李易玲,彭西紅,陳平,杜青,任俊波,楊雪麗,雷鹿,雍太文,楊文鈺
減量施氮對(duì)套作玉米大豆葉片持綠、光合特性和系統(tǒng)產(chǎn)量的影響
李易玲1,彭西紅1,陳平1,杜青1,任俊波1,楊雪麗1,雷鹿2,雍太文1,楊文鈺1
1四川農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/農(nóng)業(yè)農(nóng)村部西南作物生理生態(tài)與耕作重點(diǎn)實(shí)驗(yàn)室/四川省作物帶狀復(fù)合種植工程技術(shù)研究中心,成都 611130;2仁壽氣象局,四川眉山 620500
【】探究不同種植模式和施氮水平下玉米大豆的葉片持綠、光合和系統(tǒng)產(chǎn)量特性。通過田間定位試驗(yàn)研究種植方式(玉米單作(MM)、大豆單作(SS)、玉米套作(IM)、大豆套作(IS))和施氮水平(不施氮(NN)、減量施氮(RN:180 kgN·hm-2)、常量施氮(CN:240 kg N·hm-2))對(duì)玉米大豆葉片持綠、光合特性以及其干物質(zhì)積累和系統(tǒng)產(chǎn)量的影響。玉米產(chǎn)量隨施氮量增加而增加,大豆產(chǎn)量隨施氮增加先增后降;RN下,IM的籽粒干物質(zhì)積累量最大,玉米大豆套作系統(tǒng)的總產(chǎn)量最高,系統(tǒng)生產(chǎn)力指數(shù)(SPI)最大。套作下各作物的葉片持綠期更長,光合特性指標(biāo)均較單作穩(wěn)定,且在籽粒形成期優(yōu)于單作;各施氮水平下,套作處理的綠葉百分比均顯著高于單作,IM的最大綠葉衰減速率出現(xiàn)天數(shù)比MM的分別晚7 d、5 d和1 d;IS的則比SS的分別晚7 d、0 d和11 d。相比單作,套作可以顯著降低各施氮水平下玉米葉片的平均衰減速率,延長最大衰減速率出現(xiàn)天數(shù),降低綠葉衰減程度。各作物的光合速率表現(xiàn)為套作高于單作,減量施氮高于常量施氮。玉米R(shí)2期,IM的葉片光化學(xué)淬滅系數(shù)(Qp)比MM的高12.78%,非光化學(xué)淬滅系數(shù)(NPQ)則低21.30%;NPQ隨施氮水平的增加而降低,RN比NN降低了17.11%。套作SPAD值波動(dòng)幅度弱于單作,且呈穩(wěn)定上升趨勢(shì);玉米R(shí)2期,IM比MM高34.52%,大豆R2和R6期,IS分別比SS高10.39%、29.48%;RN的SPAD值最高,玉米R(shí)2期,IMRN處理比IMNN處理高17.46%,MMRN處理比MMNN處理高35.02%;大豆R6期,ISRN處理比ISNN和ISCN處理分別高7.71%、6.67%,SSRN處理比SSCN處理高10.03%。減量施氮下,玉米大豆套作顯著延長了葉片的持綠期;花后葉片的光合速率、PSⅡ光合機(jī)構(gòu)功能、葉綠素都保持在較高的水平且比單作穩(wěn)定,籽粒干物質(zhì)積累增強(qiáng),充分發(fā)揮了玉米的生產(chǎn)潛力并增加了大豆產(chǎn)量,使得套作系統(tǒng)總產(chǎn)量顯著提高。
玉米-大豆套作;減量施氮;系統(tǒng)產(chǎn)量;干物質(zhì)積累;葉片持綠;光合作用
【研究意義】玉米是我國種植面積最大的糧食作物,具有高產(chǎn)潛力,但我國玉米平均單產(chǎn)卻不足6 000 kg·hm-2,只有高產(chǎn)紀(jì)錄的30%[1]。大豆?fàn)I養(yǎng)價(jià)值高,但單產(chǎn)低,我國大豆產(chǎn)量只能滿足需求的13%[2],葉片早衰導(dǎo)致葉綠素降解、光合速率下降、生物量減少,是影響產(chǎn)量的重要原因之一[3–6]。李榮發(fā)等[7]研究發(fā)現(xiàn)玉米密植群體花后下部葉片變黃凋落,且伴隨著根系衰老,氮素吸收減弱,最終影響整株綠葉面積、花后干物質(zhì)積累量和籽粒產(chǎn)量。黃葉增多尤其在籽粒形成期將降低光合作用,阻礙碳水化合物的產(chǎn)生和運(yùn)輸。有效延長玉米灌漿和大豆結(jié)莢時(shí)期的葉片持綠期有利于延長光合時(shí)間和光合面積,提升玉米和大豆的總產(chǎn)量。【前人研究進(jìn)展】玉米-大豆帶狀套作復(fù)合種植是中國西南地區(qū)通過維持玉米產(chǎn)量來提高大豆產(chǎn)量的一種高效的栽培模式[8],禾本科和豆科的種間互補(bǔ)性有利于提高資源的利用效率。氮肥是作物生長的重要限制因子,適宜的施氮方式可以節(jié)肥增產(chǎn),提高氮肥利用率[8–10]。Feng等[11]研究發(fā)現(xiàn),玉米套種大豆可以顯著延緩玉米葉片衰老,提高玉米綠葉數(shù)(36%)、葉片綠度(17%)和葉片氮含量(13%)、大豆產(chǎn)量(147%)。前人研究表明適當(dāng)減氮可顯著提高氮肥利用率,并維持產(chǎn)量[12]。大豆是一種可以利用根瘤菌固氮的作物,生物固氮量占總體需氮量的50%[13],這就決定了大豆栽培并非需要投入大量氮肥。劉小明[14]研究發(fā)現(xiàn)玉米套種大豆可以提高氮素的利用率,同時(shí)降低氮肥殘留率、損失率以及氨揮發(fā)率。雍太文等[15]研究發(fā)現(xiàn)減量施氮提高了套作玉米和大豆的N、P、K總吸收率,土地當(dāng)量比高達(dá)2.28。董茜等[16]發(fā)現(xiàn)玉米大豆減量一體化施肥促進(jìn)了植株地上部的干物質(zhì)積累,提高了灌漿速率、單株粒數(shù)和單粒重。【本研究切入點(diǎn)】前人多集中在單一作物和種植模式上的葉片持綠性研究,對(duì)種植模式和施氮量雙重影響下葉片的持綠性及其系統(tǒng)產(chǎn)量的影響卻鮮有報(bào)道?!緮M解決的關(guān)鍵問題】本研究旨在評(píng)價(jià)不同種植模式和施氮水平對(duì)玉米和大豆葉片持綠、光合作用和產(chǎn)量的影響,葉片持綠與套作玉米大豆系統(tǒng)產(chǎn)量的聯(lián)系;建議適宜的種植模式和施肥方式,以提高系統(tǒng)總產(chǎn)。
2019—2020年在四川省現(xiàn)代糧食產(chǎn)業(yè)(仁壽)示范基地(30°07′N、104°18′E)開展大田定位試驗(yàn)(始于2012年),仁壽試驗(yàn)地屬亞熱帶季風(fēng)濕潤氣候,年均氣溫17.4℃,年均降雨1 009.4 mm,年均日照1 196.6 h,無霜期312 d。2019年4—10月降雨總量和日平均溫度分別為1 132 mm、22.5℃,最大降雨量集中在7月。2020年4—10月降雨總量和日平均溫度分別為894.1 mm、23.1℃,氣候較干旱,其4—7月的降雨量比2019年減少214 mm,8月出現(xiàn)最大降雨量(圖1)。
供試玉米品種為緊湊型品種“登海605”,由山東登海種業(yè)股份有限公司提供;大豆品種為耐蔭型品種“南豆12”,由四川省南充市農(nóng)業(yè)科學(xué)研究所提供。
圖1 試驗(yàn)地2019—2020年的日降雨量和日平均溫度
采用二因素裂區(qū)設(shè)計(jì),主區(qū)為種植模式,分別為玉米單作(MM)、玉米套作(IM)、大豆套作(IS)、大豆單作(SS);副區(qū)為施氮水平,分別為不施氮(NN:0 kg N·hm-2)、減量施氮(RN:180 kg N·hm-2,根據(jù)當(dāng)?shù)赜衩资┑看_定)和常量施氮(CN:240 kg N·hm-2,根據(jù)當(dāng)?shù)赜衩着c大豆總施氮量確定)[15],共9個(gè)處理,每個(gè)處理連續(xù)種3帶,帶長6 m,帶寬2 m,小區(qū)面積36 m2,重復(fù)3次。玉米//大豆套作、玉米單作和大豆單作均采用寬窄行種植,寬行160 cm,窄行40 cm。套作玉米寬行160 cm,窄行40 cm,在玉米大喇叭口期(V11)將兩行大豆播種于玉米寬行內(nèi),套作大豆行距40 cm,玉米與大豆間距60 cm,穴距均為17 cm;玉米穴留1株,密度5.85萬株/hm2,大豆穴留2株,密度11.7萬株/hm2;玉米、大豆單作與套作的種植密度相同,大豆單作穴留2株,玉米單作穴留1株,穴距均為34 cm。玉米、大豆施用的氮肥是46.2%的中顆粒尿素,P2O5為12%的過磷酸鈣,K2O為60%的氯化鉀。玉米氮肥分底肥和V11期的追肥,大豆氮肥一次性作底肥施用,玉米與大豆的施氮比例為3﹕1。玉米、大豆單作按株間溝施方式施肥,玉米//大豆套作按玉米、大豆一體化施肥方式,即玉米底肥統(tǒng)一施氮72 kg·hm-2,玉米V11期追肥與大豆氮磷鉀肥混合施用,在玉米、大豆之間,距玉米25 cm處開溝施肥[8,15-16]。單、套作玉米、大豆的磷鉀肥隨底肥施用,玉米P2O5105 kg·hm-2、K2O 112.5 kg·hm-2,大豆P2O563 kg·hm-2、K2O52.5 kg·hm-2。2019年,玉米4月6日播種,7月31日收獲;大豆6月7日播種,11月3日收獲。2020年,玉米4月1日播種,7月29日收獲;大豆6月5日播種,11月3日收獲。
1.3.1 葉片持綠特性 2020年,分別于玉米抽雄期(VT)后的第0、7、14、21、28、35、42天和大豆五葉期(V5)后的第0、15、30、45、60、75、90天在每個(gè)小區(qū)選擇長勢(shì)一致的5株植株調(diào)查取樣,收集所有葉片并拍照,用Image Pro Plus 6.0獲取總?cè)~面積、黃葉面積參數(shù)。單株綠葉百分比=單株綠葉面積/單株總?cè)~面積。以玉米抽雄(VT)和大豆五葉期(V5)后的天數(shù)(t)為自變量,每次測(cè)得的單株綠葉百分比為因變量(Y),參考呂國峰[17]的計(jì)算方法,用Logistic方程Y =A/(1+e(B(t-C)))對(duì)綠葉變化過程進(jìn)行模擬,式中,A、B、C為參數(shù)。
1.3.2 光合速率 2020年,于玉米的抽雄期(VT)和灌漿期(R2),大豆的五葉期(V5)、盛花期(R2)和盛粒期(R6),在晴朗的上午9:00—12:00,用 Li-6400光合儀測(cè)定玉米穗位葉和大豆倒三葉的凈光合速率。設(shè)定光合有效輻射恒定為1 000 mol·m-2·s-1,CO2濃度為400 μmol·mol-1。取連續(xù)5株的平均值計(jì)算。
1.3.3 葉綠素?zé)晒鈪?shù) 2020年,利用德國WALZ MINI-PAM-II超便攜式調(diào)制葉綠素?zé)晒鈨x,設(shè)定光強(qiáng)為800 μmoL·m-2·s-1。于玉米的抽雄期(VT)和灌漿期(R2),大豆的五葉期(V5)、盛花期(R2)和盛粒期(R6),測(cè)定玉米穗位葉和大豆倒三葉的熒光參數(shù),分別是PSII最大光化學(xué)量子效率(v/m)、實(shí)際光化學(xué)效率(v’/m’)、光化學(xué)淬滅系數(shù)(Qp)、非光化學(xué)淬滅系數(shù)(NPQ)[18]。每個(gè)處理取連續(xù)5株的平均值計(jì)算。
1.3.4 葉片SPAD值 2020年,于玉米的抽雄期(VT)和灌漿期(R2),大豆的五葉期(V5)、盛花期(R2)和盛粒期(R6),用日產(chǎn)SPAD-502葉綠素快速測(cè)定儀選取玉米的穗位葉和大豆的倒三葉,測(cè)定葉片的中部及周圍均勻分布的6個(gè)點(diǎn)的 SPAD值,取平均值為該株葉片的SPAD值,連續(xù)5株的平均值為該小區(qū)的SPAD值。
1.3.5 干物質(zhì)積累量 2020年,于玉米的抽雄期(VT)和灌漿期(R2),大豆的五葉期(V5)、盛花期(R2)和盛粒期(R6),選取每個(gè)小區(qū)長勢(shì)一致的植株5株,除去植株地下部分,把葉片、莖稈、果實(shí)分別裝袋,105℃下殺青 30 min 后以 80℃烘干至恒重,最后進(jìn)行干物質(zhì)稱重。
1.3.6 產(chǎn)量 2019與2020年在玉米、大豆的收獲期,從各小區(qū)取2行共12 m2測(cè)產(chǎn)。
套作系統(tǒng)生產(chǎn)力指數(shù)()[19-20]:
式中,S和S分別為單作玉米和大豆的平均產(chǎn)量,Y和Y分別為套作玉米和大豆的平均產(chǎn)量。
套作系統(tǒng)產(chǎn)量貢獻(xiàn)率[21]:
式中,S表示套作玉米或套作大豆的平均產(chǎn)量,S+S代表套作玉米和大豆的平均總產(chǎn)量之和。
使用 Microsoft Excel 2010和 SPSS 26.0 中進(jìn)行數(shù)據(jù)整理和統(tǒng)計(jì)分析, 采用 LSD法(<0.05)檢驗(yàn)顯著性,采用Origin 2021作圖。
2.1.1 葉片持綠曲線 如圖2所示,采用Logistic曲線模擬玉米和大豆的葉片持綠動(dòng)態(tài)變化。所有曲線的決定系數(shù)2均高于0.972,并達(dá)到極顯著水平,表明Logistic曲線可客觀擬合葉片持綠的規(guī)律。各作物套作處理的綠葉百分比均高于單作,IM、IS和SS的綠葉百分比均表現(xiàn)為RN高于NN和CN。
2.1.2 綠葉衰減參數(shù) 如表1所示,各個(gè)施氮水平下,套作的綠葉最大衰減速率出現(xiàn)天數(shù)顯著晚于單作,綠葉衰減程度顯著低于單作。IM的綠葉最大衰減速率出現(xiàn)天數(shù)分別比MM晚7 d、5 d、1 d;IS則比SS分別晚7 d、0 d、11 d。隨施氮水平的增加,玉米和大豆的綠葉最大衰減速率呈降低趨勢(shì),以RN最低,IS下RN的綠葉平均衰減速率分別比NN和CN的低36.36%、18.18%。單作葉片的最大衰減速率隨施氮水平降低,套作則先升高后降低??傊?,相比單作,套作可以顯著降低各施氮水平下玉米葉片的平均衰減速率,延長最大衰減速率出現(xiàn)天數(shù),降低綠葉衰減程度。
2.2.1 玉米大豆葉片光合速率動(dòng)態(tài)變化 各作物的光合速率表現(xiàn)為套作高于單作(圖3),減量施氮高于常量施氮。玉米R(shí)2期,NN和CN下,IM比MM分別高11.52%、10.5%;大豆R6期,RN和CN下,IS比SS分別高11.94%、26.47%。玉米VT期,IMRN處理比IMNN處理高13.53%;玉米R(shí)2期,MMRN處理比MMNN處理高13.71%;大豆R6期,ISRN處理比ISNN和ISCN處理分別高17.52%、11.85%,SSRN處理比SSNN和SSCN處理分別高12.84%、26.37%。
IM:套作玉米;MM:?jiǎn)巫饔衩?;IS:套作大豆;SS:?jiǎn)巫鞔蠖?。NN:不施氮;RN:減量施氮;CN:常量施氮。下同
表1 不同處理下綠葉衰減速率和程度差異
IM:套作玉米;MM:?jiǎn)巫饔衩祝籌S:套作大豆;SS:?jiǎn)巫鞔蠖埂N:不施氮;RN:減量施氮;CN:常量施氮。數(shù)據(jù)是平均值,小寫字母表示同一時(shí)期同一種植模式下不同施氮水平之間差異達(dá)到0.05顯著水平,小寫字母后的*或**代表同一時(shí)期同一施氮水平下不同種植模式間差異的顯著水平。*和**分別代表值達(dá)到0.05和0.01顯著水平。ns表示值差異不顯著。下同
IM: intercropping maize; MM: monoculture maize; IS: intercropping soybean; SS: monoculture soybean. NN: 0 N application; RN: reduced N application; CN: constant N application. The data is an average, and the small letters indicate that the significant level of the difference between different planting pattern under the same N application level in the same period. * or ** after the small letter represents the significant level of the difference between different plant pattern under the same N application level in the same period. ns means thatvalue has no significant difference. The same as below
表2 玉米和大豆各個(gè)時(shí)期的熒光參數(shù)
VT:抽雄期(玉米);V5:五葉期(大豆);R2:灌漿期(玉米)/盛花期(大豆);R6:盛粒期(大豆)
VT: Tasseling stage (maize); V5: Five leaf stage (soybean); R2: Filling stage (maize)/flowering stage (soybean); R6: Seed filling stage (soybean)
VT:抽雄期(玉米);V5:五葉期(大豆);R2:灌漿期(玉米)/盛花期(大豆);R6:盛粒期(大豆)。*,**和ns分別代表顯著性差異(P<0.05)、極顯著性差異(P<0.01)和無顯著性差異(P>0.05)。小寫字母表示同一時(shí)期同一種植模式下不同施氮水平之間差異達(dá)到0.05顯著水平。下同
2.2.2 玉米大豆葉片葉綠素?zé)晒鈪?shù)動(dòng)態(tài)變化 玉米VT期,IM葉片的Qp比MM低26.19%,而R2期則比MM高12.78%;玉米R(shí)2期,IM的NPQ比MM低21.30%;玉米R(shí)2期的v’/m’和NPQ比VT期分別升高了18.28%、32.15%,表明實(shí)際光化學(xué)效率和熱耗散同時(shí)增加;玉米葉片NPQ隨施氮水平的增加而降低,RN比NN降低17.11%。大豆的v’/m’隨生育期推進(jìn)呈現(xiàn)先增后減趨勢(shì),V5期,IS比SS低25%,R2和R6期,IS比SS分別高23.19、18.40%。減量施氮可提高IS的v’/m’并降低NPQ,V5、R2、R6期下ISRN處理的v’/m’比ISNN處理分別高29.41%、25%、26.32%,ISRN處理的NPQ則分別降低13.69%、19.45%、7.91%(表2)。
2.2.3 玉米大豆葉片SPAD動(dòng)態(tài)變化 套作SPAD值波動(dòng)幅度弱于單作,且呈穩(wěn)定上升趨勢(shì)(圖4)。玉米R(shí)2期,IM比MM高34.52%,大豆R2和R6期,IS分別比SS高10.39%、29.48%;施氮有利于提高各作物的SPAD值,以RN最高,玉米R(shí)2期,IMRN處理比IMNN處理高17.46%,MMRN處理比MMNN處理高35.02%;大豆R6期,ISRN處理比ISNN和ISCN處理分別高7.71%、6.67%,SSRN處理比SSCN處理高10.03%。
2.3.1 不同模式和氮水平下玉米大豆干物質(zhì)積累量差異 玉米VT—R2期,IM籽粒凈增量是MM的1.16倍,IM籽粒干物質(zhì)開始積累的時(shí)間雖比MM晚,但在灌漿期增速加快(圖5);IM的籽粒干物質(zhì)積累量隨施氮水平先增后降,MM則隨施氮水平逐漸增加,R2期,所有處理中以IMRN處理最高。NN和RN下,IM的籽粒干物質(zhì)積累量比MM分別高18.52%、8.7%。大豆籽粒干物質(zhì)積累量隨施氮量增加而下降,其中ISCN處理比ISRN處理低23.15%,SSRN處理比SSNN處理低97.62%;RN和CN下,IS大豆籽粒干物質(zhì)積累量比SS分別高89.66%、74.15%。
圖4 玉米大豆各個(gè)時(shí)期的SPAD值
2.3.2 不同模式和氮水平下玉米大豆系統(tǒng)產(chǎn)量及其產(chǎn)量貢獻(xiàn)率變化 2019與2020年,MM的產(chǎn)量比IM 高7.65%、24.13%;2019年,SS的產(chǎn)量比IS高4.14%,2020年則比IS低14.63%。減量施氮可增加玉米產(chǎn)量,2019年玉米R(shí)N的產(chǎn)量比NN高130.56%,2020年RN比NN高46.30%,而RN和CN的產(chǎn)量差異不顯著。大豆產(chǎn)量隨施氮水平增加呈先增后降趨勢(shì),2019年,大豆RN的產(chǎn)量分別比NN和CN高4.70%、23.38%。減量施氮顯著提高了系統(tǒng)生產(chǎn)力指數(shù),2019年,RN的SPI值比NN和CN分別高158.57%、11.20%;2020年,RN的SPI值比NN高37.33%,比CN低2.91%,但無顯著性差異。玉米產(chǎn)量貢獻(xiàn)率隨施氮量增加而增加,大豆則相反,在保證玉米不減產(chǎn)而大豆增產(chǎn)的目標(biāo)下,產(chǎn)量貢獻(xiàn)率在RN下有交匯點(diǎn),此時(shí)施氮較少,系統(tǒng)總產(chǎn)量最高(表3)。
葉片持綠能力可反映光合作用和葉片衰老情況[6]。本研究中,3個(gè)氮水平下套作的綠葉百分比均大于單作,套作曲線整體后移(圖2)。套作葉片持綠更久,光合特性指標(biāo)均較單作穩(wěn)定,且在籽粒形成期優(yōu)于單作。因此,玉米-大豆套作系統(tǒng)可延長葉片持綠期,進(jìn)而延緩光合作用時(shí)間,這和前人的研究規(guī)律一致[11,22-24]。套作持綠是植株群體對(duì)光環(huán)境改變的一種有效適應(yīng)。一方面,營養(yǎng)生長階段的套作種內(nèi)競(jìng)爭(zhēng)較大,且套作大豆在共生期受玉米蔭蔽影響,光合作用受限,生長較緩慢,但生長速率并未達(dá)到最大值,生殖生長階段套作群體相對(duì)于單作的透光率增加,光照充裕[25-26],因此葉片的光合性能開始恢復(fù),光合速率、SPAD值穩(wěn)步上升。另一方面,套作作物還可通過增大葉傾角、減小葉柄長度、適當(dāng)增加株高、提高葉綠體基粒類囊體的分布密度和排列整齊度、提高RuBPCase、PEPCase 等光合酶活性的方式以增強(qiáng)光能截獲和利用能力[27-29],本研究中,生殖生長期的套作大豆葉片的光化學(xué)淬滅系數(shù)Qp和非光化學(xué)淬滅系數(shù)NPQ均顯著高于單作,說明后期套作大豆PSⅡ反應(yīng)中心開放程度加大,熱耗散增加也保證了反應(yīng)中心D1蛋白的及時(shí)修復(fù)以減弱光抑制。另外,有研究表明套作植株根系的亞精胺合成酶表達(dá)上升、幾丁質(zhì)酶表達(dá)下降,根系互作產(chǎn)生的化感效應(yīng)增強(qiáng)了植株抗病抑菌能力,因此促進(jìn)了葉片生長,間接延長了持綠期[30]。套作能增強(qiáng)植株的吸肥固氮能力[15,31-32],可通過調(diào)節(jié)施氮量促進(jìn)植株高效光合。本研究中,套作大豆葉片的光合速率、SPAD隨施氮量的增加先增后減,與劉小明等[8]、葉君等[33]的研究一致。大豆葉片光合作用在減量施氮后存在邊際遞減,因此減量施氮下的葉片持綠能力和光合性能更優(yōu)。玉米吸氮能力強(qiáng),套種大豆后,不但能深入土壤汲取氮素,也可不斷獲得來自大豆固定的氮素,而被轉(zhuǎn)移的氮素會(huì)促進(jìn)大豆根瘤固氮[34],因此適當(dāng)減氮可以維持玉米大豆的正常光合作用和良好生長。
圖5 玉米大豆不同部位的干物質(zhì)積累量
作物的高產(chǎn)來自于功能葉持續(xù)較高的同化率和轉(zhuǎn)化率[24,35-38]。本研究中套作玉米籽粒在灌漿期大量形成,以減量施氮下的籽粒干物質(zhì)積累量最高(圖5),這與前人研究結(jié)果一致[15]。套作玉米的籽粒形成時(shí)間比單作晚,但R2期籽粒干物質(zhì)積累量可趕上單作,常量施氮對(duì)于套作玉米的籽粒干物質(zhì)增加效果不明顯,說明增加氮肥投入并不會(huì)促進(jìn)玉米籽粒干物質(zhì)積累。與單作相比,套作葉片可能獲得了相對(duì)較多的光照[26]以提高葉綠素含量和光合酶活性,最終延長了葉片持綠期并保證較高水平的碳同化[39]。減量施氮減少了莖稈和葉片的干物質(zhì),促進(jìn)光合產(chǎn)物運(yùn)輸?shù)阶蚜?。作物吸收的氮素?yōu)先用于增加分枝和葉面積指數(shù)[33],無效分枝和葉面積過大均會(huì)造成葉片相互重合遮蔭,導(dǎo)致花后通風(fēng)透光能力弱,中下層葉片光合速率大幅下降,同化物產(chǎn)生和轉(zhuǎn)運(yùn)受阻,套作配合減量施氮可有效控旺,并促進(jìn)葉片的光合產(chǎn)出和分配。此外,套作籽粒干物質(zhì)積累增多也可能與葉片后期較高的磷含量相關(guān)[39],楊峰等[40]的研究表明套作大豆葉片磷含量比單作高38.56%。磷不足會(huì)影響ATP/ADP的生成,降低PGA激酶及Ru5P激酶的活性,且磷參與葉綠體的磷酸丙糖交換輸出,當(dāng)磷減少時(shí),磷酸丙糖在葉綠體中合成淀粉儲(chǔ)存而代替轉(zhuǎn)為蔗糖輸出,從而減少了籽粒干物質(zhì)積累和產(chǎn)量形成。前人研究還發(fā)現(xiàn)套作大豆生殖生長期的地上部干物質(zhì)產(chǎn)生加快與地下部分較高的根瘤生長活力密切相關(guān)[8,41],表明持續(xù)的地下養(yǎng)分供應(yīng)可促進(jìn)葉片光合作用以充分積累干物質(zhì),為形成花莢和產(chǎn)量奠定基礎(chǔ)。禾本科套種豆科有顯著增產(chǎn)效果[42–44],這主要體現(xiàn)在大豆產(chǎn)量的增加[8]。本研究中,與單作相比,玉米大豆套作減少了玉米但增加了大豆的產(chǎn)量,與劉小明[8]的研究一致。系統(tǒng)生產(chǎn)力指數(shù)(system productivity index,SPI)是Odo[20]提出的一種分析系統(tǒng)主導(dǎo)作物生產(chǎn)潛力的標(biāo)準(zhǔn)化指數(shù),一個(gè)間/套作系統(tǒng)的生產(chǎn)力主要由主導(dǎo)作物和次級(jí)作物兩部分組成。玉米相對(duì)大豆是競(jìng)爭(zhēng)優(yōu)勢(shì)作物,其株型高大,在有限的資源空間之內(nèi),植株競(jìng)爭(zhēng)和沖突較大[45]。在本研究系統(tǒng)中,主導(dǎo)作物是玉米。增加氮肥的投入一定程度可以增加玉米葉片葉面積指數(shù)和生物量,但勢(shì)必會(huì)限制單葉對(duì)有限光能的截獲量,主導(dǎo)作物的生產(chǎn)潛力也因此降低。而大豆種內(nèi)競(jìng)爭(zhēng)激烈程度弱于玉米,投入適量的氮肥后,套作大豆能有效增加后期單葉光能截獲量、提高大豆群體光能利用率、減少葉片黃化凋落、延長光合面積和時(shí)間進(jìn)而增加大豆產(chǎn)量。本研究中,減量施氮的系統(tǒng)生產(chǎn)力指數(shù)最大,與Chen[19]的研究一致。表明減量施氮顯著提高了玉米的生產(chǎn)潛力,又同時(shí)增加了大豆的產(chǎn)出。劉小明等[8]研究發(fā)現(xiàn)減量施氮下玉米對(duì)大豆的種間競(jìng)爭(zhēng)力(ACS)接近0,競(jìng)爭(zhēng)比率(CRCS)接近1,這也可表明玉米大豆套作配合減量施氮可以有效促進(jìn)兩種作物對(duì)光、肥資源的利用,最大程度地減小競(jìng)爭(zhēng)效應(yīng),增強(qiáng)互補(bǔ)效應(yīng),縮小玉米大豆對(duì)系統(tǒng)產(chǎn)量的貢獻(xiàn)率差值,提高系統(tǒng)總產(chǎn)量,發(fā)揮土地最大生產(chǎn)力。
表3 玉米大豆產(chǎn)量、系統(tǒng)生產(chǎn)力指數(shù)及產(chǎn)量貢獻(xiàn)率
減量施氮下,玉米大豆套作顯著延長了玉米和大豆葉片的持綠期,進(jìn)而延長了光合時(shí)間。套作玉米和大豆花后的光合速率、PSⅡ光合機(jī)構(gòu)功能、葉綠素都保持在較高的水平且比單作更加穩(wěn)定,充分保證了葉片持續(xù)的光合生產(chǎn)力。同時(shí),葉片光合產(chǎn)物產(chǎn)生和轉(zhuǎn)移效率較高,促進(jìn)干物質(zhì)向籽粒積累,玉米和大豆產(chǎn)量貢獻(xiàn)率協(xié)調(diào)性達(dá)到最高以致減肥增產(chǎn)的效果更好。
[1] 王永軍, 楊今勝, 袁翠平, 柳京國, 李登海, 董樹亭. 超高產(chǎn)夏玉米花粒期不同部位葉片衰老與抗氧化酶特性. 作物學(xué)報(bào), 2013, 39(12): 2183-2191.
WANG Y J, YANG J S, YUAN C P, LIU J G, Li D H, DONG S T. Characteristics of senescence and antioxidant enzyme activities in leaves at different plant parts of summer maize with the super-high yielding potential after anthesis. Acta Agronomica Sinica, 2013, 39(12): 2183-2191. (in Chinese)
[2] 王甜, 龐婷, 杜青, 陳平, 張曉娜, 周穎, 汪錦, 楊文鈺, 雍太文. 田間配置對(duì)間作大豆光合特性、干物質(zhì)積累及產(chǎn)量的影響. 華北農(nóng)學(xué)報(bào), 2020, 35(2): 107-116.
WANG T, PANG T, DU Q, CHEN P, ZHANG X N, ZHOU Y, WANG J, YANG W Y, YONG T W. Effects of different field collocation patterns on photosynthetic characteristics and dry matter accumulation and yield in intercropping soybean. Acta Agriculturae Boreali-Sinica, 2020, 35(2): 107-116. (in Chinese)
[3] YANG L, GUO S, CHEN F J, YUAN L X, MI G H. Effects of pollination- prevention on leaf senescence and post-silking nitrogen accumulation and remobilization in maize hybrids released in the past four decades in China. Field Crops Research, 2017, 203: 106-113.
[4] ROBINSON W D, CARSON I, YING S, ELLIS K, PLAXTON W C. Eliminating the purple acid phosphatase AtPAP26 indelays leaf senescence and impairs phosphorus remobilization. New Phytologist, 2012, 196(4): 1024-1029.
[5] WOO H R, KIM H J, LIM P O, NAM H G. Leaf senescence: Systems and dynamics aspects. Annual review of plant biology, 2019: 70: 347-376.
[6] SUN C H, FAN S H, WANG X, LU J, ZHANG Z F, WU D M, SHAN Q, ZHENG Y L. Purple sweet potato color inhibits endothelial premature senescence by blocking the NLRP3 inflammasome. The Journal of Nutritional Biochemistry, 2015, 26(10): 1029-1040.
[7] 李榮發(fā), 劉鵬, 楊清龍, 任昊, 董樹亭, 張吉旺, 趙斌. 玉米密植群體下部葉片衰老對(duì)植株碳氮分配與產(chǎn)量形成的影響. 作物學(xué)報(bào), 2018, 44(7): 1032-1042.
LI R F, LIU P, YANG Q L, REN H, DONG S T, ZHANG J W, ZHAO B. Effects of lower leaf senescence on carbon and nitrogen distribution and yield formation in maize (L.) with high planting density. Acta Agronomica Sinica, 2018, 44(7): 1032-1042. (in Chinese).
[8] 劉小明, 雍太文, 蘇本營, 劉文鈺, 周麗, 宋春, 楊峰, 王小春, 楊文鈺. 減量施氮對(duì)玉米-大豆套作系統(tǒng)中作物產(chǎn)量的影響. 作物學(xué)報(bào), 2014, 40(9): 1629-1638.
LIU X M, YONG T W, SU B Y, LIU W Y, ZHOU L, SONG C, YANG F, WANG X C, YANG W Y. Effect of reduced N application on crop yield in maize-soybean intercropping system. Acta Agronomica Sinica, 2014, 40(9): 1629-1638. (in Chinese)
[9] 鄒曉錦, 張?chǎng)? 安景文. 氮肥減量后移對(duì)玉米產(chǎn)量和氮素吸收利用及農(nóng)田氮素平衡的影響. 中國土壤與肥料, 2011(6): 25-29.
ZOU X J, ZHANG X, AN J W. Effect of reducing and postponing of N application on yield, plant N uptake, utilization and N balance in maize. Soil and Fertilizer Sciences in China, 2011(6): 25-29. (in Chinese)
[10] 黃亞萍. 化肥減量對(duì)玉米間作大豆模式光和特性和產(chǎn)量的影響[D].楊凌: 西北農(nóng)林科技大學(xué), 2015.
HUANG Y P. Studies on light characteristic and yield of maize and soybean intercropping mode under reduction of fertilizer. Yangling: Northwest A&F University, 2015. (in Chinese)
[11] FENG L Y, RAZA M A, SHI J Y, ANSAR M, TITRIKU J K, MERAJ T A, SHAH G A, AHMED Z, SALEEM A, LIU W G, WANG X C, YONG T W, YUAN S, FENG Y, YANG W Y. Delayed maize leaf senescence increases the land equivalent ratio of maize soybean relay intercropping system. European Journal of Agronomy, 2020, 118: 126092.
[12] 戰(zhàn)秀梅, 李亭亭, 韓曉日, 鄒殿博, 左仁輝, 葉冰. 不同施肥方式對(duì)春玉米產(chǎn)量、效益及氮素吸收和利用的影響. 植物營養(yǎng)與肥料學(xué)報(bào), 2011, 17(4): 861-868.
ZHAN X M, LI T T, HAN X R, ZOU D B, ZUO R H, YE B. Effects of nitrogen fertilization methods on yield, profit and nitrogen absorption and utilization of spring maize. Plant Nutrition and Fertilizer Science, 2011, 17(4): 861-868. (in Chinese)
[13] 李欣欣, 許銳能, 廖紅. 大豆共生固氮在農(nóng)業(yè)減肥增效中的貢獻(xiàn)及應(yīng)用潛力. 大豆科學(xué), 2016, 35(4): 531-535.
LI X X, XU R N, LIAO H. Contributions of symbiotic nitrogen fixation in soybean to reducing fertilization while increasing efficiency in agriculture. Soybean Science, 2016, 35(4): 531-535. (in Chinese)
[14] 劉小明. 減量施氮下玉米—大豆套作系統(tǒng)的氮素高效利用機(jī)理研究[D]. 成都: 四川農(nóng)業(yè)大學(xué), 2015.
LIU X M. N utilization mechanism in reduced N and maize-soybean relay strip intercropping system[D]. Chengdu: Sichuan Agricultural University, 2015. (in Chinese)
[15] 雍太文, 劉小明, 劉文鈺, 蘇本營, 宋春, 楊峰, 王小春, 楊文鈺. 減量施氮對(duì)玉米-大豆套作體系中作物產(chǎn)量及養(yǎng)分吸收利用的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2014, 25(2): 474-482.
YONG T W, LIU X M, LIU W Y, SU B Y, SONG C, YANG F, WANG X C, YANG W Y. Effects of reduced N application rate on yield and nutrient uptake and utilization in maize soybean relay strip intercropping system. Chinese Journal of Applied Ecology, 2014, 25(2): 474-482. (in Chinese)
[16] 董茜. 減量施氮對(duì)玉米—大豆帶狀套作系統(tǒng)干物質(zhì)積累、轉(zhuǎn)移及氮肥吸收利用特性的影響[D]. 成都: 四川農(nóng)業(yè)大學(xué), 2014.
DONG Q. Effect of reduced N application on dry matter accumulation and translocation and N utilization efficiency in maize-soybean relay strip intercropping system [D]. Chengdu: Sichuan Agricultural University, 2014. (in Chinese)
[17] 呂國鋒, 范金平, 張伯橋, 高德榮, 王慧, 劉業(yè)宇, 吳素蘭, 程凱, 王秀娥. 小麥旗葉衰老過程不同數(shù)學(xué)模型擬合比較及衰老特征分析. 作物學(xué)報(bào), 2019, 45(1): 144-152.
LYU G F, FAN J P, ZHANG B Q, GAO D R, WANG H, LIU Y Y, WU S L, CHENG K, WANG X E. Comparison of different mathematical models describing flag leaf senescence process of wheat and characteristics of leaf senescence process. Acta Agronomica Sinica, 2019, 45(1): 144-152. (in Chinese).
[18] OXBOROUGH K. Imaging of chlorophyll a fluorescence: theoretical and practical aspects of an emerging technique for the monitoring of photosynthetic performance. Journal of Experimental Botany, 2004, 55(400): 1195-1205.
[19] CHEN P, DU Q, LIU X M, ZHOU L, HUSSAIN S, LEI L, SONG C, WANG X G, LIU W C, YANG F, SHU K, LIU J, DU J B, YANG W Y, YONG T W. Effects of reduced nitrogen inputs on crop yield and nitrogen use efficiency in a long-term maize-soybean relay strip intercropping system. PLoS ONE, 2017, 12(9): e0184503.
[20] ODO P E. Evaluation of short and tallvarieties in mixtures with cowpea in the Sudan savanna of Nigeria: land equivalent ratio, grain yield and system productivity index. Experimental Agriculture, 1991, 27(4): 435-441.
[21] 陳元?jiǎng)P, 馮鈴洋, RAZA M A, 范元芳, 諶俊旭, 雍太文, 楊文鈺, 楊峰. 四川地區(qū)玉米/大豆帶狀套作對(duì)大豆形態(tài)、葉綠素?zé)晒馓卣骷跋到y(tǒng)產(chǎn)量的影響. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào)(中英文), 2019, 27(6): 870-879.
CHEN Y K, FENG L Y, RAZA M A, FAN Y F, CHEN J X, YONG T W, YANG W Y, YANG F. Effect of maize/soybean relay strip intercropping system on soybean morphology, chlorophyll fluorescence, and yield in Sichuan area. Chinese Journal of Eco-Agriculture, 2019, 27(6): 870-879. (in Chinese).
[22] 楊蘭. 源庫調(diào)控對(duì)玉米葉片衰老和氮素轉(zhuǎn)移的影響及其生理機(jī)制[D]. 北京: 中國農(nóng)業(yè)大學(xué), 2016.
YANG L. Physiological mechanism of leaf senescence and nitrogen remobilization in maize (L.) as affected by source and sink manipulation[D]. Beijing: China Agricultural University, 2016. (in Chinese)
[23] 劉朝茂, 李成云. 玉米與大豆、馬鈴薯間作對(duì)玉米葉片衰老、產(chǎn)量及病害控制的影響. 江蘇農(nóng)業(yè)科學(xué), 2017, 45(6): 75-78.
LIU C M, LI C Y. Effects of maize intercropping with soybean and potato on leaf senescence, yield and disease control of maize. Jiangsu Agricultural Sciences, 2017, 45(6): 75-78. (in Chinese)
[24] 劉朝茂, 李成云. 玉米與大豆間作對(duì)玉米葉片衰老的影響. 江蘇農(nóng)業(yè)學(xué)報(bào), 2017, 33(2): 322-326.
LIU C M, LI C Y. Effects of maize/soybean intercropping on maize leaf senescence. Jiangsu Journal of Agricultural Sciences, 2017, 33(2): 322-326. (in Chinese)
[25] FENG L Y, RAZA M A, CHEN Y K, KHALID M H B, MERAJ T A, AHSAN F, FAN Y F, DU J B, WU X L, SONG C, LIU C Y, BAWA G, ZHANG Z W, YUAN S, YANG F, YANG W Y. Narrow-wide row planting pattern improves the light environment and seed yields of intercrop species in relay intercropping system. PLoS ONE, 2019, 14(2): e0212885.
[26] 陳國鵬, 王小春, 蒲甜, 曾紅, 陳誠, 彭霄, 丁國輝, 王銳, 楊文鈺. 玉米—大豆帶狀套作中田間小氣候與群體產(chǎn)量的關(guān)系. 浙江農(nóng)業(yè)學(xué)報(bào), 2016, 28(11): 1812-1821.
CHEN G P, WANG X C, PU T, ZENG H, CHEN C, PENG X, DING G H, WANG R, YANG W Y. Relationship of field microclimate and population yield in maize-soybean relay strip intercropping system. Acta Agriculturae Zhejiangensis, 2016, 28(11): 1812-1821. (in Chinese)
[27] 任永福, 陳國鵬, 蒲甜, 陳誠, 曾瑾汐, 彭霄, 馬艷瑋, 楊文鈺, 王小春. 玉米–大豆帶狀種植中套作高光效玉米窄行穂位葉光合特性對(duì)弱光脅迫的響應(yīng). 作物學(xué)報(bào), 2019, 45(5): 728-739.
REN Y F, CHEN G P, PU T, CHEN C, ZENG J X, PENG X, MA Y W, YANG W Y, WANG X C. Responses of photosynthetic characteristics to low light stress in ear leaves of high photosyntheticefficiency maize at narrow row of maize-soybean strip intercropping system. Acta Agronomica Sinica, 2019, 45(5): 728-739. (in Chinese)
[28] 于曉波, 梁建秋, 何澤民, 廖俊華, 張明榮, 吳海英, 明充, 唐瓊英, 李小清. 玉米-大豆帶狀套作對(duì)大豆葉片形態(tài)及光合特性的影響. 中國油料作物學(xué)報(bào), 2016, 38(4): 452-459.
YU X B, LIANG J Q, HE Z M, LIAO J H, ZHANG M R, WU H Y, MING C, TANG Q Y, LI X Q. Response of leaf morphology and photosynthetic characteristics of soybean in maize-soybean relay strip intercropping system. Chinese Journal of Oil Crop Sciences, 2016, 38(4): 452-459. (in Chinese)
[29] GAO Y, DUAN A W, QIU X Q, SUN J S, ZHANG J P, LIU H, WANG H Z. Distribution and use efficiency of photosynthetically active radiation in strip intercropping of maize and soybean. Agronomy Journal, 2010, 102(4): 1149-1157.
[30] LIU H M, GAO Y, GAO C Q, LIU S W, ZHANG J, CHEN G Q, ZHANG S J, WU F Z. Study of the physiological mechanism of delaying cucumber senescence by wheat intercropping pattern. Journal of Plant Physiology, 2019, 234/235: 154-166.
[31] 雍太文, 陳平, 劉小明, 周麗, 宋春, 王小春, 楊峰, 劉衛(wèi)國, 楊文鈺. 減量施氮對(duì)玉米-大豆套作系統(tǒng)土壤氮素氨化、硝化及固氮作用的影響. 作物學(xué)報(bào), 2018, 44(10): 1485-1495.
YONG T W, CHEN P, LIU X M, ZHOU L, SONG C, WANG X C, YANG F, LIU W G, YANG W Y. Effects of reduced nitrogen on soil ammonification, nitrification, and nitrogen fixation in maize-soybean relay intercropping systems. Acta Agronomica Sinica, 2018, 44(10): 1485-1495. (in Chinese)
[32] 周麗, 付智丹, 杜青, 陳平, 楊文鈺, 雍太文. 減量施氮對(duì)玉米/大豆套作系統(tǒng)中作物氮素吸收及土壤氨氧化與反硝化細(xì)菌多樣性的影響. 中國農(nóng)業(yè)科學(xué), 2017, 50(6): 1076-1087.
ZHOU L, FU Z D, DU Q, CHEN P, YANG W Y, YONG T W. Effects of reduced N fertilization on crop N uptake, soil ammonia oxidation and denitrification bacteria diversity in maize/soybean relay strip intercropping system. Scientia Agricultura Sinica, 2017, 50(6): 1076-1087. (in Chinese)
[33] 葉君, 高聚林, 王志剛, 于曉芳, 孫繼穎, 李麗君, 高英波, 王海燕, 賈寧, 高鑫, 崔超. 施氮量對(duì)超高產(chǎn)春玉米花粒期葉片光合特性及產(chǎn)量的影響. 玉米科學(xué), 2011, 19(6): 74-77.
YE J, GAO J L, WANG Z G, YU X F, SUN J Y, LI L J, GAO Y B, WANG H Y, JIA N, GAO X, CUI C. Effects of nitrogen on leaf photosynthesis and grain yield of super high-yield spring maize during the flowering and milking stages. Journal of Maize Sciences, 2011, 19(6): 74-77. (in Chinese)
[34] NEUGSCHWANDTNER R W, KAUL H-P. Nitrogen uptake, use and utilization efficiency by oat-pea intercrops. Field Crops Research, 2015, 179: 113-119.
[35] 崔亮, 蘇本營, 楊峰, 楊文鈺. 不同玉米-大豆帶狀套作組合條件下光合有效輻射強(qiáng)度分布特征對(duì)大豆光合特性和產(chǎn)量的影響. 中國農(nóng)業(yè)科學(xué), 2014, 47(8): 1489-1501.
CUI L, SU B Y, YANG F, YANG W Y. Effects of photo-synthetically active radiation on photosynthetic characteristics and yield of soybean in different maize/soybean relay strip intercropping systems. Scientia Agricultura Sinica, 2014, 47(8): 1489-1501. (in Chinese)
[36] 楊峰, 崔亮, 黃山, 劉衛(wèi)國, 雍太文, 楊文鈺. 不同株型玉米套作大豆生長環(huán)境動(dòng)態(tài)及群體產(chǎn)量研究. 大豆科學(xué), 2015, 34(3): 402-407.
YANG F, CUI L, HUANG S, LIU W G, YONG T W, YANG W Y. Soybean growth environment and group yield in soybean relay intercropped with different leaf type maize. Soybean Science, 2015, 34(3): 402-407. (in Chinese)
[37] 謝甫綈, 馬兆惠, 張惠君, 敖雪, 王海英. 氮肥對(duì)不同品質(zhì)基因型大豆光合生理和干物質(zhì)積累的影響. 大豆科學(xué), 2010, 29(2): 223-227.
XIE F T, MA Z H, ZHANG H J, AO X, WANG H Y. Effect of nitrogen fertilizer on photosynthetic physiology and dry matter accumulation of soybean with quality genotypes. Soybean Science, 2010, 29(2): 223-227. (in Chinese)
[38] 房彥飛, 徐文修, 符小文, 張永杰, 杜孝敬, 張娜, 安崇霄. 冬小麥?zhǔn)┑獙?duì)復(fù)播大豆土壤微生物區(qū)系及產(chǎn)量的影響. 核農(nóng)學(xué)報(bào), 2020, 34(8): 1826-1833.
FANG Y F, XU W X, FU X W, ZHANG Y J, DU X J, ZHANG N, AN C X. Effect of nitrogen applied in winter wheat on soil microflora and yield of summer-sowing soybean. Journal of Nuclear Agricultural Sciences, 2020, 34(8): 1826-1833. (in Chinese)
[39] SINCLAIR T R, BENNETT J M, MUCHOW R C. Relative sensitivity of grain yield and biomass accumulation to drought in field-grown maize. Crop Science, 1990, 30(3): 690-693.
[40] 楊峰, 黃山, 崔亮, 王小春, 雍太文, 劉衛(wèi)國, 楊文鈺. 玉米/大豆套作下作物葉片氮、磷動(dòng)態(tài)特征及其相關(guān)性分析. 植物營養(yǎng)與肥料學(xué)報(bào), 2013, 19(4): 781-789.
YANG F, HUANG S, CUI L, WANG X C, YONG T W, LIU W G, YANG W Y. Dynamic changes and correlations of P and N concentrations in crop leaves under relay intercropping system of maize and soybean. Journal of Plant Nutrition and Fertilizers, 2013, 19(4): 781-789. (in Chinese)
[41] 雍太文, 董茜, 劉小明, 劉文鈺, 宋春, 楊峰, 王小春, 楊文鈺. 施肥方式對(duì)玉米-大豆套作體系氮素吸收利用效率的影響. 中國油料作物學(xué)報(bào), 2014, 36(1): 84-91.
YONG T W, DONG Q, LIU X M, LIU W Y, SONG C, YANG F, WANG X C, YANG W Y. Effect of N application methods on N uptake and utilization efficiency in maize-soybean relay strip intercropping system. Chinese Journal of Oil Crop Sciences, 2014, 36(1): 84-91. (in Chinese)
[42] HAUGGAARD-NIELSEN H, AMBUS P, JENSEN E S. Interspecific competition, n use and interference with weeds in pea-barley intercropping. Field Crops Research, 2001, 70(2): 101-109.
[43] LI L, SUN J H, ZHANG F S, LI X L, YANG S C, RENGEL Z. Wheat/maize or wheat/soybean strip intercropping I. Yield advantage and interspecific interactions on nutrients. Field Crops Research, 2001, 71(2): 123-137.
[44] WILLEY R W, OSIRU D S O. Studies on mixtures of maize and beans () with particular reference to plant population. The Journal of Agricultural Science, 1972, 79(3): 517-529.
[45] YANG W T, LI Z X, WANG J W, WU P, ZHANG Y. Crop yield, nitrogen acquisition and sugarcane quality as affected by interspecific competition and nitrogen application. Field Crops Research, 2013, 146: 44-50.
Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping
LI YiLing1, PENG XiHong1, CHEN Ping1, DU Qing1, REN JunBo1, YANG XueLi1, LEI Lu2, YONG TaiWen1, YANG WenYu1
1College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu 611130;2Renshou Meteorological Bureau, Meishan 620500, Sichuan
【】The aim of this study was to explore the characteristics of leaf green retention, photosynthesis and system yield of maize and soybean under different planting modes and nitrogen (N) application levels.【】The effects of planting methods (maize monoculture (MM), soybean monoculture (SS), maize intercropping (IM), soybean intercropping (IS)) and N application levels (0 N application (NN), reduced N application (RN: 180 kg N·hm-2) and constant N application (CN: 240 kg N·hm-2)) on leaf stay-green, photosynthetic characteristics, dry matter accumulation and system yield of maize and soybean leaves were studied by field positioning experiment.【】The maize yield increased with the increase of N application, and the soybean yield increased first and then decreased with the increase of N application; Under RN, the seed dry matter accumulation of IM was the largest, the total yield of maize-soybean intercropping system was the highest, and the system productivity index (SPI) was the largest too. Under intercropping, the leaf green period of each crop was longer, the photosynthetic characteristics were more stable than that of monoculture, and better than that of monoculture at seed formation stage; Under all N application levels, the percentage of green leaves under intercropping treatment was significantly higher than that under monoculture. The maximum green leaf attenuation rate of IM appeared 7 d, 5 d and 1d later than that of MM, respectively, while IS was 7 d, 0 d and 11 d later than SS, respectively. Compared with monoculture, the intercropping could significantly reduce the average attenuation rate of maize leaves, prolong the days of maximum attenuation rate and reduce the attenuation degree of green leaves. The photosynthetic rate of each crop was higher under intercropping than monoculture, and the reduced N application was higher than the constant N application. At R2 stage, the photochemical quenching coefficient (QP) under IM was 12.78% higher than that under MM, and the non-photochemical quenching coefficient (NPQ) was 21.30% lower; NPQ decreased with the increase of N application level, while the ratio of RN to NN decreased by 17.11%. The fluctuation range of SPAD value of intercropping was weaker than that of monoculture, and showed a stable upward trend. In maize R2 stage, IM was 34.52% higher than MM; In soybean R2 and R6 stage, IS was 10.39% and 29.48% higher than SS, respectively, and the SPAD value of RN was the highest. At R2 stage, IMRN was 17.46% higher than IMNN, and MMRN was 35.02% higher than MMNN; in soybean R6 stage, ISRN was 7.71% and 6.67% higher than that of ISNN and ISCN, and SSRN was 10.03% higher than that of SSCN.【】Under reduced N application condition, the maize-soybean intercropping significantly prolonged the green holding period of leaves; After flowering, the photosynthetic rate of leaves, the function of PS Ⅱ photosynthetic mechanism and chlorophyll remained at a high level were more stable than that of monoculture, and the accumulation of seed dry matter was enhanced, which gave full play to the production potential of maize and increased the yield of soybean, so that the total yield of intercropping system was significantly increased.
maize-soybean relay strip intercropping system; reducing N application; system yield; dry matter accumulation; leaf stay-green; photosynthesis
10.3864/j.issn.0578-1752.2022.09.005
2021-07-26;
2021-09-06
國家現(xiàn)代農(nóng)業(yè)(大豆)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-04-PS18)、國家自然科學(xué)基金(31872856,31671625)
李易玲,E-mail:liyiling0904@qq.com。通信作者雍太文,E-mail:yongtaiwen@sicau.edu.cn
(責(zé)任編輯 楊鑫浩)