江東能,焦開(kāi)智,張峻銘,彭友幸,楊空松,鄭德鋒,郭向召,石紅娟,李廣麗
羅非魚性別控制遺傳育種研究進(jìn)展
江東能1,焦開(kāi)智1,張峻銘1,彭友幸1,楊空松2,鄭德鋒2,郭向召2,石紅娟1,李廣麗1
(1.廣東海洋大學(xué)水產(chǎn)學(xué)院 / 廣東省名特優(yōu)魚類生殖調(diào)控與繁育工程技術(shù)研究中心,廣東 湛江 524088;2.廣東海大集團(tuán)股份有限公司畜牧水產(chǎn)研究中心,廣東 廣州 511400)
羅非魚全雄養(yǎng)殖可有效控制繁殖、提高養(yǎng)殖效率,遺傳全雄羅非魚(Genetically male tilapia, GMT)技術(shù)是性別控制的高效手段,但GMT技術(shù)培育的魚苗雄性率不穩(wěn)定?;蚪M學(xué)和基因編輯等技術(shù)已廣泛應(yīng)用于羅非魚研究,極大地促進(jìn)了羅非魚性別決定與分化基礎(chǔ)理論研究。分析導(dǎo)致XY個(gè)體性別逆轉(zhuǎn)的可能因素,提出將來(lái)GMT技術(shù)研究的關(guān)鍵問(wèn)題,探討現(xiàn)代基因編輯技術(shù)在羅非魚性別控制育種中可能應(yīng)用。
遺傳全雄羅非魚;性別控制;性別決定;基因編輯
羅非魚主要有羅非魚屬()、口孵非鯽屬()和帚齒非鯽屬(),有生長(zhǎng)快、抗逆性強(qiáng)、肌間刺少、易于繁殖等優(yōu)點(diǎn),是世界上最重要暖水性養(yǎng)殖魚類[1-2]。我國(guó)是羅非魚最大生產(chǎn)、出口國(guó)[3]。目前世界主要養(yǎng)殖羅非魚為尼羅羅非魚(),莫桑比克羅非魚()、紅羅非魚(spp.)、尼羅羅非魚×奧利亞羅非魚()雜交后代也占一定養(yǎng)殖比例[4]??诜醴泅a屬魚類雌魚有口腔孵化魚卵和保護(hù)仔魚習(xí)性,影響產(chǎn)卵雌魚生長(zhǎng),導(dǎo)致收獲期個(gè)體規(guī)格不齊,養(yǎng)殖效益低。羅非魚雄魚比雌魚生長(zhǎng)快,全雄或高雄性率養(yǎng)殖還可克服雌雄混養(yǎng)的過(guò)度繁殖問(wèn)題。因此,全雄或高雄性率苗種養(yǎng)殖是羅非魚產(chǎn)業(yè)需求[5]。目前,主要通過(guò)魚苗飼料中添加雄激素(主要為17-甲基睪酮)誘導(dǎo)培育全雄魚苗,該法操作簡(jiǎn)單,雄性率可達(dá)98%[5-6]。但在歐盟成員國(guó)和美國(guó),養(yǎng)殖魚類投喂激素不合法[7]。投喂激素有潛在的環(huán)境威脅,可能存在水體污染和食品安全等公共健康隱患。因此,亟需建立環(huán)境友好型羅非魚性別控制方法。尼羅羅非魚有XY性別決定系統(tǒng),奧利亞羅非魚有ZW性別決定系統(tǒng)。ZZ奧利亞羅非魚雄魚和XX尼羅羅非魚雜交可產(chǎn)生全雄/高雄后代,雜種后代有雜交優(yōu)勢(shì)。但該法對(duì)親本純度要求高,親本不純會(huì)導(dǎo)致后代雄性率高低不一[8]。通過(guò)雌激素誘導(dǎo)XY個(gè)體性別逆轉(zhuǎn),再與正常XY雄魚交配,獲得YY超雄魚與正常XX雌魚交配可獲得全雄子代。用YY超雄魚培育全雄后代的技術(shù),國(guó)內(nèi)最早稱作三系配套途徑產(chǎn)生遺傳全雄羅非魚技術(shù),國(guó)外稱遺傳全雄羅非魚技術(shù)(Genetically male tilapia, GMT)[5,9]。傳統(tǒng)GMT技術(shù)需要通過(guò)測(cè)交篩選XY偽雌魚和YY超雄魚,費(fèi)時(shí)費(fèi)力。通過(guò)開(kāi)發(fā)性別連鎖的DNA分子標(biāo)記,將GMT技術(shù)與分子標(biāo)記輔助選育(Marker assistance selection, MAS)結(jié)合,可快速建立GMT技術(shù),稱作分子標(biāo)記輔助選育-遺傳全雄羅非魚技術(shù)(MAS-GMT)[10]。目前,GMT技術(shù)尚未大規(guī)模推廣應(yīng)用,主要由于羅非魚性別決定系統(tǒng)復(fù)雜,且影響羅非魚性別的遺傳因素較多。筆者綜述GMT技術(shù)最新進(jìn)展和存在問(wèn)題,提出解決GMT技術(shù)瓶頸的研究方向,展望基因編輯技術(shù)在羅非魚性別控制育種應(yīng)用可行性,為羅非魚性別控制育種提供參考。
早期主要通過(guò)種間雜交、雌核發(fā)育、激素誘導(dǎo)性別逆轉(zhuǎn)和細(xì)胞核型分析等方式確定羅非魚性別決定類型[11-13]。隨著DNA分子標(biāo)記技術(shù)的發(fā)展,主要通過(guò)性別連鎖分子標(biāo)記確定魚類性別決定類型,包括尼羅羅非魚[14-15]。目前,尼羅羅非魚有一雄性性別決定基因——XY性別決定系統(tǒng)。僅較少的尼羅羅非群體性染色體位于LG1[16-19],而大部分尼羅羅非魚群體性染色體位于LG23[10,20-28],可能是群體差異導(dǎo)致(表1)。羅非魚性別除受主效遺傳因子決定外,也受溫度[29-30]等環(huán)境因素影響。4日齡尼羅羅非魚幼苗在水溫25℃升至35℃條件下養(yǎng)殖1周,雄性率從52.5%升至75.9%[31]。這種影響還與遺傳相關(guān),通過(guò)選育,部分家系高溫處理后雄性率可提高到80%以上[32]。學(xué)界嘗試定位尼羅羅非魚溫度敏感的數(shù)量性狀位點(diǎn)(QTL),但尚未成功[33]。與尼羅羅非魚相比,奧利亞羅非魚、莫桑比克羅非魚和紅羅非魚性別決定類型研究相對(duì)較少,但有開(kāi)發(fā)性別連鎖標(biāo)記的報(bào)道,還有在雜交羅非魚開(kāi)發(fā)性別連鎖分子標(biāo)記的報(bào)道[34-41]。奧利亞羅非魚雄性性別決定位點(diǎn)位于LG1,莫桑比克羅非魚雄性性別決定位點(diǎn)位于LG1或LG14,其雌性決定位點(diǎn)位于LG3;紅羅非魚雄性位點(diǎn)位于LG22(曾稱LG23)[40](表1)。譚德階[41]基于奧利亞羅非魚和尼羅羅非魚基因組序列差異,開(kāi)發(fā)了大量LG1的SCAR標(biāo)記,證明奧利亞雄魚和尼羅羅非魚雌魚雜交后代雄性性別與LG1連鎖,這些標(biāo)記同樣適用于臺(tái)灣紅羅非魚雄魚和尼羅羅非魚雌魚的雜交后代,表明不同羅非魚LG1的雄性性別決定位點(diǎn)可能相同[41]。
口孵非鯽屬幾種魚可種間雜交,且雜交后代可育,通過(guò)雜交實(shí)驗(yàn)可判斷不同性染色體性別控制能力強(qiáng)弱。有ZW性別決定系統(tǒng)的奧利亞羅非魚和有XY性別決定系統(tǒng)的尼羅羅非魚的雜交F1性別顯示,幾條性染色體性別控制能力強(qiáng)弱順序?yàn)椋篩 >W >Z > X[42]。日本品系尼羅羅非魚與奧利亞羅非魚雜交結(jié)果顯示,尼羅羅非魚LG23 Y染色體的雄性位點(diǎn)上位于奧利亞羅非魚LG3 W染色體雌性位點(diǎn)[42]。而有研究發(fā)現(xiàn),奧利亞羅非魚W染色體的雌性位點(diǎn)上位于尼羅羅非魚Y染色體雄性位點(diǎn),推測(cè)這樣的尼羅羅非魚性染色體可能為L(zhǎng)G1 Y。研究已表明,尼羅羅非魚LG1 Y的性別控制能力弱于LG23 Y[42]。奧利亞羅非魚ZZ雄魚與尼羅羅非魚XX雜交F1,表示為“ZX”雄魚,它與尼羅羅非魚XX個(gè)體回交,能產(chǎn)生約1∶1的性比后代,且雄性性別與LG1連鎖,證明奧利亞羅非魚雄性性別決定位點(diǎn)位于LG1[41]。譚德階[41]通過(guò)雜交和性別連鎖的分子標(biāo)記分析,總結(jié)出尼羅羅非魚和奧利亞羅非魚性染色體的性別控制能力強(qiáng)弱順序?yàn)椋篖G23 Y > LG3 W > LG1 Z > LG23 X。但如果奧利亞羅非魚的雄性位點(diǎn)位于LG1,而不是LG3,那么用“ZX”表示奧利亞羅非魚和尼羅羅非魚雜交后代值得商榷,“LG1 Z>LG23 X”的表述也不夠準(zhǔn)確,因?yàn)橥ǔ!癦”代表LG3 Z染色體,而“ZX”雜交為雄性的原因卻是LG1雄性位點(diǎn)的作用,用“Z”表示該雄性位點(diǎn)不合理。筆者建議奧利亞羅非魚LG1雄性位點(diǎn)暫用LG1M(M表示雄性性別決定位點(diǎn))表示,而尼羅羅非魚相應(yīng)等位基因表示為L(zhǎng)G1m(m表示非雄性性別決定位點(diǎn))。奧利亞羅非魚雄性位點(diǎn)為純合LG1MM,雄魚為L(zhǎng)G1MMZZ,雌魚為L(zhǎng)G1MMZW,LG1M下位于LG3 W,“ZX”雜交羅非魚基因型為L(zhǎng)G1Mm。兩種羅非魚染色體性別控制能力強(qiáng)弱順序可表示為,LG23 Y >LG3 W > LG1M> LG1m或LG23 X。
表1 不同羅非魚性別連鎖分子標(biāo)記
性別連鎖分子標(biāo)記是建立MAS-GMT技術(shù)的重要基礎(chǔ),也是定位性別決定基因的基礎(chǔ)。性別決定基因與性別緊密連鎖,多種羅非魚LG1存在一雄性性別決定基因,但目前該基因仍未被克隆。定位分析顯示,不同羅非魚LG1上面的性別決定區(qū)域存在重疊,尼羅羅非魚、莫桑比克羅非魚和紅羅非魚LG1 Y染色體性別決定基因和奧利亞羅非魚LG1M可能是相同或相似基因。不同物種LG1雄性性別決定基因間的異同尚待解析。學(xué)界首先在日本品系尼羅羅非魚圖位克隆了LG23上的性別決定基因(anti-Müllerian hormone gene on the Y chromosome)。是常染色體基因串接復(fù)制而成,Y染色體座位存在兩個(gè)截短的△和正常的。進(jìn)一步研究發(fā)現(xiàn),XY個(gè)體單獨(dú)敲除△不導(dǎo)致性別逆轉(zhuǎn),單獨(dú)敲除或同時(shí)敲除和△導(dǎo)致性別逆轉(zhuǎn);另一方面,胚胎轉(zhuǎn)基因注射含有的Fosmid質(zhì)?;蚓藜?xì)胞病毒(Cytomegalovirus,CMV)啟動(dòng)子驅(qū)動(dòng)過(guò)表達(dá)的質(zhì)粒均可導(dǎo)致XX個(gè)體性別逆轉(zhuǎn),從獲得功能和失去功能兩方面均表明是尼羅羅非魚的性別決定基因[43]。Li等[43]發(fā)現(xiàn),的一個(gè)錯(cuò)義SNP(C/T)導(dǎo)致編碼的絲氨酸突變?yōu)榱涟彼幔茰y(cè)該SNP可能與的雄性性別決定功能有關(guān)[43]。跟蹤研究表明,串接復(fù)制的廣泛存在于尼羅羅非魚的養(yǎng)殖品系和天然群體,且在這些群體都與雄性性別連鎖[27-28,44]。某些尼羅羅非魚群體雖與雄性性別連鎖,但上述錯(cuò)義SNP (C/T) 并不存在,表明該SNP不是成為雄性性別決定基因的根本原因[44]。最近發(fā)現(xiàn),Amhy可通過(guò)下游Amhr2/Smad信號(hào)通路抑制雌激素合成關(guān)鍵酶芳香化酶編碼基因的表達(dá)雌激素合成受阻,導(dǎo)致性腺向精巢分化[45]。比較基因組發(fā)現(xiàn),尼羅羅非魚LG23性別決定基因起始于基因,終止于基因,基因在二者之間,復(fù)制區(qū)域橫跨21 kb[28]。尼羅羅非魚、奧利亞羅非魚和莫桑比克羅非魚LG3是其最長(zhǎng)染色體,分子標(biāo)記顯示,奧利亞羅非魚、莫桑比克羅非魚的雌性性別決定區(qū)間均位于LG3,基因組測(cè)序組裝分析發(fā)現(xiàn),LG3富含重復(fù)序列,大大增加了鑒定W染色體性別決定基因的難度[46-47]。在奧利亞羅非魚LG3 W染色體性別決定區(qū)間發(fā)現(xiàn),和基因與雌性性別緊密連鎖,和均存在W特異拷貝,基因在ZW個(gè)體卵巢表達(dá)水平顯著高于ZZ個(gè)體精巢,可能是其W染色體性別決定候選基因,但目前還缺乏功能研究證據(jù)[47]。最近研究[48]表明,附近的與奧利亞羅非魚、和性別連鎖,在5日齡奧利亞羅非魚ZW個(gè)體性腺表達(dá),而在ZZ個(gè)體性腺不表達(dá),是這幾種魚類W染色體性別決定候選基因[48]。魚類是脊椎動(dòng)物最大類群,魚類性別決定系統(tǒng)較哺乳類、鳥類復(fù)雜多變,性染色體常轉(zhuǎn)換,羅非魚類是研究性染色體進(jìn)化的理想類群;因此,羅非魚性別決定類型和機(jī)制研究,既是水產(chǎn)養(yǎng)殖性別控制的理論基礎(chǔ),也是基礎(chǔ)生物學(xué)關(guān)注的熱點(diǎn)問(wèn)題[49-50]。
早期GMT技術(shù)依賴傳統(tǒng)測(cè)交鑒定基因型,測(cè)交工作繁瑣,費(fèi)時(shí)費(fèi)力,難以獲得足夠數(shù)量的YY超雄魚親本,除非獲得YY雌魚,并與YY雄魚交配,如YY雌魚能正常繁殖,可建立YY維持系,大量繁殖YY親本;但前期大量測(cè)交工作仍不可避免。在開(kāi)發(fā)性別特異分子標(biāo)記的基礎(chǔ)上,人們建立了MAS-GMT技術(shù),通過(guò)廣泛實(shí)踐,可大大降低GMT工作量,且可在3代后培育出全雄后代[10],縮短了育種年限。目前,LG1上雄性性別決定基因尚未克隆,其連鎖分子標(biāo)記不適用于所有群體建立MAS-GMT技術(shù),限制了其應(yīng)用。再者,尼羅羅非魚LG1雄性位點(diǎn)的性別控制能力可能弱于奧利亞羅非魚LG3雌性位點(diǎn)W,如尼羅羅非魚群體漸滲了奧利亞羅非魚的基因,則不能保證LG1 Y有效控制子代性別。MAS-GMT主要利用LG23上的雄性性別決定基因進(jìn)行羅非魚性別控制性別。無(wú)論是傳統(tǒng)GMT,還是MAS-GMT,雄性率均不穩(wěn)定(表2)[5,9-10,21,23,26,51-58]。傳統(tǒng)GMT雄性率不高,可認(rèn)為是親本測(cè)交鑒定的基因型不準(zhǔn)確導(dǎo)致。雖然MAS-GMT可準(zhǔn)確鑒定親本基因型,但已證實(shí)不同的尼羅羅非魚群體存在含的XY雌性個(gè)體,且有的家系這種XY雌性個(gè)體的比例較高(接近50%),但當(dāng)前僅通過(guò)特異分子標(biāo)記證明存在含有的XY雌魚,將來(lái)還需通過(guò)全基因組測(cè)序,確定是否存在含有和△的XY雌魚,探究是否存在某種影響功能的突變。此外,還需探究會(huì)影響XY個(gè)體性別表型的其他因素,XY個(gè)體雄性率不穩(wěn)定是限制MAS-GMT技術(shù)推廣應(yīng)用的瓶頸之一[59]。目前,商業(yè)養(yǎng)殖品種,利用LG23進(jìn)行性別控制的效果不佳,如子代雄性率低于97%則不宜推廣。如何在商業(yè)品系保障高雄性率是目前GMT技術(shù)首先需解決的關(guān)鍵問(wèn)題。在日本品系尼羅羅非魚,由于該群體是實(shí)驗(yàn)室封閉群體,其YY魚與XX個(gè)體繁殖后代雄性率高且穩(wěn)定,可能與該群體遺傳純度高有關(guān)。因此,可在遺傳純度高,且能高效控制性別的尼羅羅非魚群體建立GMT技術(shù)。
不論是傳統(tǒng)的GMT技術(shù),還是MAS-GMT均面臨雄性率不穩(wěn)定的問(wèn)題。表2可見(jiàn),雖然LG23的是目前克隆的羅非魚雄性較強(qiáng)的性別決定基因,但養(yǎng)殖群體大量存在XY雌魚的現(xiàn)象[59]。目前尚不清楚LG23 XY雌魚存在的原因??赡艿脑蛴腥菏紫?,性別決定基因存在減弱其雄性決定效能的突變。第二,存在雌性性別決定位點(diǎn)上位于含的LG23 Y,這些位點(diǎn)可能來(lái)自其他羅非魚,如奧利亞羅非魚LG3 W染色體雌性性別決定基因,雖然目前雜交實(shí)驗(yàn)表明含的LG23 Y上位于奧利亞羅非魚LG3 W,但仍然不清楚LG3 W雌性性別決定位點(diǎn)純合后能否上位于,不清楚LG3 W是否對(duì)于LG23 Y有隱性上位效應(yīng)。當(dāng)然,也不排除羅非魚群體還存在其他的雌性性別決定位點(diǎn)能降低性別決定的能力[42,60]。第三,羅非魚品種混雜可能導(dǎo)致性別控制能力減弱,尼羅羅非魚可能需要尼羅羅非魚其他基因的協(xié)助,雜交導(dǎo)致尼羅羅非魚某些關(guān)鍵協(xié)助基因丟失,從導(dǎo)致雄性性別決定能力的降低。在日本群體尼羅羅非魚和奧利亞羅非魚雜交F1后代中,“WY”個(gè)體全雄[42]。由于日本群體遺傳純度高,因此雜交F1有一半基因來(lái)自尼羅羅非魚,它們可很好地協(xié)助決定雄性性別,而在雜交F2中,由于基因位點(diǎn)分離、重組、交換和突變等因素影響,不能保證所有個(gè)體均有一套來(lái)自尼羅羅非魚的完整基因,失去來(lái)自尼羅羅非魚某些關(guān)鍵基因的協(xié)助,可能不能很好地控制性別,后代可能會(huì)出現(xiàn)含有雌魚。是轉(zhuǎn)化生長(zhǎng)因子-β(Transforming growth factor β,TGF-) 基因家族成員,需與其特異的I和II型受體結(jié)合,方可啟動(dòng)下游信號(hào)通路[61-62]。尼羅羅非魚與其他羅非魚Amhy/Amh下游受體序列可能存在物種差異,導(dǎo)致Amhy和不同物種受體之間親和力出現(xiàn)差異,這些受體變異可能導(dǎo)致它們不能很好地介導(dǎo)Amhy信號(hào)通路。在哺乳動(dòng)物,Amhr2是Amh特異的II型受體[63]。在尼羅羅非魚,突變導(dǎo)致XY個(gè)體由雄向雌的性逆轉(zhuǎn),表明Amhr2也可能是Amhy/Amh的II型受體,但目前尚缺乏配體受體結(jié)合實(shí)驗(yàn)數(shù)據(jù)支持[43]。有些魚類(如斑馬魚)卻僅有,在基因組中已丟失[64]。通過(guò)基因編輯技術(shù),遺傳分析表明斑馬魚Bmpr2a可能是Amh的II型受體[65]。目前,羅非魚Amhy/Amh的I型和II型受體尚待鑒定。在生產(chǎn)上,羅非魚種間雜交易導(dǎo)致品種混雜。有的羅非魚苗種場(chǎng)為節(jié)省養(yǎng)殖空間,將尼羅羅非魚和奧利亞羅非魚混養(yǎng),雖然兩者間形態(tài)易于區(qū)分,但養(yǎng)殖人員可能會(huì)操作失誤,兩者雜交后代外觀與親本不易區(qū)分,易造成品種混雜。羅非魚種質(zhì)需嚴(yán)格管理,在GMT技術(shù)建立過(guò)程中,需建立嚴(yán)格的種質(zhì)管控體系,避免品種混雜導(dǎo)致XY個(gè)體性別逆轉(zhuǎn)。解析在不同遺傳背景羅非魚中性別控制能力是未來(lái)研究的重要問(wèn)題。
表2 遺傳雄性羅非魚技術(shù)應(yīng)用現(xiàn)狀
針對(duì)前述的存在LG23XY雌魚的前兩種可能原因——突變和其他雌性性別決定位點(diǎn)的干擾,可采取如下策略應(yīng)對(duì):首先,開(kāi)發(fā)LG1和LG3性別特異分子標(biāo)記,圖位克隆前述的性別決定基因。利用LG1雄性性別決定位點(diǎn),讓其與位點(diǎn)一起控制子代性別,即培育同時(shí)有LG1 Y和LG23 Y雄性基因的超雄羅非魚作為親本,可表示為L(zhǎng)G1 YY; LG23 YY,以更充分保障子代雄性率,避免發(fā)生突變時(shí)導(dǎo)致XY個(gè)體性別逆轉(zhuǎn)的情況。第二,在性別控制親本群體通過(guò)分子標(biāo)記移除含有LG3雌性性別決定位點(diǎn)的個(gè)體,避免雌性位點(diǎn)對(duì)和LG1雄性性別控制能力的干擾。當(dāng)然,養(yǎng)殖群體干擾性別控制能力的雌性位點(diǎn)不一定來(lái)自LG3 W染色體,還可能來(lái)自其他雌性性別決定位點(diǎn),這需進(jìn)一步進(jìn)行基因定位克隆和功能驗(yàn)證。針對(duì)存在含的XY雌魚的第3種解釋——雜交導(dǎo)致缺乏來(lái)自尼羅羅非魚某些協(xié)助控制性別的關(guān)鍵基因,需盡量使用尼羅羅非魚純系開(kāi)展性別控制。還可通過(guò)選育,選擇控制性別能力強(qiáng)的家系,類似于通過(guò)選育提高奧利亞羅非魚和尼羅羅非魚雜交后代雄性率[66]。含的XY個(gè)體性別逆轉(zhuǎn)為雌魚還可能是以上因素綜合作用的結(jié)果,不同羅非魚群體出現(xiàn)XY雌魚的原因可能不同。鑒于此,需分析不同羅非魚群體XY雌魚,解析XY雌魚產(chǎn)生機(jī)制,為完善GMT技術(shù)提供基礎(chǔ)。
為省去分子標(biāo)記大量篩選鑒定YY魚的步驟,可建立YY維持系,即將YY超雄魚用雌性激素轉(zhuǎn)化成雌魚,YY雌魚與YY超雄魚交配,生產(chǎn)大量YY超雄魚,大部分用于生產(chǎn)XY全雄魚,少量用于繼續(xù)生產(chǎn)YY超雄魚,如此循環(huán)下去,可長(zhǎng)期保障穩(wěn)定生產(chǎn)大量YY魚。YY尼羅羅非魚誘導(dǎo)雌性化難度較大,要求雌激素處理濃度更高、處理時(shí)間更長(zhǎng),而高強(qiáng)度的雌激素處理會(huì)影響育性[60]。最近,柳興永[67]指出,通過(guò)調(diào)整雌激素誘導(dǎo)條件可培育出可育的YY雌魚,建立YY維持系,實(shí)現(xiàn)YY雄魚規(guī)模化生產(chǎn)。YY雌魚誘導(dǎo)處理仍較復(fù)雜,還需進(jìn)一步解析YY超雄魚誘導(dǎo)難的機(jī)理,提高YY雌魚繁殖能力,建立穩(wěn)定YY維持系。
已在多種養(yǎng)殖魚類建立基因編輯技術(shù),標(biāo)志養(yǎng)殖魚類研究進(jìn)入功能基因時(shí)代,尼羅羅非魚中也已建立TALENs和CRISPR/CAS9基因編輯技術(shù)[68-70]。目前,Li等[68]已利用基因編輯技術(shù)研究30余尼羅羅非魚生殖相關(guān)基因的功能,他們的養(yǎng)殖魚類基因功能研究處于國(guó)際領(lǐng)先水平?;蚓庉嫾夹g(shù)不僅可研究基因功能,還可按照既定設(shè)計(jì)進(jìn)行品種改良,用于生物精準(zhǔn)育種。斑點(diǎn)叉尾鮰()和團(tuán)頭魴()在敲除肌肉生長(zhǎng)抑制基因后,生長(zhǎng)加快、個(gè)體變大[71-72],為應(yīng)用基因編輯技術(shù)改良水產(chǎn)動(dòng)物生長(zhǎng)性能提供了參考。尼羅羅非魚多個(gè)基因敲除可導(dǎo)致性別逆轉(zhuǎn),如敲除、導(dǎo)致由雄向雌的性別逆轉(zhuǎn),敲除、導(dǎo)致由雌向雄的性別逆轉(zhuǎn)[73-76]。因此,通過(guò)基因編輯可控制羅非魚性別,并可與GMT技術(shù)結(jié)合應(yīng)用。如鯉(L.)敲除后,獲得-/-的XX偽雄魚,將其與正常XX雌魚交配,可以獲得全雌+/-鯉魚,建立了一種無(wú)需任何激素誘導(dǎo)處理的性別控制技術(shù)[77];青鳉()純合突變導(dǎo)致XX個(gè)體體性別逆轉(zhuǎn)為雄性,且能產(chǎn)生精子細(xì)胞,XX-/-雄魚理論上可與野生型雌魚(XX+/+)交配產(chǎn)生雌性雜合后代[78]。此外,羅非魚性別控制關(guān)鍵問(wèn)題是控制雌魚過(guò)度繁殖,可利用基因編輯技術(shù)敲除一些卵巢發(fā)育和育性相關(guān)基因,從而使雌魚不育或繁殖時(shí)間推遲,這樣即使GMT未能獲得全雄后代,性別逆轉(zhuǎn)的XY雌魚因?yàn)槿狈δ承┯韵嚓P(guān)基因而表現(xiàn)為不育,從而避免過(guò)度繁殖。目前,基因敲除技術(shù)證明,影響雌性尼羅羅非魚育性的基因有、、、和等[79-83]。最近,王德壽教授團(tuán)隊(duì)還通過(guò)編輯體色相關(guān)基因,獲得不同體色的尼羅羅非魚,如將體色基因編輯與GMT技術(shù)結(jié)合,可培育消費(fèi)者喜愛(ài)體色的全雄羅非魚[84]?;蚓庉嫾夹g(shù)可按照人們的設(shè)計(jì)改變魚類性狀,將來(lái)在羅非魚育種中有廣闊的應(yīng)用前景。
綜上,GMT技術(shù)是一項(xiàng)有發(fā)展?jié)摿Φ牧_非魚遺傳性別控制育種技術(shù),40多a來(lái),學(xué)界在性別連鎖標(biāo)記開(kāi)發(fā)、性別決定基因克隆等方面取得不少階段性成果。羅非魚性別決定機(jī)制復(fù)雜,GMT技術(shù)培育的魚苗雄性率不穩(wěn)定,制約了GMT技術(shù)推廣應(yīng)用。筆者分析了導(dǎo)致XY個(gè)體性別逆轉(zhuǎn)的可能因素,提出了將來(lái)GMT技術(shù)研究的關(guān)鍵問(wèn)題,探討了現(xiàn)代基因編輯技術(shù)在羅非魚性別控制育種中可能的應(yīng)用。我國(guó)是羅非魚養(yǎng)殖大國(guó),大量羅非魚苗種依賴激素處理,需通過(guò)技術(shù)革新,建立綠色高效的性控方法。攻克羅非魚性別控制育種的技術(shù)難題,還可為其他水產(chǎn)動(dòng)物性別控制育種提供參考。
西南大學(xué)王德壽教授詳細(xì)審閱本文,謹(jǐn)致謝忱。
[1] FAO.Food and Agriculture Organization of the United Nations (FAO).Cultured aquatic species information programme,(Linnaeus, 1758) [EB/OL].(2006-05-19) [2021-10-10].http://www.fao.org/ fishery/culturedspecies/Oreochromis_niloticus/en.
[2] FAO.Food and Agriculture Organization of the United Nations (FAO).The state of world fisheries and aquaculture 2020.Sustainability in action[EB/OL].[2021-10-10].https://doi.org/10.4060/ca9229zh.
[3] 代云云, 袁永明, 袁媛, 等.中國(guó)羅非魚產(chǎn)業(yè)供求分析[J].中國(guó)農(nóng)學(xué)通報(bào), 2021, 37(7): 144-149.
[4] Yá?EZ J M, JOSHI R, YOSHIDA G M.Genomics to accelerate genetic improvement in tilapia[J].Animal Genetics, 2020, 51(5): 658-674.
[5] MAIR G C, ABUCAY J S, BEARDMORE J A, et al.Growth performance trials of genetically male tilapia (GMT) derived from YY-males inL.: on station comparisons with mixed sex and sex reversed male populations[J].Aquaculture, 1995, 137(1/2/3/4): 313-323.
[6] SINGH A K.Introduction of modern endocrine techniques for the production of monosex population of fishes[J].General and Comparative Endocrinology, 2013, 181: 146-155.
[7] MEGBOWON I, MOJEKWU T O.Tilapia sex reversal using methyl testosterone (MT) and its effect on fish, man and environment[J].Biotechnology(Faisalabad), 2014, 13(5): 213-216.
[8] LOZANO C A, GJERDE B, ?DEG?RD J, et al.Heritability estimates for male proportion in hybrids between Nile tilapia females () and blue tilapia males ()[J].Aquaculture, 2014, 430: 66-73.
[9] 楊永銓, 張中英, 林克宏, 等.應(yīng)用三系配套途徑產(chǎn)生遺傳上全雄莫桑比克羅非魚[J].遺傳學(xué)報(bào), 1980, 7(3): 241-246.
[10] SUN Y L, JIANG D N, ZENG S, et al.Screening and characterization of sex-linked DNA markers and marker-assisted selection in the Nile tilapia ()[J].Aquaculture, 2014, 433: 19-27.
[11] AVTALION R R, DON J.Sex-determining genes in tilapia: a model of genetic recombination emerging from sex ratio results of three generations of diploid gynogenetic[J].Journal of Fish Biology, 1990, 37(1): 167-173.
[12] MAIR G C, SCOTT A G, PENMAN D J, et al.Sex determination in the genus1.Sex reversal, gynogenesis and triploidy in(L.) [J].Theoretical and Applied Genetics, 1991, 82(2): 144-152.
[13] HARVEY S C, BOONPHAKDEE C, CAMPOS-RAMOS R, et al.Analysis of repetitive DNA sequences in the sex chromosomes of[J].Cytogenetic and Genome Research, 2003, 101(3/4): 314-319.
[14] 梅潔, 桂建芳.魚類性別異形和性別決定的遺傳基礎(chǔ)及其生物技術(shù)操控[J].中國(guó)科學(xué): 生命科學(xué), 2014, 44(12): 1198-1212.
[15] BARDAKCI F.The use of random amplified polymorphic DNA (RAPD) markers in sex discrimination in Nile Tilapia,(Pisces: Cichlidae)[J].Turkish Journal of Biology, 2000, 24(2):169-176.
[16] LEE B Y, PENMAN D J, KOCHER T D.Identification of a sex-determining region in Nile tilapia () using bulked segregant analysis[J].Animal Genetics, 2003, 34(5): 379-383.
[17] LEE B Y, COUTANCEAU J P, OZOUF-COSTAZ C, et al.Genetic and physical mapping of sex-linked AFLP markers in Nile tilapia ()[J].Marine Biotechnology (New York), 2011, 13(3): 557-562.
[18] EZAZ M T, HARVEY S C, BOONPHAKDEE C, et al.Isolation and physical mapping of sex-linked AFLP markers in Nile tilapia (L.)[J].Marine Biotechnology (New York), 2004, 6(5): 435-445.
[19] PALAIOKOSTAS C, BEKAERT M, KHAN M G Q, et al.Mapping and validation of the major sex-determining region in Nile tilapia (L.) using RAD sequencing[J].PLoS One, 2013, 8(7): e68389.
[20] ESHEL O, SHIRAK A, WELLER J I, et al.Fine-mapping of a locus on linkage group 23 for sex determination in Nile tilapia ()[J].Animal Genetics, 2011, 42(2): 222-224.
[21] ESHEL O, SHIRAK A, WELLER J I, et al.Linkage and physical mapping of sex region on LG23 of Nile tilapia ()[J].G3 Genes|Genomes|Genetics, 2012, 2(1): 35-42.
[22] ESHEL O, SHIRAK A, DOR L, et al.Identification of male-specific amh duplication, sexually differentially expressed genes and microRNAs at early embryonic development of Nile tilapia ()[J].BMC Genomics, 2014, 15(1): 774.
[23] CHEN C H, LI B J, GU X H, et al.Marker-assisted selection of YY supermales from a genetically improved farmed tilapia-derived strain[J].Zoological Research, 2019, 40(2): 108-112.
[24] CáCERES G, LóPEZ M E, CáDIZ M I, et al.Fine mapping using whole-genome sequencing confirms anti-müllerian hormone as a major gene for sex determination in farmed Nile tilapia (L.)[J].G3Genes|Genomes|Genetics,2019,9(10): 3213-3223.
[25] TASLIMA K, WEHNER S, TAGGART J B, et al.Sex determination in the GIFT strain of tilapia is controlled by a locus in linkage group 23[J].BMC Genetics, 2020, 21(1): 49.
[26] SULTANA N, KHAN M G Q, HOSSAIN M A R, et al.Allelic segregation of sex-linked microsatellite markers in Nile tilapia () and validation of inheritance in YY population[J].Aquaculture Research, 2020, 51(5): 1923-1932.
[27] SISSAO R, D'COTTA H, BAROILLER J F, et al.Mismatches between the genetic and phenotypic sex in the wild Kou population of Nile tilapia[J].PeerJ, 2019, 7: e7709.
[28] TRIAY C, CONTE M A, BAROILLER J F, et al.Structure and sequence of the sex determining locus in two wild populations of Nile tilapia[J].Genes, 2020, 11(9): 1017.
[29] BAROILLER J F, D'COTTA H, BEZAULT E, et al.Tilapia sex determination: where temperature and genetics meet[J].Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2009, 153(1): 30-38.
[30] ZHAO Y, CHEN H J, WANG Y Y, et al.Gonad development examination of high-temperature-treated genetically female Nile tilapia[J].Aquaculture, 2020, 515: 734535.
[31] KHATER E S G, ALI S A, MOHAMED W E.Effect of water temperature on masculinization and growth of Nile tilapia fish[J].Journal of Aquaculture Research & Development, 2017, 8(9): 507.
[32] WESSELS S, H?RSTGEN-SCHWARK G.Selection experiments to increase the proportion of males in Nile tilapia () by means of temperature treatment[J].Aquaculture, 2007, 272: S80-S87.
[33] LüHMANN L M, KNORR C, H?RSTGEN-SCHWARK G, et al.First evidence for family-specific QTL for tempe- rature-dependent sex reversal in Nile tilapia ()[J].Sexual Development, 2012, 6(5): 247-256.
[34] LEE B Y, HULATA G, KOCHER T D.Two unlinked loci controlling the sex of blue tilapia ()[J].Heredity, 2004, 92(6): 543-549.
[35] WU X, ZHAO L, FAN Z, et al.Screening and characterization of sex-linked DNA markers and marker-assisted selection in blue tilapia ()[J].Aquaculture, 2021, 530: 735934.https://doi.org/10.1016/j.aquaculture.2020.735934
[36] CNAANI A, LEE B Y, ZILBERMAN N, et al.Genetics of sex determination in tilapiine species[J].Sexual Development, 2008, 2(1): 43-54.
[37] GAMMERDINGER W J, CONTE M A, SANDKAM B A, et al.Characterization of sex chromosomes in three deeply diverged species of Pseudocrenilabrinae (Teleostei: Cichlidae)[J].Hydrobiologia, 2019, 832(1): 397-408.
[38] TAO W J, CAO J M, XIAO H S, et al.A chromosome-level genome assembly of Mozambique tilapia () reveals the structure of sex determining regions[J].Frontiers in Genetics, 2021, 12: 796211.https://doi.org/10.3389/fgene.2021.796211
[39] LEE B Y, LEE W J, STREELMAN J T, et al.A second-generation genetic linkage map of tilapia (spp.)[J].Genetics, 2005, 170(1): 237-244.
[40] LIU F, SUN F, LI J, et al.A microsatellite-based linkage map of salt tolerant tilapia (×spp.) and mapping of sex-determining loci[J].BMC Genomics, 2013, 14: 58.
[41] 譚德階.羅非魚近緣種雜交系的建立及其性別連鎖分子標(biāo)記的篩選[D].重慶: 西南大學(xué), 2018.
[42] CHEN J L, FAN Z, TAN D J, et al.A review of genetic advances related to sex control and manipulation in tilapia[J].Journal of the World Aquaculture Society, 2018, 49(2): 277-291.
[43] LI M H, SUN Y L, ZHAO J E, et al.A tandem duplicate of anti-Müllerian hormone with a missense SNP on the Y chromosome is essential for male sex determination in Nile tilapia,[J].PLoS Genetics, 2015, 11(11): e1005678.
[44] CURZON A Y, SHIRAK A, DOR L, et al.A duplication of the Anti-Müllerian hormone gene is associated with genetic sex determination of differentstrains[J].Heredity, 2020, 125(5): 317-327.
[45] LIU X, DAI S, WU J, et al..Roles of anti-Müllerian hormone and its duplicates in sex determination and germ cell proliferation of Nile tilapia.Genetics, 2021, iyab237.https://doi.org/10.1093/genetics/iyab237
[46] CONTE M A, CLARK F E, ROBERTS R B, et al.Origin of a giant sex chromosome[J].Molecular Biology and Evolution, 2021, 38(4): 1554-1569.
[47] TAO W J, XU L H, ZHAO L, et al.High-quality chromosome-level genomes of two tilapia species reveal their evolution of repeat sequences and sex chromosomes[J].Molecular Ecology Resources, 2021, 21(2): 543-560.
[48] CURZON A Y, SHIRAK A, BENET-PERLBERG A, et al.Gene variant of barrier to autointegration factor 2 (Banf2w) is concordant with female determination in cichlids[J].International Journal of Molecular Sciences, 2021, 22(13): 7073.
[49] BACHTROG D, MANK J E, PEICHEL C L, et al.Sex determination: why so many ways of doing it? [J].PLoS Biology, 2014, 12(7): e1001899.
[50] TAO W J, CONTE M A, WANG D S, et al.Network architecture and sex chromosome turnovers: do epistatic interactions shape patterns of sex chromosome replacement? [J].BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 2020, 43(3): e2000161.
[51] MAIR G C, ABUCAY J S, ABELLA T A, et al.Genetic manipulation of sex ratio for the large-scale production of all-male tilapia[J].Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54(2): 396-404.
[52] EZAZ M T, MYERS J M, POWELL S F, et al.Sex ratios in the progeny of androgenetic and gynogenetic YY male Nile tilapia,L[J].Aquaculture, 2004, 232(1/2/3/4): 205-214.
[53] GENNOTTE V, MAFWILA KINKELA P, ULYSSE B, et al.Brief exposure of embryos to steroids or aromatase inhibitor induces sex reversal in Nile tilapia ()[J].Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 2015, 323(1): 31-38.
[54] 陳榮華, 蔡添財(cái), 劉富光.超雄性 (YY) 尼羅吳郭魚之選育及單雄性魚苗量產(chǎn)的應(yīng)用[J].水產(chǎn)研究, 2013, 21(2): 69-82.
[55] 楊永銓, 張海明, 陳遠(yuǎn)生, 等.尼羅羅非魚新品種“鷺雄1號(hào)”的制種研究[J].淡水漁業(yè), 2013, 43(2): 92-95.
[56] 羅非魚“粵閩1號(hào)”[J].中國(guó)水產(chǎn), 2021(4): 92-96.
[57] SALIRROSAS D, LEON J, ARQUEROS-AVALOS M, et al.YY super males have better spermatic quality than XY males in red tilapia[J].Scientia Agropecuaria, 2017, 8(4): 349-355.
[58] 江東能, 彭友幸, 黃遠(yuǎn)青, 等.基于天然XY雌魚培育YY超雄尼羅羅非魚的新方法[J].水產(chǎn)學(xué)報(bào), 2020, 44(11): 1862-1872.
[59] JIANG D N, KUANG Z Y, YANG K S, et al.Polymorphism in a sex-linked DNA marker located on LG23 in Hainan strain of Nile tilapia ()[J].Journal of the World Aquaculture Society, 2022, 53(1): 205-223.
[60] 江東能.Gsdf和Wt1在羅非魚性別分化和性腺發(fā)育中的功能研究[D].重慶: 西南大學(xué), 2016.
[61] ZHENG S Q, LONG J, LIU Z L, et al.Identification and evolution of TGF-β signaling pathway members in twenty-four animal species and expression in tilapia[J].International Journal of Molecular Sciences, 2018, 19(4): 1154.
[62] 龍娟, 鄭樹清, 王曉雙, 等.TGF-β信號(hào)通路在魚類性別決定與分化中的作用[J].水產(chǎn)學(xué)報(bào), 2020, 44(1): 166-177.
[63] JOSSO N, DI CLEMENTE N, GOUéDARD L.Anti-Müllerian hormone and its receptors[J].Molecular and Cellular Endocrinology, 2001, 179(1/2): 25-32.
[64] YAN Y L, BATZEL P, TITUS T, et al.A hormone that lost its receptor: anti-müllerian hormone (AMH) in zebrafish gonad development and sex determination[J].Genetics, 2019, 213(2): 529-553.
[65] ZHANG Z W, WU K, REN Z Q, et al.Genetic evidence for Amh modulation of gonadotropin actions to control gonadal homeostasis and gametogenesis in zebrafish and its noncanonical signaling through Bmpr2a receptor[J].Development (Cambridge, England), 2020, 147(22): dev189811.
[66] CURZON A Y, SHIRAK A, ZAK T, et al.All-male production by marker-assisted selection for sex determining loci of admixedandstocks[J].Animal Genetics, 2021, 52(3): 361-364.
[67] 柳興永.Amh/Amhy在羅非魚生殖中的功能研究與可育YY偽雌魚的培育[D].重慶: 西南大學(xué), 2020.
[68] LI M H, DAI S F, LIU X Y, et al.A detailed procedure for CRISPR/Cas9-mediated gene editing in tilapia[J].Hydrobiologia, 2021, 848(16): 3865-3881..
[69] LI M H, YANG H H, LI M R, et al.Antagonistic roles of Dmrt1 and Foxl2 in sex differentiation via estrogen production in tilapia as demonstrated by TALENs[J].Endocrinology, 2013, 154(12): 4814-4825.
[70] LI M H, YANG H H, ZHAO J E, et al.Efficient and heritable gene targeting in tilapia by CRISPR/Cas9[J].Genetics, 2014, 197(2): 591-599.
[71] KHALIL K, ELAYAT M, KHALIFA E, et al.Generation of myostatin gene-edited channel catfish () via zygote injection of CRISPR/Cas9 system[J].Scientific Reports, 2017, 7: 7301.
[72] SUN Y, ZHENG G D, NISSA M, et al.Disruption ofandgene through CRISPR/Cas9 leads to elevated muscle mass in blunt snout bream ()[J].Aquaculture, 2020, 528: 735597.
[73] JIANG D N, YANG H H, LI M H, et al.Gsdf is a downstream gene ofthat functions in the male sex determination pathway of the Nile tilapia[J].Molecular Reproduction and Development, 2016, 83(6): 497-508.
[74] ZHANG X B, LI M R, MA H, et al.Mutation of foxl2 or cyp19a1a results in female to male sex reversal in XX Nile tilapia[J].Endocrinology, 2017, 158(8): 2634-2647.
[75] LI M H, SUN L N, WANG D S.Roles of estrogens in fish sexual plasticity and sex differentiation[J].General and Comparative Endocrinology, 2019, 277: 9-16.
[76] DAI S F, QI S S, WEI X Y, et al.Germline sexual fate is determined by the antagonistic action of dmrt1 and foxl3/foxl2 in tilapia[J].Development (Cambridge, England), 2021, 148(8): dev199380.https://doi.org/10.1242/ dev.199380.
[77] ZHAI G, SHU T T, CHEN K X, et al.Successful production of an all-female common carp (L.) population using cyp17a1-deficient neomale carp[J].Engineering, 2021.DOI:10.1016/j.eng.2021.03.026.
[78] 周運(yùn)迪, 吳星星, 趙海萍, 等.青鳉基因敲除突變體的構(gòu)建與表型分析[J].廣東海洋大學(xué)學(xué)報(bào), 2019, 39(2): 20-30.
[79] 陳錦霖.翻譯延伸因子eEF1A1b和42Sp50在羅非魚配子發(fā)生中的功能研究[D].重慶: 西南大學(xué), 2018.
[80] LIU X Y, XIAO H S, JIE M M, et al.Amh regulate female folliculogenesis and fertility in a dose-dependent manner through Amhr2 in Nile tilapia[J].Molecular and Cellular Endocrinology, 2020, 499: 110593.
[81] YAN L X, FENG H W, WANG F L, et al.Establishment of three estrogen receptors (esr1, esr2a, esr2b) knockout lines for functional study in Nile tilapia[J].The Journal of Steroid Biochemistry and Molecular Biology, 2019, 191: 105379.
[82] TAO W J, SHI H J, YANG J, et al.Homozygous mutation of foxh1 arrests oogenesis causing infertility in female Nile tilapia[J].Biology of Reproduction, 2019, 102(3): 758-769.
[83] JIANG D N, PENG Y X, LIU X Y, et al.Homozygous mutation of gsdf causes infertility in female Nile tilapia ()[J].Frontiers in Endocrinology, 2022.https://doi.org/10.3389/fendo.2022.813320.
[84] WANG C X, LU B Y, LI T, et al.Nile tilapia: a model for studying teleost color patterns[J].Journal of Heredity, 2021, 112(5): 469-484.
A Review of on Genetic Sex Control Breeding of Tilapia
JIANG Dong-neng1, JIAO Kai-zhi1, ZHANG Jun-ming1, PENG You-xing1, YANG Kong-song2, ZHENG De-feng2, GUO Xiang-zhao2, SHI Hong-juan1, LI Guang-li1
(1.,,524088,; 2.,,511400,)
Tilapia is a worldwide aquaculture fish.Since the male is growing faster than the female, all-male culture is preferable in tilapia aquaculture,to avoid unwanted reproduction before harvest and increase culture efficiency.Genetically male tilapia (GMT) technology is an efficient method of sex control, which has a history of more than 40 years.This paper reviews the progress and existing problems of GMT technology.In recent years, genomics and gene editing techniques have been widely used in tilapia research, which has greatly promoted the fundamental theoretical research of tilapia sex determination and differentiation.However, sex differetiation of tilapia is affected by many genetic and environmental factors, and GMT technology is difficult to guarantee the male rate in commercial strains limiting the large-scale application of this technology.Analyzing the reason for the existence of XY females will promote the development of GMT technology.The improvement of GMT technology will boost the aquaculture industry to develop healthily and provide references for sex control breeding of other aquatic animals.
Genetically Male Tilapia (GMT); sex control; sex determination; gene editing
S965.125;Q953+.3
A
1673-9159(2022)02-0148-09
10.3969/j.issn.1673-9159.2022.02.019
2021-10-12
國(guó)家自然科學(xué)基金(31702326和32002367);中國(guó)博士后科學(xué)基金(2019M652829)
江東能(1987―),男,副教授,博士,主要從事水產(chǎn)動(dòng)物繁殖生物學(xué)研究。E-mail: dnjiang@gdou.edu.cn
李廣麗(1967―),女,教授,博士,主要從事水產(chǎn)動(dòng)物生理學(xué)研究。E-mail: ligl@gdou.edu.cn
江東能,焦開(kāi)智,張峻銘,等.羅非魚性別控制遺傳育種研究進(jìn)展[J].廣東海洋大學(xué)學(xué)報(bào),2022,42(2):148-156.
(責(zé)任編輯:劉慶穎)