隋心意,趙小剛,陳鵬宇,李亞靈,溫祥珍
生菜可變剪接體的克隆與高溫誘導(dǎo)表達(dá)模式
隋心意,趙小剛,陳鵬宇,李亞靈,溫祥珍
山西農(nóng)業(yè)大學(xué)園藝學(xué)院,山西晉中 030801
【】光敏色素B(phytochrome,PHYB)是光和溫度的受體。通過克隆光敏色素B基因()可變剪接體并分析其在高溫誘導(dǎo)下的表達(dá)模式,探究可變剪接體在生菜響應(yīng)環(huán)境高溫中的生物學(xué)功能,為培育耐熱性生菜提供理論依據(jù)。采用生物信息學(xué)方法在生菜的基因組數(shù)據(jù)庫搜索獲得的cDNA序列的相關(guān)信息;對(duì)克隆得到的3個(gè)可變剪接體、和進(jìn)行多序列比對(duì)、可變剪接方式分析及系統(tǒng)進(jìn)化樹分析;通過在線軟件預(yù)測PHYB1、PHYB2和PHYB3蛋白分子量、等電點(diǎn)和親水性、疏水性等蛋白質(zhì)理化性質(zhì),并通過生物信息學(xué)軟件預(yù)測三者的二級(jí)結(jié)構(gòu)、三級(jí)結(jié)構(gòu)和保守結(jié)構(gòu)域;采用熒光定量PCR(qRT-PCR)檢測、和在高溫處理后的表達(dá)特征。克隆獲得的生菜的3個(gè)可變剪接體、和的CDS長度分別為3 509、3 877和2 690 bp,編碼氨基酸長度分別為1 094、960和853 aa。其中發(fā)生可變3′端位點(diǎn)和外顯子跳躍類型可變剪接,發(fā)生選擇性保留polyA尾和內(nèi)含子保留型可變剪接,發(fā)生外顯子跳躍類型可變剪接。保守結(jié)構(gòu)域分析表明PHYB2的N端缺少PAS和PHY功能域;PHYB3的N端缺少PAS和PHY功能域,C端缺少HisKA功能域;系統(tǒng)進(jìn)化樹分析表明,3個(gè)可變剪接體聚為一支。qRT-PCR分析表明在高溫處理第1天,的表達(dá)量最高;在高溫處理第5—9天,的表達(dá)量高于和;在高溫處理第11天,的表達(dá)量高于和,處理11 d內(nèi)三者表達(dá)量達(dá)到峰值的時(shí)間不同。高溫下生菜的轉(zhuǎn)錄本存在3個(gè)可變剪接體和。在高溫處理前期高表達(dá),分別在高溫處理中期、后期高表達(dá),推測生菜3個(gè)可變剪接體在抗高溫脅迫中發(fā)揮不同的作用。
生菜;;可變剪接體;高溫脅迫;響應(yīng)
【研究意義】近年來,全球氣候變暖趨勢顯著,高溫成為影響植物生長發(fā)育的重要因素[1]。生菜(L.)性喜冷涼,最適宜的生長溫度為15—20℃,高溫會(huì)導(dǎo)致其葉片變薄、節(jié)間伸長,直接影響商品價(jià)值[2]。前人研究表明[3],PHYB是光和溫度的受體。本研究在克隆時(shí)發(fā)現(xiàn)其在高溫下存在可變剪接,探究可變剪接體在響應(yīng)高溫中的功能對(duì)生菜的越夏栽培以及熱品種的培育具有重要的理論和實(shí)踐意義。【前人研究進(jìn)展】可變剪接(alternative splicing,AS)是植物響應(yīng)高溫脅迫的重要轉(zhuǎn)錄后調(diào)控方式[4-6],直接決定蛋白的結(jié)構(gòu)和功能[7]??勺兗艚邮侵敢粋€(gè)前體信使RNA通過不同的剪接方式形成多個(gè)成熟mRNA亞型的過程[8],主要有外顯子跳躍(skipped exon,SE)、內(nèi)含子保留(retain intron,RI)、可變5′端位點(diǎn)(alternative 5′ splice site,A5′SS)、可變3′端位點(diǎn)(alternative 3′ splice site,A3′SS)、外顯子互斥(mutually exclusive exon,MEE)、可變啟動(dòng)子(alternative promoter)和可變polyA(alternative polyA)7種類型[9]。前人研究表明,多種植物均通過基因的可變剪接來響應(yīng)高溫脅迫[10-13]。番茄()[14]中發(fā)現(xiàn)熱激蛋白HSPs(heat shock proteins)和熱激轉(zhuǎn)錄因子HSFs(heat shock transcription factors)在高溫下發(fā)生RI和SE類型的可變剪接產(chǎn)生短截的蛋白來響應(yīng)高溫。水稻(L.)干旱應(yīng)答元件結(jié)合蛋白()在高溫下通過產(chǎn)生新的可變剪接體來應(yīng)對(duì)高溫脅迫[15]。甘藍(lán)(L.)在高溫脅迫下會(huì)產(chǎn)生2種可變剪接體增加對(duì)轉(zhuǎn)錄調(diào)控的復(fù)雜性,以此提高甘藍(lán)的耐熱性[16]。AIROLDI等[17]研究發(fā)現(xiàn)擬南芥()中()在高溫下通過增加非功能型的剪接變體來促進(jìn)擬南芥提前開花,以此來響應(yīng)環(huán)境高溫。POSE等[18]研究表明高溫下擬南芥()通過增加可變剪接體的表達(dá),促進(jìn)與SVP(short vegetative phase)相互作用,激活開花啟動(dòng)子()與(),進(jìn)而促使其花期提前,避開高溫的不利影響。YAN等[19]研究發(fā)現(xiàn)高溫下擬南芥通過可變剪接產(chǎn)生大量microRNA 400初級(jí)轉(zhuǎn)錄本促進(jìn)種子萌發(fā)和細(xì)胞伸長,進(jìn)而促進(jìn)植物在高溫下的生長發(fā)育。綜上所述,植物通過可變剪接改變蛋白的功能來增強(qiáng)對(duì)高溫的適應(yīng)性。【本研究切入點(diǎn)】前人研究[20-21]發(fā)現(xiàn)在擬南芥中光敏色素B(phytochrome B,PHYB)不僅可以整合光信號(hào),還可以整合溫度信號(hào),生菜中PHYB是否也作為溫度感受器參與生菜對(duì)環(huán)境高溫的感知?此外,已有多個(gè)基因的可變剪接被鑒定并證實(shí)可以對(duì)高溫脅迫做出響應(yīng),生菜中是否也通過可變剪接響應(yīng)高溫脅迫?【擬解決的關(guān)鍵問題】本研究以熱敏性生菜為試驗(yàn)材料,對(duì)的可變剪接體進(jìn)行克隆,鑒定其序列特征及可變剪接情況,分析其基因結(jié)構(gòu)并檢測在高溫處理過程中的表達(dá)特征,比較其蛋白的結(jié)構(gòu)、性質(zhì)和功能,旨在初步明確可變剪接在高溫下發(fā)揮的功能,為后續(xù)研究生菜耐熱分子機(jī)制提供理論依據(jù)。
試驗(yàn)材料生菜樣品的采集于2020年10—11月在山西農(nóng)業(yè)大學(xué)園藝實(shí)驗(yàn)中心進(jìn)行;基因克隆試驗(yàn)和基因表達(dá)試驗(yàn)于2020年12月至2021年4月在山西農(nóng)業(yè)大學(xué)園藝實(shí)驗(yàn)中心進(jìn)行。
供試材料為生菜(L.)品種‘GRAND RAPIDS TBR’,購買于Seminis公司。選取顆粒飽滿、無病蟲害的種子播種于裝有基質(zhì)(草炭﹕蛭石=1﹕1)的6 cm×6 cm的花盆中,于光照培養(yǎng)箱內(nèi)(光照強(qiáng)度30 000 lx,光照/黑暗時(shí)間為16 h/8 h,相對(duì)濕度50%)培養(yǎng)。待植株長至6葉1心后,將其分為常溫組和高溫組進(jìn)行為期11 d的處理,每組包含9株。其中高溫組生長條件為:光照條件下35℃,黑暗條件下25℃,常溫組生長條件則分別為25℃和15℃。分別于第1、3、5、7、9和11天對(duì)處理1 h后的生菜取樣,采集中部葉片混合后作為一個(gè)重復(fù),每個(gè)處理重復(fù)3次。樣品采集后用錫紙包裹并立即用液氮速凍,儲(chǔ)存于-80℃冰箱備用。
取適量材料在液氮中研磨,按照RNAprep pure植物總RNA提取試劑盒提取總RNA。采用Prime ScriptTMRT reagent Kit反轉(zhuǎn)錄試劑盒將RNA反轉(zhuǎn)錄為第一鏈互補(bǔ)鏈DNA(cDNA)。反轉(zhuǎn)錄的反應(yīng)條件及程序均按照Prime ScriptTMRT reagent Kit和Prime ScriptTMRT reagent Kit with gDNA Eraser試劑盒說明書進(jìn)行,以上試劑均購自Takara公司。
從生菜基因組數(shù)據(jù)庫(https://lgr.genomecenter. ucdavis.edu)中搜索得到的序列信息,通過premier6.0設(shè)計(jì)克隆引物。-F:5′-AACCAACA CCTCAAATCCACC-3′;-R:5′-CCAGACCAG AATCTCATTCCTAT-3′,以上述引物為模板,通過PCR法克隆目的基因。
PCR的反應(yīng)體系為:2×PfuMasterMix 25.0 μL,滅菌ddH2O 50 μL,模板cDNA 1 μL,上、下游引物各0.5 μL。PCR擴(kuò)增程序?yàn)?5℃預(yù)變性5 min;94℃變性30 s,50℃退火30 s,72℃延伸30 s,30個(gè)循環(huán);最后72℃延伸10 min。按照凝膠回收試劑盒的說明書,進(jìn)行目的片段的回收,置于-20℃保存?zhèn)溆?。將純化后PCR產(chǎn)物連接到T載體,轉(zhuǎn)入DH5α感受態(tài)細(xì)胞中,隨后進(jìn)行陽性克隆鑒定。
通過qRT-PCR技術(shù)分析在高溫處理過程中的表達(dá)特征。根據(jù)克隆得到的序列,設(shè)計(jì)qRT-PCR引物。-F:5′-GCATAAGAAAGT GCACAACAGCC-3′和-R:5′-CGACGAACCT GGAAGAATGG-3′,用生菜作為內(nèi)參基因,引物序列為F:5′-GTGAGTGAAGAAGGGCAATG-3′和R:5′-AGTGAATTGGTTTCGAGAGC-3′,目標(biāo)基因與生菜一起擴(kuò)增。根據(jù)2-??CT法用Excel軟件對(duì)獲得的數(shù)據(jù)進(jìn)行相對(duì)表達(dá)量分析[22]。
通過比對(duì)3個(gè)可變剪接體的序列與NCBI中的CDS序列,得到基因內(nèi)含子和外顯子的剪接與保留情況。使用IBS1.0.3軟件對(duì)3個(gè)可變剪接體的基因結(jié)構(gòu)進(jìn)行繪制;使用ExPASy- ProtParam(https://web.expasy.org/protparam/)分析蛋白的理化性質(zhì)和組成成分;采用ExPASy-ProtScale(https://web.expasy.org/protscale/)進(jìn)行蛋白的親疏水性分析;利用SMART(http://smart.embl-heidelberg.de/)在線程序預(yù)測蛋白的保守結(jié)構(gòu)域;利用SignalP 4.0 Server(http://www.cbs.dtu.dk/services/SignalP-5.0/)對(duì)蛋白有無信號(hào)肽進(jìn)行預(yù)測;利用TMHMM(http://www. cbs.dtu.dk/services/TMHMM/)對(duì)蛋白的跨膜區(qū)域進(jìn)行預(yù)測;借助網(wǎng)站SOPMA(https://npsa-prabi.ibcp.fr/cgi- bin/npsa_automat.pl?page=npsa_sopma.html)進(jìn)行蛋白的二級(jí)結(jié)構(gòu)分析;使用SWISS-MODEL(https:// swissmodel.expasy.org)在線預(yù)測PHYB蛋白的三級(jí)結(jié)構(gòu);利用MEGA7.0軟件構(gòu)建系統(tǒng)進(jìn)化樹;利用在線軟件Cell-PLoc 2.0(http://www.csbio.sjtu.edu.cn/bioinf/ Cell-PLoc-2)和Softberry(http://www.softberry.com)對(duì)該蛋白質(zhì)的亞細(xì)胞定位進(jìn)行預(yù)測。
基于NCBI數(shù)據(jù)庫中生菜基因(Gene ID: 111911925)的mRNA序列信息,序列比對(duì)發(fā)現(xiàn)克隆得到的3個(gè)不同轉(zhuǎn)錄本均是的可變剪接體,將其分別命名為、和,根據(jù)比對(duì)結(jié)果繪制各轉(zhuǎn)錄本的基因結(jié)構(gòu)圖(圖1)。NCBI數(shù)據(jù)庫中CDS長度為3 569 bp,由4個(gè)外顯子和3個(gè)內(nèi)含子構(gòu)成。與相比,CDS長度為3 509 bp,第3個(gè)外顯子由于發(fā)生A3′SS類型的可變剪接而缺少了一段大小為29 bp的片段,第4個(gè)外顯子由于發(fā)生SE類型的可變剪接而缺失;CDS長度為3 877 bp,第2和第3內(nèi)含子發(fā)生RI類型的可變剪接,此外polyA尾也被保留;3 CDS長度為2 690 bp,第3個(gè)外顯子和第4個(gè)外顯子由于發(fā)生SE類型的可變剪接而缺失。
2.2.1 理化性質(zhì)分析 通過ExPASy-ProtParam分析發(fā)現(xiàn),PHYB1、PHYB2和PHYB3蛋白的氨基酸長度分別為1 094、960和853 aa;理論等電點(diǎn)分別為5.78、5.69和5.72,均屬于酸性蛋白質(zhì);3個(gè)PHYB總平均親水性(GRAVY)分別為-0.123、-0.139和-0.115,均為負(fù)值,表明三者均為親水性蛋白;不穩(wěn)定系數(shù)分別為46.97、48.24和47.25,均大于40,表明三者均為不穩(wěn)定性蛋白。PHYB均無典型的信號(hào)肽區(qū)域,無跨膜螺旋結(jié)構(gòu)域,均不屬于分泌蛋白。利用ExPASy- ProtScale預(yù)測PHYB的親水性、疏水性發(fā)現(xiàn),三者的氨基酸疏水值最高峰均在第348位,分值為2.822;親水值最低峰均在第543位,分值為-3.311(圖2)。
黑色線段表示內(nèi)含子,淺灰色方框表示外顯子;深灰色方框表示可變剪接保留的內(nèi)含子
圖2 PHYB1、PHYB2和PHYB3蛋白親水性、疏水性分析
2.2.2 二級(jí)和三級(jí)結(jié)構(gòu)分析 3種PHYB蛋白序列均由-螺旋(-helix)、延伸鏈(extended strand)、無規(guī)則卷曲(random coil)和-轉(zhuǎn)角(-turn)組成。其中PHYB2蛋白所含-螺旋比例最高,為49.06%;PHYB3蛋白所含無規(guī)則卷曲、延伸鏈和-轉(zhuǎn)角比例均最高,分別為35.76%、13.72%和5.63%(圖3)。3個(gè)PHYB蛋白的三維結(jié)構(gòu)整體十分相似,但是三者在C端上存在差異。
2.2.3 保守結(jié)構(gòu)域分析 PHYB1蛋白結(jié)構(gòu)完整,即N端具有Per-Arnt-Sim(PAS)、cGMP磷酸二酯酶-腺苷酸環(huán)化酶-FhlA(cGMP phosphodiesterase-adenylylcyclase- FhlA,GAF)和PHY特異性(PHY-specific,PHY)結(jié)構(gòu)域,C端具有2個(gè)連續(xù)的PAS和組氨酸激酶相關(guān)(histidine kinase A,HisKA)結(jié)構(gòu)域;與PHYB1蛋白相比,PHYB2蛋白的N端缺少PAS和PHY功能域;PHYB3蛋白不僅N端缺少PAS和PHY功能域,而且C端還缺少HisKA功能域(圖4)。
圖3 PHYB1、PHYB2和PHYB3蛋白的二級(jí)結(jié)構(gòu)特征
圖4 PHYB1、PHYB2和PHYB3蛋白結(jié)構(gòu)域示意圖
2.2.4 系統(tǒng)進(jìn)化分析 利用MEGA7.0將3種PHYB氨基酸序列與向日葵(,NC_ 035433.2)、煙草(,NW_015887446.1)、擬南芥(,NC_003071.7)、甘藍(lán)(L.,NC_027752.1)、蕪菁(,NC_024799.2)、番茄(,NC_015442.3)、馬鈴薯(,NW_ 006239191.1)和菠菜(,NW_018932796.1)進(jìn)行序列比對(duì)并構(gòu)建系統(tǒng)進(jìn)化樹。結(jié)果表明LsPHYB的3個(gè)可變剪接體首先聚為一個(gè)分支,與同為菊科的向日葵進(jìn)化距離最近,與十字花科的擬南芥、甘藍(lán)和蕪菁進(jìn)化距離較近;與茄科的煙草、番茄和馬鈴薯進(jìn)化距離較遠(yuǎn);與藜科的菠菜進(jìn)化距離最遠(yuǎn)(圖5)。
與對(duì)照相比,高溫處理下的表達(dá)量均高于對(duì)照,且在處理后第1、3、5和9天的表達(dá)量均顯著高于對(duì)照,第11天時(shí)表達(dá)量最高,為常溫下表達(dá)量的5倍。與對(duì)照相比,在處理第5、7和11天的表達(dá)量顯著高于常溫,第5天時(shí)表達(dá)量最高,為常溫下表達(dá)量的4.3倍。與對(duì)照相比,在第3和11天高溫下的表達(dá)量均顯著低于對(duì)照;在第1、5、7和9天均高于對(duì)照,且在第1、5和9天差異顯著;第1天時(shí)表達(dá)量最高,為常溫下表達(dá)量的1.75倍。綜上,處理11 d內(nèi),三者表達(dá)量達(dá)到最大峰值的時(shí)間不同,高溫處理第1天,的表達(dá)量最高;高溫處理第5—9天,的表達(dá)量高于和;高溫處理第11天,的表達(dá)量高于和(圖6)。
Ha:向日葵Helianthus annuus,NC_035433.2;Nt:煙草Nicotiana tabacum,NW_015887446.1;At:擬南芥Arabidopsis thaliana,NC_003071.7;Bo:甘藍(lán)Brassica oleracea,NC_027752.1;Br:蕪菁Brassica rapa,NC_024799.2;Sl:番茄Solanum lycopersicum,NC_015442.3;St:馬鈴薯Solanum tuberosum,NW_006239191.1;So:菠菜Spinacia oleracea,NW_018932796.1
*表示差異顯著(P<0.05) * indicate significant difference (P<0.05)
可變剪接可能會(huì)導(dǎo)致蛋白的結(jié)構(gòu)和功能發(fā)生變化,例如,A3′SS和RI可導(dǎo)致轉(zhuǎn)錄本插入提前終止密碼子(premature termination codon,PTC),具有PTC的轉(zhuǎn)錄本可被翻譯成短截的蛋白質(zhì)[23];SE類型可變剪接會(huì)因缺少必須的結(jié)構(gòu)域而形成非功能性蛋白[24]。因此,可變剪接會(huì)改變PHYB1、PHYB2和PHYB3蛋白的功能域,從而導(dǎo)致三者的結(jié)構(gòu)和功能發(fā)生變化。
蛋白質(zhì)的功能與結(jié)構(gòu)密切聯(lián)系,結(jié)構(gòu)域的差異會(huì)導(dǎo)致其功能活性方面發(fā)生較大的變化[25]。通過比較三者保守結(jié)構(gòu)域發(fā)現(xiàn),PHYB2和PHYB3的N端均缺少PAS和PHY功能域。PAS和PHY功能域可促進(jìn)無活性的紅光吸收型Pr(phytochrome R-absorbing form)和具有生物活性的遠(yuǎn)紅光吸收型Pfr(phytochrome FR-absorbing isomer)之間的轉(zhuǎn)化并維持Pfr的穩(wěn)定性[26-28]。因此,推斷高溫下缺少PAS和PHY功能域的PHYB2和PHYB3不能從Pr轉(zhuǎn)化為Pfr,進(jìn)而無法從細(xì)胞質(zhì)移向細(xì)胞核并與核內(nèi)轉(zhuǎn)錄因子相互作用[29]。此外,PHYB3蛋白C端還缺少HisKA功能域,前人研究表明HisKA功能域可通過與下游轉(zhuǎn)錄因子相互作用來參與光信號(hào)轉(zhuǎn)導(dǎo)[30],并且發(fā)現(xiàn)去除HisKA功能域后可加速從Pfr到Pr的熱轉(zhuǎn)換,降低了活性Pfr的數(shù)量[20,31],推測高溫下生菜通過可變剪接改變PHYB2和PHYB3蛋白的功能。
常溫條件下照光后,從Pr向Pfr轉(zhuǎn)化時(shí),PHY結(jié)構(gòu)域由延伸鏈變?yōu)?螺旋,使PHY結(jié)構(gòu)域與GAF結(jié)構(gòu)域接觸[32]。二級(jí)結(jié)構(gòu)分析發(fā)現(xiàn),高溫下PHYB3的延伸鏈比例升高,推測延伸鏈比例升高將減少PHY結(jié)構(gòu)域與GAF結(jié)構(gòu)域的接觸,導(dǎo)致PHYB3在高溫下主要以Pr形式存在,影響PHYB與下游轉(zhuǎn)錄因子的相互作用,進(jìn)而提高擬南芥對(duì)高溫的適應(yīng)性[33]。
目前,關(guān)于表達(dá)特征的研究主要集中在響應(yīng)光周期特點(diǎn)及在不同光照條件下組織特異性表達(dá)方面[34],而在響應(yīng)溫度的表達(dá)特征方面的研究較少。本研究中,生菜3個(gè)可變剪接體表達(dá)量達(dá)到峰值的時(shí)間不同,缺少PAS、PHY和HisKA功能域蛋白亞型的在高溫處理第1天表達(dá)量最高,之后逐漸降低;而功能域完整的和產(chǎn)生缺乏PAS和PHY功能域蛋白亞型的在高溫處理中后期高表達(dá)。LIU等[35]研究發(fā)現(xiàn)黃瓜赤霉素代謝關(guān)鍵酶Gibberellin 2-beta-dioxygenase8(CsGA2ox8)在強(qiáng)光下通過可變剪接產(chǎn)生“無功能”轉(zhuǎn)錄本CsGA2ox8.2來維持幼苗生長所必須的內(nèi)源赤霉素濃度。WU等[36]研究發(fā)現(xiàn)百合(spp.)在高溫下通過產(chǎn)生可變剪接體增強(qiáng)對(duì)鹽脅迫和高溫脅迫的耐受性。因此,推測的3個(gè)剪接體在生菜響應(yīng)環(huán)境高溫過程中發(fā)揮著重要功能。
前人研究表明PAS、PHY和HisKA功能域的缺失將導(dǎo)致PHYB無法進(jìn)入細(xì)胞核[37-38],而PHYB的核定位對(duì)其發(fā)揮生物學(xué)功能具有重要作用[39]。另外,有研究表明可變剪接可以通過改變轉(zhuǎn)錄本編碼蛋白的亞細(xì)胞定位影響其生物學(xué)功能[40-41],是否通過可變剪接改變蛋白的細(xì)胞定位來影響其功能?缺乏功能域的PHYB2和PHYB3蛋白能否正常進(jìn)入細(xì)胞核內(nèi)發(fā)揮作用?這些都有待后續(xù)深入研究。
克隆了生菜的全長cDNA序列,該基因存在3個(gè)可變剪接體、和,分別編碼功能域完整的PHYB1蛋白,缺失PAS和PHY功能域的PHYB2蛋白和缺失PAS、PHY和HisKA功能域的PHYB3蛋白。在高溫處理前期高表達(dá),和分別在高溫處理中、后期高表達(dá),推測生菜3個(gè)可變剪接體在抵抗高溫脅迫中發(fā)揮不同的作用。
[1] LIPPMANN R, BABBEN S, MENGER A, DELKER C, QUINT M. Development of wild and cultivated plants under global warming conditions. Current Biology, 2019, 29(24): R1326-R1338. doi: 10.1016/j.cub.2019.10.016.
[2] HAO J H, ZHANG L L, LI P P, SUN Y C, LI J K, QIN X X, WANG L, QI Z Y, XIAO S, HAN Y Y, LIU C J, FAN S X. Quantitative proteomics analysis of lettuce (L.) reveals molecular basis-associated auxin and photosynthesis with bolting induced by high temperature. International Journal of Molecular Sciences, 2018, 19(10): 2967.
[3] HALLIDAY K J, DAVIS S J. Light-sensing phytochromes feel the heat. Science, 2016, 354(6314): 832-833. doi: 10.1126/science.aaj1918.
[4] LIN J Y, ZHU Z Q. Plant responses to high temperature: a view from pre-mRNA alternative splicing. Plant Molecular Biology, 2021, 105(6): 575-583. doi: 10.1007/s11103-021-01117-z.
[5] CAPOVILLA G, PAJORO A, IMMINK R G, SCHMID M. Role of alternative pre-mRNA splicing in temperature signaling. Current Opinion in Plant Biology, 2015, 27: 97-103. doi: 10.1016/j.pbi.2015. 06.016.
[6] STAIGER D, BROWN J W S. Alternative splicing at the intersection of biological timing, development, and stress responses. The Plant Cell, 2013, 25(10): 3640-3656. doi: 10.1105/tpc.113.113803
[7] 曾紀(jì)晴, 張明永. 選擇性剪接在植物逆境相關(guān)基因表達(dá)調(diào)控中的作用. 植物生理學(xué)通訊, 2006, 42(6): 1005-1014.
ZENG J Q, ZHANG M Y. The role of alternative splicing in the regulation of plant stress-associated gene expression. Plant Physiology Communications, 2006, 42(6): 1005-1014. (in Chinese)
[8] GILBERT W. Why genes in pieces? Nature, 1978, 271(5645): 501.
[9] KEREN H, LEV-MAOR G, AST G. Alternative splicing and evolution: diversification, exon definition and function. Nature Reviews Genetics, 2010, 11(5): 345-355. doi: 10.1038/nrg2776.
[10] KANNAN S, HALTER G, RENNER T, WATERS E R. Patterns of alternative splicing vary between species during heat stress. AoB PLANTS, 2018, 10(2): ply013. doi: 10.1093/aobpla/ply013.
[11] CHANG C Y, LIN W D, TU S L. Genome-wide analysis of heat-sensitive alternative splicing in. Plant Physiology, 2014, 165(2): 826-840. doi: 10.1104/pp.113.230540.
[12] HAYNES J G, HARTUNG A J, HENDERSHOT J D, PASSINGHAM R S, RUNDLE S J. Molecular characterization of the B' regulatory subunit gene family ofprotein phosphatase 2A. European Journal of Biochemistry, 1999, 260(1): 127-136. doi: 10.1046/j.1432- 1327.1999.00154.x.
[13] KINOSHITA S, KANEKO G, LEE J H, KIKUCHI K, YAMADA H, HARA T, ITOH Y, WATABE S. A novel heat stress-responsive gene in the marine diatomcompressum encoding two types of transcripts, a trypsin-like protease and its related protein, by alternative RNA splicing. European Journal of Biochemistry, 2001, 268(17): 4599-4609.
[14] KELLER M, HU Y J, MESIHOVIC A, FRAGKOSTEFANAKIS S, SCHLEIFF E, SIMM S. Alternative splicing in tomato pollen in response to heat stress. DNA Research, 2016, 24(2): 205-217. doi: 10.1093/dnares/dsw051.
[15] MATSUKURA S, MIZOI J, YOSHIDA T, TODAKA D, ITO Y, MARUYAMA K, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress- responsive genes. Molecular Genetics and Genomics, 2010, 283(2): 185-196. doi: 10.1007/s00438-009-0506-y.
[16] LEE S S, JUNG W Y, PARK H J, LEE A, KWON S Y, KIM H S, CHO H S. Genome-wide analysis of alternative splicing in an inbred cabbage (L.) line ‘HO’ in response to heat stress. Current Genomics, 2018, 19(1): 12-20.
[17] AIROLDI C A, MARY M, BRENDAN D.MAFis regulated by temperature-dependent splicing and represses flowering at low temperatures in parallel with FLM. PLoS ONE, 2015, 10(5): e0126516. doi: 10.1371/journal.pone.0126516.
[18] POSE D, VERHAGE L, OTT F, YANT L, MATHIEU J, ANGENENT G C, IMMINK R, SCHMID M. Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature, 2013, 503(7476): 414-417. doi:10.1038/nature12633.
[19] YAN K, LIU P, WU C G, YANG G D, XU R, GUO Q H, HUANG J G, ZHENG C C. Stress-induced alternative splicing provides a mechanism for the regulation of microRNA processing in. Molecular Cell, 2012, 48(4): 521-531. doi: 10.1016/j.molcel. 2012.08.032.
[20] LEGRIS M, KLOSE C, BURGIE E S, ROJAS C C R, NEME M, HILTBRUNNER A, WIGGE P A, SCH?FER E, VIERSTRA R D, CASAL J J. Phytochrome B integrates light and temperature signals in. Science, 2016, 354(6314): 897-900. doi: 10.1126/science. aaf5656.
[21] JAEHOON J, MIRELA D, CORNELIA K, SUROJIT B, DAPHNE E, GAO M J, KHAN K A, BOX M S, VARODOM C, SANDRA C, MANOJ K, ALASTAIR G, LOCKE J C W, EBERHARD S, JAEGER K E, WIGGE P A. Phytochromes function as thermosensors in. Science, 2016, 354(6314): 886-889. doi: 10.1126/science. aaf6005.
[22] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-??Ctmethod.Methods, 2001, 25(4): 402-408.
[23] 馮雅嵐, 熊瑛, 張均, 原佳樂, 蔡艾杉, 馬超. 可變剪切在植物發(fā)育和非生物脅迫響應(yīng)中的作用. 核農(nóng)學(xué)報(bào), 2020, 34(1): 62-70. doi: 10.11869/j.issn.100-8551.2020.01.0062.
FENG Y L, XIONG Y, ZHANG J, YUAN J L, CAI A S, MA C. Role of alternative splicing in plant development and abiotic stress responses. Journal of Nuclear Agricultural Sciences, 2020, 34(1): 62-70. doi: 10.11869/j.issn.100-8551.2020.01.0062. (in Chinese)
[24] 盧歡歡, 鄧琴霖, 吳夢丹, 王志敏, 魏大勇, 王鶴冰, 向華豐, 張洪成, 湯青林. 可變剪接調(diào)控植物開花的作用機(jī)制進(jìn)展. 生物工程學(xué)報(bào), 2021, 37(9): 2991-3004. doi: 10.13345/j.cjb.200628.
LU H H, DENG Q L, WU M D, WANG Z M, WEI D Y, WANG H B, XIANG H F, ZHANG H C, TANG Q L. Mechanisms of alternative splicing in regulating plant flowering: A review. Chinese Journal of Biotechnology, 2021, 37(9): 2991-3004. doi: 10.13345/j.cjb.200628. (in Chinese)
[25] 石國良, 武強(qiáng), 楊念婉, 黃聰, 劉萬學(xué), 錢萬強(qiáng), 萬方浩. 蘋果蠹蛾幾丁質(zhì)脫乙?;?的基因克隆、表達(dá)模式和分子特性. 中國農(nóng)業(yè)科學(xué), 2021, 54(10): 2105-2117. doi: 10.3864/j.issn.0578-1752.2021. 10.007.
SHI G L, WU Q, YANG N W, HUANG C, LIU W X, QIAN W Q, WAN F H. Gene cloning, expression pattern and molecular characterization of chitin deacetylase 2 in. Scientia Agricultura Sinica, 2021, 54(10): 2105-2117. doi: 10.3864/j.issn. 0578-1752.2021.10.007. (in Chinese)
[26] FANKHAUSER C. The phytochromes, a family of red/far-red absorbing photoreceptors.Journal of Biological Chemistry, 2001, 276(15): 11453-11456.
[27] BAE G, CHOI G. Decoding of light signals by plant phytochromes and their interacting proteins. Annual Review of Plant Biology, 2008, 59: 281-311. doi: 10.1146/annurev.arplant.59.032607.092859.
[28] 張媛媛. 光敏色素的結(jié)構(gòu)及其信號(hào)調(diào)控機(jī)制. 湖北農(nóng)業(yè)科學(xué), 2020, 59(4): 5-10. doi:10.14088/j.cnki.issn0439-8114.2020.04.001.
ZHANG Y Y. Structure and signal regulation mechanism of phytochrome. Hubei Agricultural Sciences, 2020, 59(4): 5-10. doi: 10.14088/j.cnki.issn0439-8114.2020.04.001. (in Chinese)
[29] KLOSE C, VICZIáN A, KIRCHER S, SCH?FER E, NAGY F. Molecular mechanisms for mediating light-dependent nucleo/cytoplasmic partitioning of phytochrome photoreceptors. The New Phytologist, 2015, 206(3): 965-971.
[30] BURGIE E S, BUSSELL A N, WALKER J M, DUBIEL K, VIERSTRA R D. Crystal structure of the photosensing module from a red/far-red light-absorbing plant phytochrome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(28): 10179-10184.
[31] BURGIE E S, BUSSELL A N, LYE S H, WANG T, HU W M, MCLOUGHLIN K E, WEBER E L, LI H L, VIERSTRA R D. Photosensing and thermosensing by phytochrome B require both proximal and distal allosteric features within the dimeric photoreceptor. Scientific Reports, 2017, 7(1): 13648. doi: 10.1038/s41598-017- 14037-0.
[32] BURGIE E S, ZHANG J R, VIERSTRA R D. Crystal structure ofphytochrome in the photoactivated state reveals a cascade of structural rearrangements during photoconversion. Structure, 2016, 24(3): 448-457. doi: 10.1016/j.str.2016.01.001.
[33] XU D Q. Multifaceted roles of PIF4 in plants. Trends in Plant Science, 2018, 23(9): 749-751. doi: 10.1016/j.tplants.2018.07.003.
[34] 吳發(fā)強(qiáng). 大豆光敏色素基因的克隆和功能研究[D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2011.
WU F Q. Cloning and functional study of soybean phytochrome genes [D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese)
[35] LIU B, ZHAO S, LI P L, YIN Y L, NIU Q L, YAN J Q, HUANG D F. Plant buffering against the high-light stress-induced accumulation of CsGA2ox8 transcripts via alternative splicing to finely tune gibberellin levels and maintain hypocotyl elongation. Horticulture Research, 2021, 8(1): 170-180.
[36] WU Z, LIANG J H, WANG C P, DING L P, ZHAO X, CAO X, XU S J, TENG N J, YI M F. Alternative splicing provides a mechanism to regulate LlHSFA3 function in response to heat stress in lily. Plant Physiology, 2019, 181(4): 1651-1667. doi: 10.1104/pp.19.00839.
[37] CHEN M, TAO Y, LIM J, SHAW A, CHORY J. Regulation of phytochrome B nuclear localization through light-dependent unmasking of nuclear-localization signals. Current Biology, 2005, 15(7): 637-642. doi: 10.1016/j.cub.2005.02.028.
[38] MATSUSHITA T, MOCHIZUKI N, NAGATANI A. Dimers of the N-terminal domain of phytochrome B are functional in the nucleus. Nature, 2003, 424(6948): 571-574.
[39] HUQ E, AL-SADY B, QUAIL P H. Nuclear translocation of the photoreceptor phytochrome B is necessary for its biological function in seedling photomorphogenesis. The Plant Journal, 2003, 35(5): 660-664.
[40] KOO S C, YOON H W, KIM C Y, MOON B C, CHEONG Y H, HAN H J, LEE S M, KANG K Y, KIM M C, LEE S Y, CHUNG W S, CHO M J. Alternative splicing of thegene generates three transcript variants showing differential subcellular localizations. Biochemical and Biophysical Research Communications, 2007, 360(1): 188-193. doi: 10.1016/j.bbrc.2007.06.052.
[41] HE Z S, XIE R, ZOU H S, WANG Y Z, ZHU J B, YU G Q. Structure and alternative splicing of a heat shock transcription factor gene, MsHSF1, in. Biochemical and Biophysical Research Communications, 2007, 364(4): 1056-1061.
Cloning of Alternative Splice Variants ofin Lettuce and Its Expression Patterns Under Heat Stress
SUI XinYi, ZHAO XiaoGang, CHEN PengYu, LI YaLing, WEN XiangZhen
Horticulture College, Shanxi Agricultural University, Jinzhong 030801, Shanxi
【】Phytochrome B (PHYB) is a receptor for both light and temperature. In this study, the biological functions of alternative splice variants ofin lettuce in response to high environmental temperatures were investigated through cloning them and analyzing their expression patterns, so as to provide a theoretical basis for breeding heat-tolerant lettuce.【】The cDNA sequences ofwere searched from the genomic database of lettuce by bioinformatics method. The clonedandwere subjected to multi-sequence alignment, alternative splice variants form analysis and phylogenetic analysis. Protein properties, such as molecular weight, theoretical isoelectric point, hydrophilicity and hydrophobicity, were predicted by online software. Secondary structure, tertiary structure and conserved domains were analyzed by bioinformatics software. Three alternative splice variants were characterized for expression after high temperature treatment by RT-PCR. 【】There were three alternative splice variants ofobtained by cloning, namely,and, with their CDS lengths of 3 509, 3 877 and 2 690 bp, which encoded 1 094, 960 and 853 amino acids, respectively. Alternative splice forms ofwere alternative 3′ splice site and skipped exon. Alternative splice forms ofwere alternative polyA and retain intron. An alternative splice form ofwas skipped exon. Conserved structural domain analysis showed that the N-terminal of PHYB2 lacked the PAS and PHY domains. The N-terminal of PHYB3 lacked the PAS and PHY domains, and its C-terminal lacked the HisKA domain. Phylogenetic analysis showed that three alternative splice variants were clustered into a clade.qRT-PCR analysis showed that the expression ofwas the highest at the first day of high temperature treatment;had higher expression thanandat days 5-9 of high temperature treatment; at day 11 of high temperature treatment, the expression ofwas higher than that ofand. The three alternative splice variants peaked at different times during the 11 days of high temperature treatment. 【】There were three alternative transcript variants of, named,andB3.expression was the highest in the early stage of high temperature treatment,in response to high temperature stress.
lettuce;; alternative splice variants; heat stress; response
10.3864/j.issn.0578-1752.2022.09.011
2021-09-06;
2021-12-04
山西省重點(diǎn)研發(fā)計(jì)劃(201803D221001-1)
隋心意,E-mail:sui821793836@163.com。趙小剛,E-mail:1185178867@qq.com。隋心意和趙小剛為同等貢獻(xiàn)作者。通信作者溫祥珍,E-mail:330821473@qq.com
(責(zé)任編輯 趙伶俐)