国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

小學(xué)數(shù)學(xué)課堂設(shè)計(jì)有效問題的策略

2021-09-16 02:18:00李德艷
廣西教育·A版 2021年7期
關(guān)鍵詞:數(shù)學(xué)能力問題設(shè)計(jì)數(shù)學(xué)課堂

【摘要】本文針對課堂問題瑣碎、缺乏思維深度和廣度的教學(xué)現(xiàn)狀,提出立足認(rèn)知困惑設(shè)計(jì)問題、經(jīng)歷關(guān)鍵過程設(shè)計(jì)問題、把握新舊知識關(guān)聯(lián)設(shè)計(jì)問題、厘清舊有認(rèn)知設(shè)計(jì)問題等策略,以發(fā)展學(xué)生解決數(shù)學(xué)問題的能力。

【關(guān)鍵詞】小學(xué)數(shù)學(xué) 問題設(shè)計(jì) 數(shù)學(xué)課堂 數(shù)學(xué)能力

【中圖分類號】G 【文獻(xiàn)標(biāo)識碼】A

【文章編號】0450-9889(2021)25-0129-02

對數(shù)學(xué)教學(xué)而言,有效的問題設(shè)計(jì)能夠激發(fā)學(xué)生自主探究的動力,幫助學(xué)生積累豐富的數(shù)學(xué)思想和活動經(jīng)驗(yàn),發(fā)展學(xué)生的數(shù)學(xué)能力。然而在實(shí)踐中,大多數(shù)教師提出的問題過于瑣碎、提問次數(shù)頻繁,問題缺乏思維的深度和廣度,給學(xué)生自主探究帶來了不必要的麻煩。如何改變這一現(xiàn)狀呢?筆者認(rèn)為,教師應(yīng)從數(shù)學(xué)知識網(wǎng)絡(luò)的視角入手,帶領(lǐng)學(xué)生串聯(lián)知識模塊,從數(shù)學(xué)思想方法的維度設(shè)計(jì)問題,幫助學(xué)生構(gòu)建知識網(wǎng)絡(luò),進(jìn)一步提升課堂思維含量,從而發(fā)展解決數(shù)學(xué)問題的能力。

一、立足認(rèn)知困惑設(shè)計(jì)問題

在小學(xué)數(shù)學(xué)教學(xué)中,由于認(rèn)知和思維差異,學(xué)生往往會產(chǎn)生很多困惑,這時(shí)候就需要教師從學(xué)生的已有知識基礎(chǔ)出發(fā),融合相關(guān)經(jīng)驗(yàn),在學(xué)生的困惑處設(shè)問,用有效的問題激活學(xué)生的思維,引導(dǎo)學(xué)生積極參與問題探究。

例如,在教學(xué)《帶小括號的混合運(yùn)算》時(shí),筆者先從學(xué)生已經(jīng)學(xué)過的混合運(yùn)算入手,設(shè)計(jì)了這樣一道題:一筐蘋果有50個,一筐梨比一筐蘋果少32個,求三筐梨有多少個?這個問題是學(xué)生已經(jīng)掌握的知識,并且也已經(jīng)積累了豐富的解題經(jīng)驗(yàn),從這個知識點(diǎn)入手,引導(dǎo)學(xué)生討論計(jì)算步驟,即討論先求什么再求什么。學(xué)生根據(jù)已有經(jīng)驗(yàn)先分步計(jì)算,再用綜合算式計(jì)算,最后將這兩種計(jì)算方法進(jìn)行比較。經(jīng)過對比之后,學(xué)生發(fā)現(xiàn)兩種算法的結(jié)果并不相同,這就讓學(xué)生產(chǎn)生了認(rèn)知矛盾:到底哪一種方法是對的呢?此時(shí)筆者提出兩個問題,引導(dǎo)學(xué)生思考分析:一是怎么列出綜合算式?二是用什么方法能夠先算出50減32的結(jié)果?設(shè)計(jì)這兩個問題的目的是基于以下兩方面的考慮:其一,讓學(xué)生梳理運(yùn)算順序,明確解決問題的思路必須要和混合算式的運(yùn)算順序保持一致的原則;其二,給學(xué)生提供一個自主探究的機(jī)會,讓學(xué)生嘗試運(yùn)用各種運(yùn)算符號,讓小括號的應(yīng)用呼之欲出,自然生成。

以上環(huán)節(jié),教師在學(xué)生的思維困惑之處設(shè)計(jì)問題,讓學(xué)生產(chǎn)生認(rèn)知沖突,引導(dǎo)學(xué)生打開思路,展開自主探索,由此找到解決問題的方法,激發(fā)思維的活力。

二、經(jīng)歷關(guān)鍵過程設(shè)計(jì)問題

在數(shù)學(xué)課堂探究中,學(xué)生只有通過自主探索才能夠?qū)?shù)學(xué)概念有深刻的把握,這就需要教師緊緊抓住知識的關(guān)鍵點(diǎn)設(shè)計(jì)關(guān)鍵問題,一方面幫助學(xué)生辨析數(shù)學(xué)概念,另一方面讓學(xué)生在解決問題的過程中獲得感悟,從而把握數(shù)學(xué)的本質(zhì)。

例如,在教學(xué)《分?jǐn)?shù)的初步認(rèn)識》這一部分內(nèi)容時(shí),學(xué)生對理解抽象的分?jǐn)?shù)存在一定的困難,教師要從分?jǐn)?shù)1/2的本質(zhì)入手,抓住關(guān)鍵設(shè)計(jì)問題,進(jìn)行突破。為此,筆者設(shè)計(jì)了兩個層次的教學(xué)活動,引導(dǎo)學(xué)生自主探究。層次一,讓學(xué)生動手折紙,用不同的方法將一張同樣大小的長方形紙折出它的1/2,并將這1/2涂上顏色。然后提出問題讓學(xué)生比較:“為什么涂色的部分都是長方形的1/2呢?”借助這個問題,學(xué)生認(rèn)識到,只要等分成兩份,每份就是它的1/2。層次二,筆者給學(xué)生直觀呈現(xiàn)不同形狀的圖形,這些圖形的涂色部分都用1/2表示。然后筆者提出問題引導(dǎo)學(xué)生比較并思考:為什么這些圖形的涂色部分都可以用1/2來表示?學(xué)生借助這個問題進(jìn)行深入思考,認(rèn)識到不管什么樣的圖形,只要等分成兩份,每一份就是它的1/2。

以上環(huán)節(jié),教師挖掘數(shù)學(xué)概念的關(guān)鍵所在,以關(guān)鍵點(diǎn)為問題設(shè)計(jì)的核心,借助關(guān)鍵問題的設(shè)計(jì),帶領(lǐng)學(xué)生經(jīng)歷數(shù)學(xué)概念形成的關(guān)鍵過程,讓學(xué)生在操作和比較中深入思考,直抵?jǐn)?shù)學(xué)概念的內(nèi)涵,從而對數(shù)學(xué)概念的本質(zhì)有了深入的理解。

三、把握新舊關(guān)聯(lián)設(shè)計(jì)問題

在小學(xué)階段,每一個知識點(diǎn)并非孤立存在,都需要在系統(tǒng)的框架中進(jìn)行認(rèn)知和學(xué)習(xí)。對小學(xué)生來說,由于思維的片面性,容易陷入思維誤區(qū),因此,教師要把握全局,將新舊知識點(diǎn)進(jìn)行關(guān)聯(lián),帶領(lǐng)學(xué)生梳理知識的邏輯結(jié)構(gòu),設(shè)計(jì)能夠驅(qū)動學(xué)生進(jìn)行系統(tǒng)建構(gòu)的有效問題,幫助學(xué)生拓展知識體系。

例如,在教學(xué)《異分母分?jǐn)?shù)加減法》這一內(nèi)容時(shí),學(xué)生已經(jīng)掌握的舊有知識是整數(shù)加減法和小數(shù)加減法,這是新知學(xué)習(xí)的起點(diǎn),也是基本點(diǎn)。因此,筆者以學(xué)生的已有認(rèn)知為著力點(diǎn),先帶領(lǐng)學(xué)生回顧整數(shù)和小數(shù)加減法計(jì)算的共同點(diǎn),在鞏固舊知的同時(shí),推進(jìn)新知的學(xué)習(xí)。學(xué)生經(jīng)過梳理整數(shù)加減法、小數(shù)加減法之后,發(fā)現(xiàn)不管是整數(shù)還是小數(shù)加減法,都遵守一個共同的計(jì)算法則,即相同的數(shù)位要對齊,相同的計(jì)數(shù)單位可以直接加減。這是學(xué)生從舊知中獲得的經(jīng)驗(yàn),能為接下來的新知學(xué)習(xí)提供方法借鑒。之后,筆者提出新問題:“想一想,我們現(xiàn)在學(xué)習(xí)的異分母分?jǐn)?shù)加減法也可以用這樣的計(jì)算法則來進(jìn)行計(jì)算嗎?”這個問題將學(xué)生從舊知層面延伸到新知層面,引發(fā)學(xué)生的思考和討論。學(xué)生經(jīng)過分析之后認(rèn)為,異分母分?jǐn)?shù)的分?jǐn)?shù)單位是不相同的,所以不能直接相加減。此時(shí)筆者繼續(xù)提出問題:“分?jǐn)?shù)單位不相同,可以化成相同的嗎?用什么方法化成相同單位呢?”在這個問題的引導(dǎo)下,學(xué)生繼續(xù)深入討論和探索,發(fā)現(xiàn)以前學(xué)過的通分的方法以及用直觀圖進(jìn)行圖示研究的方法可以化成相同單位。由此學(xué)生提出可以將分?jǐn)?shù)化成小數(shù)或?qū)⒎謹(jǐn)?shù)進(jìn)行通分的方法來解答。學(xué)生有了這樣的方法之后,筆者繼續(xù)提出問題:“你能找出這些方法的共同之處嗎?這些方法的本質(zhì)是什么?”通過思考這些問題,學(xué)生最終找到了答案,不管是運(yùn)用直觀圖、通分還是化成小數(shù)的方法,其本質(zhì)都是運(yùn)用轉(zhuǎn)化的思想統(tǒng)一分?jǐn)?shù)單位。

以上環(huán)節(jié),教師帶領(lǐng)學(xué)生從新舊知識的關(guān)聯(lián)入手,在新舊知識的關(guān)聯(lián)處設(shè)計(jì)問題,提出問題,帶領(lǐng)學(xué)生進(jìn)行知識系統(tǒng)的深度建構(gòu),從而對新知有更加深刻的理解,并由此建立一個系統(tǒng)的知識體系。

四、厘清舊有認(rèn)知設(shè)計(jì)問題

在數(shù)學(xué)學(xué)習(xí)探究中,小學(xué)生還處在感性思維階段,往往會出現(xiàn)易錯點(diǎn)。對學(xué)生而言,錯誤是正常的,錯誤的出現(xiàn)并不可怕,只要教師牢牢把握學(xué)生認(rèn)知思維的規(guī)律,從學(xué)生的差錯之處設(shè)計(jì)問題,幫助學(xué)生厘清舊有的認(rèn)知,引導(dǎo)學(xué)生深入思考,去偽存真,從而對數(shù)學(xué)概念有更深刻的分析和理解。

例如,在教學(xué)《三角形的三邊關(guān)系》這一內(nèi)容時(shí),如何讓學(xué)生對三角形的三邊關(guān)系有更直觀的感知,并從感性認(rèn)識上升到理性的思維,這是課堂教學(xué)的關(guān)鍵。而在這個過程中,學(xué)生舊有的錯誤思維,也會成為阻礙其深入探究的絆腳石。在驗(yàn)證三角形的兩邊之和大于還是等于第三邊時(shí),筆者讓學(xué)生動手操作,將邊長是3厘米,5厘米和8厘米的三根吸管圍起來,看能否圍成一個三角形。學(xué)生在動手操作之前,一般都會產(chǎn)生主觀的猜想,認(rèn)為可以將3厘米和5厘米的吸管拱起來,這樣就可以圍成一個三角形。為了幫助學(xué)生厘清這個錯誤的認(rèn)知,筆者直接提出這樣的問題:“如果我們將這根8厘米的吸管橫放在下面,另外兩根3厘米和5厘米的吸管能夠放在上面并拱起來嗎?”很顯然,如果單用肉眼看,學(xué)生會從感性的認(rèn)知上認(rèn)為是可以的。但是在這個問題的引導(dǎo)下,學(xué)生展開了理性的思考和討論,認(rèn)為兩邊之和是8厘米,第三邊也是8厘米,兩邊之和與第三邊是相等的,也就是說,這兩邊根本無法拱起來。通過這樣的問題設(shè)計(jì)和引導(dǎo),讓學(xué)生意識到肉眼看到的并不一定準(zhǔn)確,眼睛也會出錯,因此,就需要運(yùn)用數(shù)據(jù)來驗(yàn)證,從而打破傳統(tǒng)的思維認(rèn)知的誤區(qū),幫助學(xué)生辨析思維,建立了理性思維的習(xí)慣。

以上環(huán)節(jié),教師從學(xué)生的感性思維的易錯之處入手,設(shè)計(jì)有效的問題,幫助學(xué)生厘清已有認(rèn)知中的缺陷,讓學(xué)生認(rèn)識到舊有思維中的盲點(diǎn),從而建立理性的思維意識,讓思考更有深度。

總之,在數(shù)學(xué)課堂教學(xué)中,問題的設(shè)計(jì)是引領(lǐng)學(xué)生思考的有效抓手。在課堂教學(xué)中,教師要幫助學(xué)生厘清數(shù)學(xué)舊知,構(gòu)建新的知識體系,進(jìn)而深刻理解數(shù)學(xué)的本質(zhì)屬性,讓數(shù)學(xué)深度學(xué)習(xí)自然生成。

【參考文獻(xiàn)】

[1]崔小兵.數(shù)學(xué)教學(xué)須準(zhǔn)確把握問題設(shè)計(jì)點(diǎn)[J].教學(xué)與管理,2020(14).

[2]張嬌.問題引領(lǐng) 深化思維——小學(xué)數(shù)學(xué)提升學(xué)生思維能力的方法探析[J].華夏教師,2020(17).

[3]張衛(wèi)星.數(shù)學(xué)核心問題的常見類型及內(nèi)涵[J].教學(xué)與管理,2015(32).

【作者簡介】李德艷(1978— ),女,廣西興業(yè)人,大學(xué)本科學(xué)歷,一級教師,現(xiàn)就職于玉林市興業(yè)縣洛陽鎮(zhèn)洛陽中心小學(xué),主要從事小學(xué)數(shù)學(xué)教學(xué)與研究。

(責(zé)編 黃健清)

猜你喜歡
數(shù)學(xué)能力問題設(shè)計(jì)數(shù)學(xué)課堂
構(gòu)建“卓越課堂”,提高數(shù)學(xué)能力
考試周刊(2016年97期)2016-12-26 10:07:41
信息技術(shù)條件下的數(shù)學(xué)課堂教與學(xué)研究
成才之路(2016年35期)2016-12-12 12:00:27
精設(shè)計(jì),巧提問
考試周刊(2016年90期)2016-12-01 20:04:43
淺論初中語文教學(xué)問題設(shè)計(jì)創(chuàng)新
淺談初中數(shù)學(xué)教學(xué)中的素質(zhì)教育
創(chuàng)設(shè)初中數(shù)學(xué)實(shí)驗(yàn)課的意義
考試周刊(2016年83期)2016-10-31 12:57:38
微課提問的設(shè)計(jì):以一件獲獎作品為例
張揚(yáng)學(xué)生個性,展現(xiàn)課堂活力
考試周刊(2016年77期)2016-10-09 11:03:48
數(shù)學(xué)課堂教學(xué)中動手操作活動實(shí)施研究
考試周刊(2016年76期)2016-10-09 08:59:08
數(shù)學(xué)課堂激發(fā)學(xué)生的學(xué)習(xí)興趣之我見
考試周刊(2016年76期)2016-10-09 08:58:24
阳朔县| 贵德县| 通渭县| 桐柏县| 从化市| 尼玛县| 衢州市| 兴文县| 汶川县| 高淳县| 元阳县| 凤阳县| 沙湾县| 金乡县| 景泰县| 铜陵市| 若羌县| 聂荣县| 嘉义县| 柳林县| 噶尔县| 新巴尔虎左旗| 拉萨市| 秦安县| 台北市| 葵青区| 红原县| 增城市| 界首市| 延庆县| 灵台县| 全椒县| 格尔木市| 纳雍县| 依兰县| 吴堡县| 江山市| 寿光市| 崇州市| 久治县| 桓仁|