国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

TGF-β1/Smad3信號(hào)軸的氧連糖基化修飾對(duì)小鼠心臟成纖維細(xì)胞活力和分化的影響*

2022-03-04 09:47:26金慧謝中杰張麗娜龔開(kāi)政張振剛李如君
中國(guó)病理生理雜志 2022年2期
關(guān)鍵詞:糖基化纖維細(xì)胞磷酸化

金慧, 謝中杰, 張麗娜, 龔開(kāi)政, 張振剛, 李如君△

TGF-β1/Smad3信號(hào)軸的氧連糖基化修飾對(duì)小鼠心臟成纖維細(xì)胞活力和分化的影響*

金慧1, 謝中杰2, 張麗娜1, 龔開(kāi)政1, 張振剛1, 李如君1△

(1揚(yáng)州大學(xué)附屬醫(yī)院心內(nèi)科,江蘇 揚(yáng)州 225001;2臺(tái)州市第一人民醫(yī)院心內(nèi)科,浙江 臺(tái)州 318020)

探討TGF-β1/Smad3信號(hào)軸的氧連糖基化修飾(-連接的-乙酰葡萄糖胺修飾)對(duì)體外培養(yǎng)的小鼠心臟成纖維細(xì)胞(MCFs)在缺氧/復(fù)氧(H/R)后活力和分化的影響及機(jī)制。原代培養(yǎng)的MCFs缺氧6 h再恢復(fù)常氧24 h建立細(xì)胞H/R模型,通過(guò)感染-連接的-乙酰葡萄糖胺轉(zhuǎn)移酶(OGT)重組腺病毒提高M(jìn)CFs氧連糖基化水平,將MCFs隨機(jī)分組為空載腺病毒預(yù)處理+常氧(Ad.Null+Ctrl)組、空載腺病毒預(yù)處理+H/R(Ad.Null+H/R)組、OGT腺病毒預(yù)處理+常氧(Ad.OGT+Ctrl)組和OGT腺病毒預(yù)處理+H/R(Ad.OGT+H/R)組。RT-qPCR檢測(cè)結(jié)締組織生長(zhǎng)因子(CTGF)、α-平滑肌肌動(dòng)蛋白(α-SMA)、白細(xì)胞介素1β(IL-1β)和IL-18 mRNA水平;Western blot檢測(cè)p-Smad3、Smad3、OGT和炎癥介質(zhì)蛋白水平;免疫共沉淀實(shí)驗(yàn)檢測(cè)Smad3修飾狀態(tài)及蛋白間相互結(jié)合;CCK-8法檢測(cè)細(xì)胞活力;免疫熒光共聚焦顯示Smad3亞細(xì)胞定位。H/R致使MCFs氧連糖基化水平下降,過(guò)表達(dá)OGT顯著緩解了H/R誘導(dǎo)的細(xì)胞氧連糖基化水平降低(<0.05)。提高氧連糖基化水平抑制H/R誘導(dǎo)的MCFs活力和向肌成纖維細(xì)胞分化,減少I型膠原合成和炎癥介質(zhì)IL-1β/IL-18表達(dá)(<0.05);TGF-β1信號(hào)軸胞內(nèi)關(guān)鍵分子Smad3氧連糖基化水平升高,并且Smad3磷酸化及核轉(zhuǎn)位受阻(<0.05)。氧連糖基化修飾競(jìng)爭(zhēng)性抑制Smad3 Ser423/425磷酸化并使Smad3滯留于胞質(zhì),負(fù)向調(diào)控TGF-β1/Smad3信號(hào)軸,抑制H/R對(duì)體外培養(yǎng)的小鼠心臟成纖維細(xì)胞功能變化的誘導(dǎo)。

心肌缺血再灌注損傷;心肌纖維化;心臟成纖維細(xì)胞;TGF-β1/Smad3信號(hào)通路;-連接的-乙酰葡萄糖胺修飾

心肌梗死患者接受以冠脈內(nèi)支架植入術(shù)為代表的血管再通治療后,仍舊出現(xiàn)心臟收舒功能低下,心律失常以及心力衰竭的現(xiàn)象,這與心梗后心臟病理性重構(gòu)密切相關(guān)。研究證實(shí),心臟缺血梗死后經(jīng)典促纖維化通路——轉(zhuǎn)化生長(zhǎng)因子β1(transforming growth factor β1,TGF-β1)信號(hào)軸活化并誘導(dǎo)小鼠心臟成纖維細(xì)胞(mouse cardiac fibroblasts,MCFs)增殖,分泌多種細(xì)胞外基質(zhì)(如Ⅰ型膠原),分化成肌成纖維細(xì)胞(myofibroblasts,MFBs)偶聯(lián)心肌細(xì)胞形成縫隙連接,表達(dá)炎癥細(xì)胞因子[如白細(xì)胞介素1β(interleukin-1β,IL-1β)/IL-18]參與炎癥反應(yīng),最終形成以心肌纖維化為特征的心臟病理性重構(gòu),是介導(dǎo)心肌梗死后心臟功能異常的重要病理學(xué)基礎(chǔ)。本課題組前期實(shí)驗(yàn)表明,-連接的-乙酰葡萄糖胺(-linked-acetylglucosamine,-GlcNAc)轉(zhuǎn)移酶(-GlcNAc transferase,OGT)通過(guò)提高細(xì)胞氧連糖基化修飾(-GlcNAc修飾,-GlcNAcylation)水平能夠顯著抑制應(yīng)激條件下MCFs增殖,但具體作用靶點(diǎn)不清。因而本項(xiàng)工作利用MCFs缺氧/復(fù)氧(hypoxia/reoxygenation,H/R)建立心肌梗死血管再通治療的細(xì)胞模型,探討氧連糖基化修飾對(duì)H/R介導(dǎo)的MCFs損傷效應(yīng)的影響及可能機(jī)制。

材料和方法

1 主要材料

清潔級(jí)雄性成年(8~10周齡,20~25 g)C57BL/6小鼠購(gòu)自揚(yáng)州大學(xué)實(shí)驗(yàn)動(dòng)物中心,許可證號(hào)為SYXK(蘇)2017-0044;OGT過(guò)表達(dá)腺病毒(Ad-eGFP.OGT)和空載對(duì)照腺病毒(Ad-eGFP.Null)為本實(shí)驗(yàn)室保存;胰蛋白酶和Ⅰ型膠原酶購(gòu)自Sigma-Aldrich;Trizol和RIPA裂解液購(gòu)自中國(guó)北京普利萊基因技術(shù)有限公司;鼠氧連糖基化(-GlcNAc)抗體(CTD110.6)、鼠OGT抗體、鼠β-actin抗體、normal mouse IgG和Protein A/G plus agarose購(gòu)自Santa Cruz;兔IL-1β、兔IL-18抗體、兔磷酸化Smad3(Ser423/425)抗體、HRP標(biāo)記抗兔IgG、HRP標(biāo)記抗鼠IgG和Alexa Fluor 555標(biāo)記抗兔IgG購(gòu)自Cell Signaling Technology;兔Smad3抗體、兔Smad4抗體、鼠collagen I抗體、鼠α-SMA抗體和兔caspase-1抗體購(gòu)自Abcam;蛋白酶磷酸酶抑制劑、DAPI染液、BCA蛋白定量試劑盒、CCK-8試劑盒購(gòu)自中國(guó)上海碧云天生物技術(shù)有限公司;增強(qiáng)型ECL化學(xué)發(fā)光液、反轉(zhuǎn)錄cDNA合成試劑盒、SYBR Green熒光定量試劑盒、DMEM培養(yǎng)液和胎牛血清購(gòu)自Thermo;PCR引物由中國(guó)上海生工生物工程有限公司合成。熒光倒置顯微鏡(Nikon);RT-PCR擴(kuò)增儀(BIO-RAD,CFX96);免疫印跡成像系統(tǒng)(iBright,CL1500)。

2 方法

2.1MCFs細(xì)胞原代培養(yǎng)參考已有文獻(xiàn)[1],取5只小鼠在無(wú)菌條件下取出心臟并剪成組織塊后用預(yù)冷PBS洗凈血跡,混合酶液(胰酶+Ⅰ型膠原酶)充分消化后200目過(guò)濾并離心,取細(xì)胞沉淀重懸于含有10%胎牛血清的DMEM培養(yǎng)液中置于體積分?jǐn)?shù)5% CO2、常氧培養(yǎng)箱中37 ℃絕對(duì)靜置培養(yǎng)90 min,利用差速貼壁法純化MCFs,棄去未貼壁細(xì)胞并繼續(xù)靜置培養(yǎng),每3 d更換新鮮培養(yǎng)液。待細(xì)胞融合度達(dá)80%左右時(shí)用0.25%胰酶消化液消化傳代,選用P1代對(duì)數(shù)生長(zhǎng)期的MCFs行相關(guān)實(shí)驗(yàn)。

2.2細(xì)胞預(yù)處理P1代MCFs生長(zhǎng)融合至60%左右時(shí),更換新鮮培養(yǎng)液并加入感染復(fù)數(shù)為10(MOI=10)劑量的Ad-eGFP.OGT繼續(xù)培養(yǎng)細(xì)胞48 h以提高細(xì)胞內(nèi)氧連糖基化水平,并設(shè)置Ad-eGFP.Null感染作為對(duì)照。

2.3實(shí)驗(yàn)分組將MCFs隨機(jī)分為4組:Ad-eGFP.Null預(yù)處理+常氧組(Ad.Null+Ctrl組)、Ad-eGFP.Null預(yù)處理+H/R組(Ad.Null+H/R組)、Ad-eGFP.OGT預(yù)處理+常氧組(Ad.OGT+Ctrl組)和Ad-eGFP.OGT預(yù)處理+H/R組(Ad.OGT+H/R組)。通過(guò)將預(yù)處理后的MCFs更換無(wú)血清培養(yǎng)液饑餓過(guò)夜后放置于5% CO2、95% N2、37 ℃培養(yǎng)箱中缺氧6 h,隨后移置于5% CO2、常氧、37 ℃培養(yǎng)箱中復(fù)氧24 h建立H/R細(xì)胞模型[2]。

2.4RT-qPCR檢測(cè)MCFs增殖、表型轉(zhuǎn)化和炎癥反應(yīng)相關(guān)因子的mRNA表達(dá)Trizol試劑抽提各分組細(xì)胞內(nèi)總RNA,經(jīng)過(guò)定量后各取600 ng總RNA為模板逆轉(zhuǎn)錄后進(jìn)行RT-qPCR檢測(cè)。引物設(shè)計(jì)來(lái)源于PCR引物公共數(shù)據(jù)庫(kù)PrimerBank。結(jié)締組織生長(zhǎng)因子(connective tissue growth factor,CTGF/CCN2)的上游引物序列為5'-GGCCTCTTCTGCGATTTCG-3',下游引物序列為5'-GCAGCTTGACCCTTCTCGG-3';α-平滑肌肌動(dòng)蛋白(α-smooth muscle actin,α-SMA/ACTA2)的上游引物序列為5'-CCCAGACATCAGGGAGTAATGG-3',下游引物序列為5'-TCTATCGGATACTTCAGCGTCA-3';IL-1β的上游引物序列為5'-GGCGGTTCAAGGCATAACAGGCT-3',下游引物序列為5'-CAGCCCAAGTCAAGGGCTTGGA-3';IL-18的上游引物序列為5'-AAGAACAAGATCATTTCCTTTGAGGA-3',下游引物序列為5'-GGAACACGTTTCTGAAAGAATATGAG-3';18S(內(nèi)參照)的上游引物序列為5'-GAAACGGCTACCACATCC-3',下游引物序列為5'-CACCAGACTTGCCCTCCA-3'。PCR結(jié)果采用2-ΔΔCt法進(jìn)行分析。

2.5Western blot檢測(cè)關(guān)鍵蛋白水平RIPA裂解液抽取細(xì)胞總蛋白后BCA方法定量,經(jīng)100 ℃變性后各樣品取20 μg行電泳并濕轉(zhuǎn)至PVDF膜,5%脫脂奶粉TBST室溫封閉1 h后分別加入相應(yīng)I抗4 ℃結(jié)合過(guò)夜,經(jīng)TBST洗膜3次后常溫孵育HRP標(biāo)記相應(yīng)Ⅱ抗2 h,洗膜后ECL化學(xué)發(fā)光并在iBright CL1500顯影;條帶經(jīng)ImageJ軟件分析灰度值,結(jié)果以目的條帶與內(nèi)參條帶比值顯示。

2.6細(xì)胞形態(tài)觀察利用重組腺病毒感染細(xì)胞后表達(dá)eGFP蛋白,可在熒光倒置顯微鏡下488 nm激發(fā)波長(zhǎng)發(fā)射綠色熒光,借此觀察細(xì)胞形態(tài)變化。

2.7CCK-8法檢測(cè)細(xì)胞活力P0代MCFs消化后調(diào)整細(xì)胞濃度為5×107/L后傳代至96孔板中各100 μL,按實(shí)驗(yàn)分組(設(shè)置復(fù)孔)后在觀察終點(diǎn)加入每孔10 μL CCK-8反應(yīng)液并繼續(xù)培養(yǎng)箱孵育1 h,酶標(biāo)儀檢測(cè)每孔在450 nm波長(zhǎng)吸光度()值并統(tǒng)計(jì)分析。

2.8MCFs免疫熒光共聚焦MCFs經(jīng)PBS洗滌后用4%多聚甲醛固定15 min,再次洗滌后經(jīng)0.5% Triton X-100破膜5 min,隨后用5%山羊血清常溫封閉1 h,加入稀釋的Smad3抗體4 ℃結(jié)合過(guò)夜,用TBST洗滌3次后加入稀釋的Alexa Fluor 555標(biāo)記抗兔IgG常溫避光孵育2 h,TBST洗滌3次后用DAPI染液復(fù)染細(xì)胞核,熒光倒置顯微鏡下觀察細(xì)胞熒光分布及共定位。

2.9免疫共沉淀實(shí)驗(yàn)檢測(cè)蛋白相互作用免疫共沉淀裂解液抽取細(xì)胞總蛋白后BCA方法定量,每樣品取600 μg總蛋白使用Smad3/Smad4抗體+Protein A/G plus agarose結(jié)合后離心共沉淀,吸取上清作為Input,沉淀物反復(fù)清洗離心后吸凈上清,加20 μL上樣緩沖液100 ℃變性后離心,取上清經(jīng)Western blot檢測(cè)目的蛋白表達(dá)。

3 統(tǒng)計(jì)學(xué)處理

結(jié)果

1 過(guò)表達(dá)OGT緩解H/R誘導(dǎo)的MCFs氧連糖基化水平降低

Western blot結(jié)果顯示,與Ad.Null+Ctrl組相比,缺氧6 h復(fù)氧24 h的H/R過(guò)程導(dǎo)致Ad.Null+H/R組氧連糖基化程度顯著下降,OGT原生表達(dá)減弱(<0.05);過(guò)表達(dá)OGT提高常氧狀態(tài)下即Ad.OGT+Ctrl組氧連糖基化水平(<0.05),并對(duì)抗H/R誘導(dǎo)的氧連糖基化水平下降(<0.05),見(jiàn)圖1。

Figure 1.Over-expression of OGT increased global O-GlcNAc level of MCFs at baseline and H/R. The levels of O-GlcNAc on whole protein and OGT were detected by Western blot. Mean±SD. n=3. *P<0.05 vs Ad.Null+Ctrl group; #P<0.05 vs Ad.Null+H/R group.

2 提高氧連糖基化水平抑制H/R誘導(dǎo)的MCFs活力和細(xì)胞外基質(zhì)合成

RT-qPCR結(jié)果顯示,與Ad.Null+Ctrl組相比,Ad.Null+H/R組與促細(xì)胞增殖相關(guān)的CCN2轉(zhuǎn)錄水平顯著升高,CCK-8測(cè)定細(xì)胞活力增強(qiáng),Western blot結(jié)果顯示collagen I表達(dá)增多(<0.05);與Ad.Null+H/R組相比,Ad.OGT+H/R組由于氧連糖基化水平的回升能夠顯著抑制H/R誘導(dǎo)的促增殖和促膠原合成作用(<0.05),見(jiàn)圖2。

Figure 2.Increase in O-GlcNAc level inhibited H/R-induced collagen isynthesis (A),CCN2 mRNA expression (B) and viability of MCFs (C). Mean±SD. n=5. *P<0.05 vs Ad.Null+Ctrl group; #P<0.05 vs Ad.Null+H/R group.

3 提高氧連糖基化水平抑制H/R誘導(dǎo)的MCFs表型轉(zhuǎn)化

與Ad.Null+Ctrl組相比,標(biāo)志MCFs向MFBs轉(zhuǎn)化的特征表型ACTA2 mRNA及α-SMA蛋白表達(dá)在Ad.Null+H/R組均顯著升高(<0.05)。借助eGFP蛋白熒光觀察MCFs細(xì)胞形態(tài),Ad.Null+Ctrl組MCFs多呈不規(guī)則三角形或長(zhǎng)梭形,細(xì)胞輪廓清晰,胞核呈橢圓形,染色質(zhì)疏松著色淺;Ad.Null+H/R組MCFs胞體顯著增大呈扁平狀且缺乏極性,邊界不清,核仁大且胞質(zhì)細(xì)胞器代謝活躍。與Ad.Null+HIR組相比,Ad.OGT+H/R組ACTA2轉(zhuǎn)錄和α-SMA表達(dá)均受到抑制(<0.05),MCFs形態(tài)較基礎(chǔ)狀態(tài)變化不顯著,細(xì)胞面積半定量分析顯示與Ad.Null+H/R組有顯著差異(<0.05)。見(jiàn)圖3。

Figure 3.Increase in O-GlcNAc level inhibited H/R-induced phenotypic transformation of MCFs characterized by ACTA2/α-SMA expression (A and B) and morphological changes (C). The scale bar=100 μm. Mean±SD. n=5. *P<0.05 vs Ad.Null+Ctrl group; #P<0.05 vs Ad.Null+H/R group.

4 提高氧連糖基化水平減輕H/R誘導(dǎo)的炎癥介質(zhì)表達(dá)

與Ad.Null+Ctrl組相比,Ad.Null+H/R組炎癥細(xì)胞因子IL-1β和IL-18的mRNA和蛋白表達(dá)顯著升高(<0.05);而Ad.OGT+H/R組IL-1β和IL-18的mRNA和蛋白表達(dá)則顯著低于Ad.Null+H/R組(<0.05),見(jiàn)圖4A~C。

Figure 4.Increase in O-GlcNAc level inhibited H/R-induced inflammatory mediator (IL-1β and IL-18) expression (A,B and C) and Smad3 phosphorylation (D). Mean±SD. n=5. *P<0.05 vs Ad.Null+Ctrl group; #P<0.05 vs Ad.Null+H/R group.

5 提高氧連糖基化水平阻礙Smad3磷酸化及核內(nèi)移

與Ad.Null+Ctrl組相比,Ad.Null+H/R組的TGF-β1信號(hào)軸關(guān)鍵信號(hào)分子Smad3磷酸化水平(p-Smad3/Smad3)顯著升高(<0.05),免疫熒光染色顯示Smad3核內(nèi)移顯著,提示TGF-β1/Smad3信號(hào)軸激活;與Ad.Null+H/R組相比,Ad.OGT+H/R組Smad3磷酸化水平(p-Smad3/Smad3)顯著降低(<0.05),免疫熒光染色顯示Smad3滯留于胞漿內(nèi),核轉(zhuǎn)位受阻,見(jiàn)圖4D及圖5。

Figure 5.Increase in O-GlcNAc level inhibited H/R-induced Smad3 nuclear accumulation (observed by confocal fluorescence,scale bar=25 μm). Infected MCFs were visualized by eGFP fluorescence (green),subcellular localization of Smad3 were stained with Smad3 antibody (red),and nuclei were stained with DAPI (blue).

6 過(guò)表達(dá)OGT增強(qiáng)Smad3氧連糖基化修飾

與Ad.Null+H/R組相比,Ad.OGT+H/R組細(xì)胞內(nèi)與Smad3相結(jié)合的OGT顯著增多(<0.05),Smad3抗體免疫沉淀物氧連糖基化水平增強(qiáng)(<0.05);采用-GlcNAc抗體反向免疫沉淀,Smad3條帶信號(hào)趨勢(shì)與前一致,見(jiàn)圖6。

Figure 6.Increasing OGT directly enhanced the O-GlcNAc level of Smad3. The binding degree with Smad3 and modified status of Smad3 were detected by co-immunoprecipitation. Mean±SD. n=3. *P<0.05 vs Ad.Null+H/R group.

討論

本項(xiàng)體外研究結(jié)果顯示,過(guò)表達(dá)OGT提高M(jìn)CFs整體氧連糖基化修飾水平,能夠阻礙Smad3磷酸化及后續(xù)核轉(zhuǎn)位,從而負(fù)性調(diào)控TGF-β1/Smad3信號(hào)軸,進(jìn)而減緩H/R損傷后MCFs的增殖分化、膠原分泌和炎癥介質(zhì)的表達(dá)。進(jìn)一步檢測(cè)顯示,過(guò)表達(dá)OGT使得與Smad3相結(jié)合的OGT顯著增多,Smad3氧連糖基化水平直接得到增強(qiáng),且發(fā)生氧連糖基化修飾的Smad3能夠競(jìng)爭(zhēng)性抑制其磷酸化并阻礙其入核發(fā)揮作用。我們的研究表明,除熟知的磷酸化修飾和泛素化修飾外,氧連糖基化修飾作為細(xì)胞內(nèi)另一種廣泛發(fā)生的翻譯后修飾(post-translational modifications,PTMs),是TGF-β1/Smad3信號(hào)軸的另一種快速而重要的調(diào)節(jié)形式。

MCFs是構(gòu)成心臟的主要細(xì)胞類型,雖體積小但數(shù)量占心臟細(xì)胞總數(shù)的60%~70%,在維系心臟的形態(tài)、功能以及損傷修復(fù)過(guò)程中均與心肌細(xì)胞聯(lián)系密切,是心肌重構(gòu)的重要執(zhí)行者[3]。以TGF-β1/Smad3為代表的經(jīng)典促纖維化信號(hào)軸在心肌梗死及再灌注治療后的炎癥反應(yīng)期、增殖修復(fù)期和基質(zhì)沉積期均發(fā)揮多重生物學(xué)效應(yīng)[4],但過(guò)度活化引發(fā)的MCFs功能性紊亂也是導(dǎo)致心?;颊咭约把茉偻ㄖ委熀蟪霈F(xiàn)心肌順應(yīng)性下降、惡性心律失常甚至心衰的重要發(fā)病基礎(chǔ)。TGF-β1引發(fā)的信號(hào)內(nèi)傳是典型的激酶信號(hào)通路,研究證實(shí)該信號(hào)軸中多環(huán)節(jié)均受到磷酸化修飾調(diào)節(jié),如Smad2/3可被激酶GSK3β、CDK[5-6]和磷酸酶PPM1A、MTMR4[7-8]等修飾調(diào)控。此外,Smad3的泛素化修飾-蛋白酶體降解調(diào)控也被廣泛報(bào)道[9-10]。然而Smad3能否被氧連糖基化修飾尚未見(jiàn)明確報(bào)道。

氧連糖基化修飾由OGT催化GlcNAc的供體二磷酸尿嘧啶GlcNAc(uridine diphosphate-acetylglucosamine,UDP-GlcNAc)以氧-糖苷鍵的形式共價(jià)結(jié)合到底物蛋白Ser/Thr側(cè)鏈羥基上,并由-乙酰氨基葡萄糖苷酶(-GlcNAcase,OGA)特異性水解氧-糖苷鍵從而降低底物氧連糖基化水平[11]。資料顯示,當(dāng)機(jī)體發(fā)生急性應(yīng)激損傷時(shí)可導(dǎo)致氧連糖基化水平的快速波動(dòng),是公認(rèn)的應(yīng)激壓力和細(xì)胞代謝感受器,而在應(yīng)激損傷階段迅速提高組織的氧連糖基化水平被證實(shí)具有組織保護(hù)作用,能夠增強(qiáng)抗損傷能力[12]。如葡萄糖胺通過(guò)提高腎組織氧連糖基化水平可緩解急性缺氧導(dǎo)致的腎功能障礙[13];氧連糖基化修飾化學(xué)增強(qiáng)劑Thiamet-G可顯著減少大腦缺血再灌注損傷后的腦梗死面積,這與NF-κB p65亞基被氧連糖基化修飾后無(wú)法核內(nèi)移發(fā)揮轉(zhuǎn)錄調(diào)節(jié)作用,減少組織中IL-1β和TNF-α的表達(dá)密切相關(guān)[14];我們課題組前期研究也證實(shí)p65亞基發(fā)生氧連糖基化修飾能夠干擾其磷酸化激活[15]。在本項(xiàng)研究中,Smad3發(fā)生氧連糖基化修飾能夠競(jìng)爭(zhēng)性抑制其磷酸化,從而無(wú)法形成功能異聚體近而阻礙其核內(nèi)移,但是否與氧連糖基化直接相關(guān),還需要更多的實(shí)驗(yàn)證據(jù)。以上結(jié)果表明,Smad3的氧連糖基化修飾與磷酸化修飾存在串?dāng)_(crosstalk)現(xiàn)象,進(jìn)一步深入研究有助于更好地理解Smad3的調(diào)節(jié)機(jī)制。

生化特征顯示,氧連糖基化修飾與磷酸化修飾的作用靶點(diǎn)均以Ser/Thr為主,因而存在大量底物蛋白上兩種PTMs發(fā)生串?dāng)_的證據(jù),不僅在相同或相近位點(diǎn)存在競(jìng)爭(zhēng)或協(xié)同修飾效應(yīng),甚至在相距較遠(yuǎn)的氨基酸之間因空間構(gòu)象的接近仍會(huì)互相影響[16-18]。Smad3作為TGF-β1經(jīng)典信號(hào)軸中的關(guān)鍵胞內(nèi)蛋白,其C端SSXS基序內(nèi)Ser423/425被磷酸化是信號(hào)內(nèi)傳的重要標(biāo)志,并且其Thr179、Ser204/208/213甚至可以在不依賴胞外配體的情況下發(fā)生磷酸化修飾,在胚胎發(fā)育、腫瘤形成、組織纖維化等病理生理過(guò)程中發(fā)揮作用[19]。我們通過(guò)查詢糖基化修飾位點(diǎn)預(yù)測(cè)數(shù)據(jù)庫(kù)YinOYang 1.2[20],顯示人類Smad3的Ser78/418/423發(fā)生氧連糖基化修飾的可能性超過(guò)80%,提示Ser423位點(diǎn)極有可能發(fā)生兩種PTMs的串?dāng)_,因而接下來(lái)我們將進(jìn)一步明確Smad3發(fā)生氧連糖基化修飾的具體位點(diǎn)及生物學(xué)效應(yīng)。

綜上所述,在本研究中我們首次獲得Smad3被氧連糖基化修飾的依據(jù),證實(shí)快速提高氧連糖基化修飾水平對(duì)抑制MCFs增殖分化具有重要意義。由于采用免疫共沉淀除Smad3外還包含了與其相結(jié)合的其它蛋白,且尚未開(kāi)發(fā)出直接檢測(cè)Smad3發(fā)生氧連糖基化修飾的抗體,我們后續(xù)將驗(yàn)證Smad3發(fā)生氧連糖基化修飾的可能位點(diǎn),期望為更好地理解心肌梗死的病理生理機(jī)制提供參考資料。

[1]李如君,龔開(kāi)政,張振剛. 成年小鼠心臟成纖維細(xì)胞的分離、純化和原代培養(yǎng)[J]. 細(xì)胞與分子免疫學(xué)雜志,2017,33(1):67-71.

Li R,Gong K,Zhang Z. Isolation,purification and primary culture of adult mouse cardiac fibroblasts[J]. Chin J Cell Mol Immunol,2017,33(1):67-71.

[2] Zhang J,Huang L,Shi X,et al. Metformin protects against myocardial ischemia-reperfusion injury and cell pyroptosis via AMPK/NLRP3 inflammasome pathway[J]. Aging (Albany NY),2020,12(23):24270-24287.

[3] Pinto AR,Ilinykh A,Ivey MJ,et al. Revisiting cardiac cellular composition[J]. Circ Res,2016,118(3):400-409.

[4]柴大軍,徐軍霞,許昌聲,等. 視黃醇X受體激動(dòng)劑通過(guò)調(diào)控Smad2通路抑制TGF-β1誘導(dǎo)的心肌成纖維細(xì)胞膠原合成[J]. 中國(guó)病理生理雜志,2016,32(12):2228-2232.

Chai D,Xu J,Xu C,et al. Retinoid X receptor agonist inhibits TGF-β1-induced collagen synthesis incardiac fibroblasts by repressing Smad2 activation[J]. Chin J Pathophysiol,2016,32(12):2228-2232.

[5] Tang LY,Yamashita M,Coussens NP,et al. Ablation of Smurf2 reveals an inhibition in TGF-β signalling through multiple mono-ubiquitination of Smad3[J]. EMBO J,2011,30(23):4777-4789.

[6] Alarcon C,Zaromytidou AI,Xi Q,et al. Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-β pathways[J]. Cell,2009,139(4):757-769.

[7] Lin X,Duan X,Liang YY,et al. PPM1A functions as a Smad phosphatase to terminate TGFβ signaling[J]. Cell,2006,125(5):915-928.

[8] Yu J,Pan L,Qin X,et al. MTMR4 attenuates transforming growth factor β (TGFβ) signaling by dephosphorylating R-Smads in endosomes[J]. J Biol Chem,2010,285(11):8454-8462.

[9] Hilt ZT,Maurya P,Tesoro L,et al. β2M signals monocytes through non-canonical TGFβ receptor signal transduction[J]. Circ Res,2021,128(5):655-669.

[10] Galant C,Marchandise J,Stoenoiu MS,et al. Overexpression of ubiquitin-specific peptidase 15 in systemic sclerosis fibroblasts increases response to transforming growth factor β[J]. Rheumatology,2019,58(4):708-718.

[11] 趙培,張佳佳,龔開(kāi)政. 蛋白質(zhì)-GlcNAc糖基化與心血管疾?。跩]. 中國(guó)病理生理雜志,2021,37(9):1712-1718.

Zhao P,Zhang J,Gong K,et al. Protein-GlcNAcylation and cardiovascular diseases[J]. Chin J Pathophysiol,2021,37(9):1712-1718.

[12] Chen Y,Zhao X,Wu H. Metabolic stress and cardiovascular disease in diabetes mellitus: the role of protein-GlcNAc modification[J]. Arterioscler Thromb Vasc Biol,2019,39(10):1911-1924.

[13] Suh HN,Lee YJ,Kim MO,et al. Glucosamine-induced Sp1-GlcNAcylation ameliorates hypoxia-induced SGLT dysfunction in primary cultured renal proximal tubule cells[J]. J Cell Physiol,2014,229(10):1557-1568.

[14] He Y,Ma X,Li D,et al. Thiamet G mediates neuroprotection in experimental stroke by modulating microglia/macrophage polarization and inhibiting NF-κB p65 signaling[J]. J Cereb Blood Flow Metab,2017,37(8):2938-2951.

[15] Xing D,Gong K,F(xiàn)eng W,et al. O-GlcNAc modification of NFκB p65 inhibits TNF-α-induced inflammatory mediator expression in rat aortic smooth muscle cells[J]. PLoS One,2011,6(8):e24021.

[16] Kamemura K,Hayes BK,Comer FI,et al. Dynamic interplay between-glycosylation and-phosphorylation of nucleocytoplasmic proteins: alternative glycosylation/phosphorylation of THR-58,a known mutational hot spot of c-Myc in lymphomas,is regulated by mitogens[J]. J Biol Chem,2002,277(21):19229-19235.

[17] Chen YX,Du JT,Zhou LX,et al. Alternative-GlcNAcylation/-phosphorylation of Ser16 induce different conformational disturbances to the N terminus of murine estrogen receptor β[J]. Chem Biol,2006,13(9):937-944.

[18] Laarse AM,Leney AC,Heck JR. Crosstalk between phosphorylation and‐GlcNAcylation: friend or foe[J]. FEBS J,2018,285(17):3152-3167.

[19] Ooshima A,Park J,Kim SJ. Phosphorylation status at Smad3 linker region modulates transforming growth factor‐β‐induced epithelial‐mesenchymal transition and cancer progression[J]. Cancer Sci,2018,110(2):481-488.

[20] Wang J,Torii M,Liu H,et al. dbOGAP-an integrated bioinformatics resource for protein-GlcNAcylation[J]. BMC Bioinformatics,2011,12(1):1-14.

Effects of-GlcNAcylation of TGF-β1/Smad3 signaling axis on viability and differentiation of cultured mouse cardiac fibroblasts

Jin Hui1,Xie Zhong-jie2,Zhang Li-na1,Gong Kai-zheng1,Zhang Zhen-gang1,Li Ru-jun1△

(1,,225001,;2,,318020,)

To investigate the effect of-linked-acetylglucosamine (-GlcNAc) modification (-GlcNAcylation) of TGF-β1/Smad3 signaling axis on viability and differentiation of cultured mouse cardiac fibroblasts (MCFs) after hypoxia/reoxygenation (H/R).Primarily cultured MCFs were incubated under hypoxic condition for 6 h and then exposed to normoxia for another 24 h to establish H/R cell model. Increased global-GlcNAcylation was achieved by infection with-GlcNAc transferase (OGT) adenovirus. The cells were randomly divided into null adenovirus preconditioning with normoxia (Ad.Null+Ctrl) and H/R (Ad.Null+H/R) groups,and OGT adenovirus preconditioning with normoxia (Ad.OGT+Ctrl) and H/R (Ad.OGT+H/R) groups. The mRNA levels of connective tissue growth factor (CTGF),α-smooth muscle actin (α-SMA),interleukin-1β (IL-1β) and IL-18 were detected by RT-qPCR. The protein levels of p-Smad3,Smad3,OGT,IL-1β and IL-18 were detected by Western blot.The-GlcNAcylation of Smad3 and interaction with OGT/Smad4 were detected by co-immunoprecipitation. The cell viability was measured by CCK-8 staining. Subcellular localization of Smad3 was revealed by confocal immunofluorescence.H/R caused a significant decrease in-GlcNAcylation of MCFs,while overexpression of OGT notably alleviated the reduction of-GlcNAcylation induced by H/R (<0.05). Increased-GlcNAcylation inhibited the viability and differentiation of MCFs into myofibroblasts,and decreased the synthesis of collagen type I and the expression of IL-1β and IL-18 induced by H/R (<0.05).-GlcNAcylation blocked the phosphorylation and nuclear accumulation of Smad3 which is the key component of TGF-β1 signaling axis.-GlcNAcylation inhibits the phosphorylation and nuclear translocation of Smad3,thus inhibiting TGF-β1/Smad3 signaling axis,and attenuates the functional changes of MCFs induced by H/R.

Myocardial ischemia-reperfusion injury; Myocardial fibrosis; Cardiac fibroblasts; TGF-β1/Smad3 signaling pathway;-GlcNAcylation

R542.2+2; R363.2

A

10.3969/j.issn.1000-4718.2022.02.005

1000-4718(2022)02-0222-08

2021-11-22

2022-01-26

[基金項(xiàng)目]江蘇省自然科學(xué)基金資助項(xiàng)目(No. BK20200937);揚(yáng)州市科技計(jì)劃資助項(xiàng)目(No. YZ2019058);揚(yáng)州市綠揚(yáng)金鳳計(jì)劃資助項(xiàng)目(No. YZLYJFJH2017YB118)

Tel: 0514-82981199; E-mail: li-rujun@126.com

(責(zé)任編輯:盧萍,羅森)

猜你喜歡
糖基化纖維細(xì)胞磷酸化
Tiger17促進(jìn)口腔黏膜成纖維細(xì)胞的增殖和遷移
滇南小耳豬膽道成纖維細(xì)胞的培養(yǎng)鑒定
ITSN1蛋白磷酸化的研究進(jìn)展
胃癌組織中成纖維細(xì)胞生長(zhǎng)因子19和成纖維細(xì)胞生長(zhǎng)因子受體4的表達(dá)及臨床意義
MAPK抑制因子對(duì)HSC中Smad2/3磷酸化及Smad4核轉(zhuǎn)位的影響
糖基化終末產(chǎn)物與冠脈舒張功能受損
兩種制備大鼠胚胎成纖維細(xì)胞的方法比較
組蛋白磷酸化修飾與精子發(fā)生
遺傳(2014年3期)2014-02-28 20:59:01
油炸方便面貯藏過(guò)程中糖基化產(chǎn)物的變化規(guī)律
糖基化終末產(chǎn)物對(duì)糖尿病慢性并發(fā)癥的早期診斷價(jià)值
新乐市| 衡南县| 滦南县| 青州市| 遂川县| 福鼎市| 咸宁市| 南乐县| 桦川县| 驻马店市| 鹤壁市| 济源市| 姜堰市| 榆社县| 泸水县| 万载县| 天津市| 莱芜市| 塘沽区| 恩平市| 栾城县| 潍坊市| 呈贡县| 科技| 平昌县| 买车| 台东县| 静乐县| 白城市| 肥西县| 平湖市| 宁河县| 鄂温| 赤水市| 定安县| 内黄县| 安新县| 长宁县| 罗源县| 日喀则市| 盐城市|