国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

分?jǐn)?shù)階Cable 方程的有限點(diǎn)法分析*

2022-07-11 01:13陳虹伶李小林
關(guān)鍵詞:步長間距數(shù)值

陳虹伶, 李小林

(重慶師范大學(xué) 數(shù)學(xué)科學(xué)學(xué)院,重慶 401331)

引 言

Cable 方程是神經(jīng)元?jiǎng)恿W(xué)模型中最基本的方程之一[1],分?jǐn)?shù)階Cable 方程從分?jǐn)?shù)階Nernst-Planck 方程導(dǎo)出[2],是經(jīng)典Cable 方程的推廣,可用于模擬離子在棘狀神經(jīng)元樹突中的異常電擴(kuò)散過程.有限差分法[1,3-5]、有限元法[6]、譜方法[7]、徑向基函數(shù)法[8]和無單元Galerkin 法[9]等數(shù)值技術(shù)已被廣泛應(yīng)用于求解分?jǐn)?shù)階Cable方程.

無網(wǎng)格法[10-12]在過去三十多年中得到了迅速發(fā)展,可有效克服有限差分法和有限元法等經(jīng)典數(shù)值方法中網(wǎng)格單元帶來的困難,同時(shí)具有較高的計(jì)算精度.有限點(diǎn)法[13-15]是基于移動(dòng)最小二乘近似構(gòu)造數(shù)值解和配點(diǎn)技術(shù)形成離散代數(shù)方程組的最流行和最簡單的一種無網(wǎng)格方法,已成功求解了大量科學(xué)工程問題.目前,我們還沒有發(fā)現(xiàn)用無網(wǎng)格有限點(diǎn)法研究分?jǐn)?shù)階Cable 方程的報(bào)道.

本文建立數(shù)值分析含有Riemann-Liouville 時(shí)間分?jǐn)?shù)階導(dǎo)數(shù)的Cable 方程的有限點(diǎn)法.首先,借鑒文獻(xiàn)[5]用中心差分格式離散該方程中的時(shí)間導(dǎo)數(shù);其次,用有限點(diǎn)法建立線性離散代數(shù)系統(tǒng);然后,受文獻(xiàn)[16]的啟發(fā)推導(dǎo)求解了分?jǐn)?shù)階Cable 方程的有限點(diǎn)法的理論誤差估計(jì);最后,給出數(shù)值算例驗(yàn)證了該方法的有效性和理論誤差結(jié)果.

1 數(shù) 值 算 法

考慮以下分?jǐn)?shù)階Cable 方程的初邊值問題[9]:

2 誤 差 分 析

并且由式(17)可以得出

根據(jù)移動(dòng)最小二乘近似的重構(gòu)性質(zhì)[18]和式(13),我們得到

根據(jù)式(8),我們得到

將式(20)代入式(23)中,有

其中

式(21)和(24)可組裝為如下矩陣形式:

3 數(shù) 值 算 例

考慮以下分?jǐn)?shù)階Cable 方程:

邊界條件為

初始條件為

圖1 給出了時(shí)間步長τ=1/20和節(jié)點(diǎn)間距h=1/20時(shí),有限點(diǎn)法的數(shù)值解和誤差.數(shù)據(jù)顯示絕對(duì)誤差小于3×10?4,說明解析解和數(shù)值解吻合得非常好,從而證明本文方法具有較高的計(jì)算精度.

圖1 算例在α=0.2,β=0.8,T =5 ,h=1/20 和τ=1/20時(shí)的數(shù)值解和誤差:(a) 數(shù)值解;(b) 誤差Fig. 1 Numerical solution results and errors gained with α=0.2 , β=0.8, T =5 ,h=1/20 and τ=1/20: (a) numerical solution results; (b) errors

圖2 給出了h=0.01時(shí),相對(duì)誤差//U?Uh//2///U//2和L∞誤差與時(shí)間步長 τ之間的關(guān)系,圖3 給出了當(dāng)τ=0.000 1時(shí),誤差與節(jié)點(diǎn)間距h之間的關(guān)系.可以看出,誤差隨著τ和h的減小而減小,且數(shù)值解大約以τ1+min{α,β}和h2的速度收斂于解析解,這與理論結(jié)果一致.

圖2 當(dāng)h=0.01,T=1 時(shí)誤差與時(shí)間步長τ的關(guān)系:(a) 相對(duì)誤差;(b) L∞誤差Fig. 2 The relationship between relative errors and L∞ errors obtained for h=0.01 and T=1 with respect to time-step size τ: (a) relative errors ; (b) L∞ errors

圖3 當(dāng)τ=0.000 1, T =1時(shí)誤差與節(jié)點(diǎn)間距h的關(guān)系:(a) 相對(duì)誤差;(b) L∞誤差Fig. 3 The relationship between relative errors and L∞ errors obtained for τ=0.000 1 and T =1 with respect to nodal spacing h:(a) relative errors ; (b) L∞ errors

以上討論的是α ≠β的情況,接下來討論α=β=γ[8]的情況.圖4 給出了τ=1/20和h=1/20時(shí),有限點(diǎn)法的數(shù)值解和誤差.圖5(a)給出了h=0.01,T=1時(shí),誤差與τ之間的關(guān)系,圖5(b)給出了當(dāng)τ=0.000 1時(shí),誤差與h之間的關(guān)系.從圖中可以看出有限點(diǎn)法獲得了很好的數(shù)值結(jié)果.

圖4 算例在γ=0.4,T =5 ,h=1/20 和τ=1/20時(shí)的數(shù)值解和誤差:(a) 數(shù)值解;(b) 誤差Fig. 4 Numerical solution results and errors gained with γ=0.4, T =5 , h=1/20 and τ=1/20: (a) numerical solution results; (b) errors

圖5 誤差與時(shí)間步長τ和節(jié)點(diǎn)間距h 的關(guān)系:(a) 時(shí)間步長τ;(b) 節(jié)點(diǎn)間距hFig. 5 The relationship between the errors and time-step size τ as well as nodal spacing h: (a) for time-step size τ; (b) for nodal spacing h

表1 比較了有限點(diǎn)法和徑向基函數(shù)法[8]在h=0.1, γ=0.25和 γ=0.3時(shí)的L∞誤差,我們發(fā)現(xiàn)有限點(diǎn)法具有更高的計(jì)算精度,明顯優(yōu)于徑向基函數(shù)法.

表1 有限點(diǎn)法和徑向基函數(shù)法在h=0.1, T =1時(shí)的 L∞誤差Table 1 The L∞-errors of the finite point method and the radial basis function method gained with h=0.1, T =1

4 結(jié) 論

針對(duì)分?jǐn)?shù)階Cable 方程,本文用中心差分格式離散時(shí)間導(dǎo)數(shù),用有限點(diǎn)法進(jìn)行空間離散,推導(dǎo)了詳細(xì)的數(shù)值計(jì)算公式,詳細(xì)分析了該方法的誤差估計(jì).理論誤差分析表明,數(shù)值解的誤差與時(shí)間步長τ和節(jié)點(diǎn)間距h成正比,并且時(shí)間和空間收斂率分別約為τ1+min{α,β}和h2.數(shù)值算例證實(shí)了求解分?jǐn)?shù)階Cable 方程的有限點(diǎn)法的有效性和收斂性,并驗(yàn)證了理論分析結(jié)果.

參考文獻(xiàn)( References ) :

[1]H U X L, ZHANG L M. Implicit compact difference schemes for the fractional Cable equation[J].Applied Mathematical Modelling, 2012, 36(9): 4027-4043.

[2]L IAO H L, SUN Z Z. Maximum norm error estimates of efficient difference schemes for second-order wave equations[J].Journal of Computational and Applied Mathematics, 2010, 235(8): 2217-2233.

[3]K HAN M A, ALI N H M, HAMID N N A. The design of new high-order group iterative method in the solution of two-dimensional fractional Cable equation[J].Alexandria Engineering Journal, 2021, 60(4): 3553-3563.

[4]Q UINTANA-MURILLO J, YUSTE S B. An explicit numerical method for the fractional Cable equation[J].International Journal of Differential Equations, 2011, 72(2): 447-466.

[5]Z HUANG P, LIU F, ANH V, et al. Stability and convergence of an implicit numerical method for the non-linear fractional reaction-subdiffusion process[J].IMA Journal of Applied Mathematics, 2005, 74: 645-667.

[6]A L-MASKARI M, KARAA S. The lumped mass FEM for a time-fractional Cable equation[J].Applied Numerical Mathematics, 2018, 132: 73-90.

[7]Z HENG R, LIU F, JIANG X, et al. Finite difference/spectral methods for the two-dimensional distributed-order time-fractional Cable equation[J].Computers & Mathematics With Applications, 2020, 80(6): 1523-1537.

[8]D EHGHAN M, ABBASZADEH M, MOHEBBI A. Error estimate for the numerical solution of fractional reaction-subdiffusion process based on a meshless method[J].Journal of Computational and Applied Mathematics,2015, 280: 14-36.

[9]D EHGHAN M, ABBASZADEH M. Analysis of the element free Galerkin (EFG) method for solving fractional Cable equation with Dirichlet boundary condition[J].Applied Numerical Mathematics, 2016, 109: 208-234.

[10]C HENG Y M.Meshless Methods[M]. Beijing: Science Press, 2015.

[11]王 紅, 李小林. 二維瞬態(tài)熱傳導(dǎo)問題的無單元Galerkin法分析[J]. 應(yīng)用數(shù)學(xué)和力學(xué), 2021, 42(5): 460-469. (WANG Hong, LI Xiaolin. Analysis of 2D transient heat conduction problems with the element-free Galerkin method[J].Applied Mathematics and Mechanics, 2021, 42(5): 460-469.(in Chinese))

[12]李 煜冬, 王發(fā)杰, 陳文. 瞬態(tài)熱傳導(dǎo)的奇異邊界法及其MATLAB實(shí)現(xiàn)[J]. 應(yīng)用數(shù)學(xué)和力學(xué), 2019, 40(3): 259-268. (LI Yudong, WANG Fajie, CHEN Wen. MATLAB implementation of a singular boundary method for transient heat conduction[J].Applied Mathematics and Mechanics, 2019, 40(3): 259-268.(in Chinese))

[13]O ?ATE E, IDELSOHN S, ZIENKIEWICZ O C, et al. A finite point method in computational mechanics: applications to convective transport and fluid flow[J].International Journal for Numerical Methods in Engineering,1996, 39(22): 3839-3866.

[14]O RTEGA E, FLORES R, O?ATE E, et al. A-posteriori error estimation for the finite point method with applications to compressible flow[J].Computational Mechanics, 2017, 60: 219-233.

[15]O ?ATE E, PERAZZO F, MIQUEL J. A finite point method for elasticity problems[J].Computers & Structures,2001, 79(22/25): 2151-2163.

[16]L I X L, DONG H Y. Error analysis of the meshless finite point method[J].Applied Mathematics and Computation, 2020, 382: 125326.

[17]C HEN C M, LIU F, TURNER I, et al. A Fourier method for the fractional diffusion equation describing sub-diffusion[J].Journal of Computational Physics, 2007, 227(2): 886-897.

[18]L I X L. Error estimates for the moving least-square approximation and the element-free Galerkin method inn-dimensional spaces[J].Applied Numerical Mathematics, 2016, 99: 77-97.

[19]B RENNER S C, SCOTT L R.The Mathematical Theory of Finite Element Methods[M]. New York: Springer,1994.

猜你喜歡
步長間距數(shù)值
開始和結(jié)束
體積占比不同的組合式石蠟相變傳熱數(shù)值模擬
調(diào)整圖標(biāo)間距讓桌面布局更個(gè)性
調(diào)整圖標(biāo)間距讓桌面布局更個(gè)性
數(shù)值大小比較“招招鮮”
艦船測(cè)風(fēng)傳感器安裝位置數(shù)值仿真
鋁合金加筋板焊接溫度場和殘余應(yīng)力數(shù)值模擬
董事長發(fā)開脫聲明,無助消除步長困境
步長制藥50億元商譽(yù)肥了誰?
步長制藥50億元商譽(yù)肥了誰?
馆陶县| 甘孜县| 永善县| 德保县| 三门县| 高陵县| 怀远县| 勐海县| 东光县| 龙泉市| 龙川县| 永德县| 昌平区| 宁阳县| 武穴市| 苍溪县| 平昌县| 卓尼县| 大关县| 卫辉市| 逊克县| 阿巴嘎旗| 绍兴县| 扎兰屯市| 临洮县| 苍南县| 邢台市| 怀化市| 斗六市| 綦江县| 河北区| 崇州市| 永胜县| 丰台区| 富阳市| 凤冈县| 科尔| 赤城县| 江孜县| 会同县| 漳浦县|