōu)化問題的魯棒近似弱有效解的最優(yōu)性條件和對偶理論;通過引入一類新的廣義凸性概念,F(xiàn)akhar 等[12]刻畫了魯棒弱有效解的充分最優(yōu)性條件與對偶理論,并應(yīng)用到投資組合優(yōu)化問題中;借助一類次微分約束規(guī)格,Sun 等[13]刻畫了一類不確定半無限優(yōu)化問題擬近似最優(yōu)解的最優(yōu)性條件和混合型對偶理論;趙丹和孫祥凱[14]研究了一類目標函數(shù)和約束函數(shù)均帶不確定參數(shù)的多目標優(yōu)化問題的魯棒擬近似有效解的最優(yōu)性條件;Lee 等[15]討論了不確定分式優(yōu)化問題魯棒近似最優(yōu)性條件和對偶理論;借助一類魯棒型約束規(guī)格,Zeng 等[16]刻畫了帶不確定參數(shù)的半無限分式優(yōu)化問題的魯棒近似最優(yōu)性條件和混合型對偶理論.
受上述文獻啟發(fā),本文考慮如下多目標分式半無限優(yōu)化問題:
又由式(1)、引理2 和引理3,可知
從而,由式(8)可知
注5 若(UMP)中的i=1以及不確定集Vt,t∈T,為單點集,則(UMP)退化為經(jīng)典的單目標半無限優(yōu)化問題,文獻[20]詳細刻畫了這類問題的最優(yōu)性條件.若(UMP)中的不確定集Vt,t∈T,為單點集,則(UMP)退化為經(jīng)典的多目標半無限優(yōu)化問題,這類問題的最優(yōu)性條件和對偶問題也得到詳細刻畫,如文獻[21]詳細刻畫了其對偶問題.
本文主要對一類帶不確定參數(shù)的多目標分式半無限優(yōu)化問題進行了研究.首先結(jié)合魯棒方法和Dinkelbach 方法,將該問題的魯棒對應(yīng)模型轉(zhuǎn)化為一般的多目標優(yōu)化問題.再借助標量化方法,建立了該多目標優(yōu)化問題的標量化問題,得到了它們擬近似解之間的關(guān)系.最后,借助一類魯棒型次微分約束規(guī)格,建立了該不確定多目標分式半無限優(yōu)化問題擬近似有效解的魯棒最優(yōu)性條件.本文推廣了文獻[16,19]的相關(guān)結(jié)果.另一方面,對偶理論也是最優(yōu)化理論研究的重點內(nèi)容,因此如何用本文的方法刻畫帶有不確定參數(shù)的多目標分式半無限優(yōu)化問題的魯棒對偶理論,這將是我們進一步要研究的課題.
致謝 本文作者衷心感謝重慶工商大學(xué)科研團隊項目(ZDPTTD201908)以及重慶工商大學(xué)研究生“創(chuàng)新型科研項目”(yjscxx2021-112-58)對本文的資助.
參考文獻( References ) :
[1]D INKELBACH W. On nonlinear fractional programming[J].Management Science, 1967, 13(7): 492-498.
[2]Y ANG X M, TEO K L, YANG X Q. Symmetric duality for a class of nonlinear fractional programming problems[J].Journal of Mathematical Analysis and Applications, 2002, 271(1): 7-15.
[3]L ONG X J, HUANG N J, LIU Z B. Optimality conditions, duality and saddle points for nondifferentiable multiobjective fractional programs[J].Journal of Industrial and Management Optimization, 2008, 4(2): 287-298.
[4]S UN X K, CHAI Y, ZENG J. Farkas-type results for constrained fractional programming with DC functions[J].Optimization Letters, 2014, 8: 2299-2313.
[5]Z HOU Z A, CHEN W. Optimality conditions and duality of the set-valued fractional programming[J].Pacific Journal of Optimization, 2019, 15(4): 639-651.
[6]L IU J C, YOKOYAMA K. ε-optimality and duality for multiobjective fractional programming[J].Computers and Mathematics With Applications, 1999, 37(8): 119-128.
[7]G UPTA P, SHIRAISHI S, YOKOYAMA K. ε-optimality without constraint qualification for multiobjective fractional problem[J].Journal of Nonlinear and Convex Analysis, 2005, 6(2): 347-357.
[8]V ERMA R U. Weak ε-efficiency conditions for multiobjective fractional programming[J].Applied Mathematics and Computation, 2013, 219(12): 6819-6827.
[9]K IM M H, KIM G S, LEE G M. On ε-optimality conditions for multiobjective fractional optimization problems[J].Fixed Point Theory and Applications, 2011, 2011: 6.
[10]L I G Y, JEYAKUMAR V, LEE G M. Robust conjugate duality for convex optimization under uncertainty with application to data classification[J].Nonlinear Analysis, 2011, 74(6): 2327-2341.
[11]S UN X K, LI X B, LONG X J, et al. On robust approximate optimal solutions for uncertain convex optimization and applications to multi-objective optimization[J].Pacific Journal of Optimization, 2017, 13(4): 621-643.
[12]F AKHAR M, MAHYARINIA M, ZAFARANI J. On nonsmooth robust multiobjective optimization under generalized convexity with applications to portfolio optimization[J].European Journal of Operational Research, 2018,265(1): 39-48.
[13]S UN X K, TEO K L, ZENG J, et al. Robust approximate optimal solutions for nonlinear semi-infinite programming with uncertainty[J].Optimization, 2020, 69(9): 2109-2129.
[14]趙 丹, 孫祥凱. 非凸多目標優(yōu)化模型的一類魯棒逼近最優(yōu)性條件[J]. 應(yīng)用數(shù)學(xué)和力學(xué), 2019, 40(6): 694-700.(ZHANG Dan, SUN Xiangkai. Some robust approximate optimality conditions for nonconvex multi-objective optimization problems[J].Applied Mathematics and Mechanics, 2019, 40(6): 694-700.(in Chinese))
[15]L EE J H, LEE G M. On ε-solutions for robust fractional optimization problems[J].Journal of Inequalities and Applications, 2014, 2014: 501.
[16]Z ENG J, XU P, FU H Y. On robust approximate optimal solutions for fractional semi-infinite optimization with uncertainty data[J].Journal of Inequalities and Applications, 2019, 2019: 45.
[17]B EN-TAL A, GHAOUI L E, NEMIROVSKI A.Robust Optimization[M]. Princeton: Princeton University Press,2009.
[18]C LARKE F H.Optimization and Nonsmooth Analysis[M]. New York: John Wiley and Sons Inc, 1983.
[19]A NTCZAK T. Parametric approach for approximate efficiency of robust multiobjective fractional programming problems[J].Mathematical Methods in Applied Sciences, 2021, 44(14): 11211-11230.
[20]L ONG X J, XIAO Y B, HUANG N J. Optimality conditions of approximate solutions for nonsmooth semi-infinite programming problems[J].Journal of the Operations Research Society of China, 2018, 6(2): 289-299.
[21]劉 娟, 龍憲軍. 非光滑多目標半無限規(guī)劃問題的混合型對偶[J]. 應(yīng)用數(shù)學(xué)和力學(xué), 2021, 42(6): 595-601. (LIU Juan,LONG Xianjun. Mixed type duality for nonsmooth multiobjective semi-infinite programming problems[J].Applied Mathematics and Mechanics, 2021, 42(6): 595-601.(in Chinese))