朱玉君 左紫薇 張振華 樊葉楊
一種水稻微效QTL精細定位和克隆新途徑
朱玉君*左紫薇 張振華 樊葉楊
(中國水稻研究所 水稻生物學國家重點實驗室/國家水稻改良中心, 杭州 310006;*通信聯(lián)系人,E-mail:zhuyujun@caas.cn)
水稻重要農藝性狀一般由少數主效QTL和大量微效QTL共同控制。水稻主效QTL克隆已取得顯著進展,而微效QTL由于遺傳作用弱,表型鑒定易受測量誤差影響,克隆進展緩慢,但微效QTL在水稻重要農藝性狀調控中的作用不容忽視。本文介紹了一種水稻微效QTL精細定位和克隆的新途徑。該途徑包含2個階段:1)應用剩余雜合體構建近等基因系群體進行目標QTL的精細定位;2)應用基因編輯技術創(chuàng)制候選基因突變體驗證基因功能。應用該策略筆者所在團隊在水稻第1染色體長臂精細定位了6個微效粒重和粒型QTL,并成功克隆首個微效粒重QTL。該技術可在方法上為水稻QTL克隆及新種質創(chuàng)制提供更多選擇。
水稻;粒型;微效QTL;圖位克隆
水稻是我國最主要的糧食作物之一,60%以上的人口以米飯為主食。有效穗數、每穗實粒數和千粒重是構成水稻產量的三個要素,它們都是典型的數量性狀,由少數主效QTL和大量微效QTL共同控制。與有效穗數和每穗實粒數相比,千粒重不易受試驗環(huán)境影響,穩(wěn)定性最高,粒數次之,穗數最低。與之相對應,在克隆的產量性狀QTL中,以穗數為首要目標者0個;以粒數為首要目標者2個,分別為和[1-2],另有多個抽穗期QTL表現出對粒數的多效性作用,如[3]、[4]、/[5-6]、[7]和[8]等;以粒重粒型為首要目標者21個[9-15]。
雖然粒重粒型QTL克隆數目較多,但與初定位的QTL個數相比,占比依然很低。在Gramene數據庫中共收錄了568個粒重和粒型QTL,分布于水稻全部染色體的各個區(qū)域,但已克隆的個數僅占收錄總數的3.7%。究其原因,絕大部分QTL效應很小,易受表型鑒定誤差影響,精細定位難度大;另外,等位基因之間的遺傳作用差異小,遺傳互補效果不明顯,基因功能驗證困難。但是,根據數量遺傳學理論和現代分子定位結果,微效QTL在水稻重要農藝性狀調控中也扮演著重要角色[16],無論是機理剖析,還是育種應用,這類QTL都不容忽視。
近10年來,筆者所在小組以控制水稻粒重和粒型的微效QTL為研究對象,將多個微效QTL界定于涵蓋少數注釋基因的區(qū)間內[15, 17-20]。這些座位上雙親等位基因間的遺傳效應差異很小,如千粒重的加性效應最小僅為0.1 g[17],難以直接采用遺傳互補的方法進行驗證。幸而CRISPR/Cas9基因敲除技術的出現及不斷完善[21-23],特別是在該技術成功應用于水稻基因組研究后[24],在各實驗室迅速普及[11, 25-26]。得益于該技術,我們成功克隆了首個微效粒重QTL[15],初步建立了水稻微效QTL克隆的技術途徑。本文主要介紹了筆者所在課題應用該途徑在水稻第1染色體長臂微效粒重粒型QTL精細定位和圖位克隆中取得的進展[15, 17-20],以期通過對該技術途徑的介紹,在方法上為QTL圖位克隆提供更多選擇。
ZS97?珍汕97;MY46?密陽46;A?加性效應,指一個密陽46等位基因取代珍汕97等位基因所產生的遺傳效應;R2?QTL效應對表型方差的貢獻率;TGW?千粒重(g);GL?粒長(mm);GW?粒寬(mm)。ns?不顯著。
Fig.1.Six minor QTL for grain weight and size detected in the 7.1 Mb region on the long arm of chromosome 1 in rice.
微效QTL由于精細定位和基因功能驗證困難的原因,相比主效QTL,研究進展緩慢。在已克隆的21個粒重粒型QTL中,除外[15],其余20個均表現為主效作用。筆者所在課題通過多年探索在水稻第1染色體長臂7.1 Mb區(qū)間精細定位到6個控制粒重和粒型的微效QTL,并成功克?。▓D1),建立了一種克隆微效QTL的技術途徑。該途徑主要包含2個階段:1)應用剩余雜合體構建近等基因系群體進行目標QTL的精細定位;2)應用基因編輯技術創(chuàng)制候選基因突變體驗證基因功能。在精細定位階段中,近等基因系(near isogenic line,NIL)的構建應用了遺傳資源“剩余雜合體”(residual heterozygote,RH),即僅在包含QTL區(qū)間雜合,其余背景區(qū)間均為親本純合型的遺傳材料。在基因功能驗證階段,突變體的創(chuàng)制采用CRISPR/Cas9基因敲除技術。
RH?剩余雜合體;SeqRHs?雜合區(qū)間連續(xù)排列的剩余雜合體;NIL?近等基因系。
<
Fig.2.Technical route for QTL fine-mapping.
整個精細定位技術路線如圖2所示,具體流程如下所述:根據初定位結果,挑選1個雜合區(qū)間包含目標QTL的RH單株,自交構建F2群體(約300個單株),根據基因型挑選不同親本純合型單株各約30個,構建F2:3或NIL群體進行QTL分析,完成第一輪定位;結合定位結果在F2群體中挑選雜合區(qū)間更小且呈連續(xù)排列的剩余雜合體單株(sequential residual heterozygotes,SeqRHs),自交構建SeqRHs-F2群體,根據基因型挑選不同親本純合型單株構建SeqRHs-F2:3或SeqRHs-NIL群體,比較各分離群體的QTL分析結果縮小目標區(qū)間,完成第二輪定位;通過多輪定位將目標QTL作用區(qū)間精細定位至僅包含幾個注釋基因的區(qū)間。在此基礎上,結合親本間注釋基因的序列差異、表達量差異以及基因編碼產物等方面的信息,預測候選基因,再借助CRISPR/Cas9基因敲除技術創(chuàng)制突變體完成功能驗證。下文主要介紹應用該方法在微效粒重和粒型QTL精細定位及圖位克隆中取得的進展。
前期應用珍汕97(ZS97)和密陽46(MY46)衍生的重組自交系群體對產量及構成因子進行QTL分析,第1染色體長臂RZ730–RG381區(qū)間與多個粒重區(qū)間存在互作[27]。針對該區(qū)間,從ZS97/MY46的F9群體中篩選到1個目標區(qū)間為MY46純合型的單株與ZS97回交2次,挑選1個在RM11448–RM11974區(qū)間(11.5 Mb)呈雜合的BC2F2單株開展精細定位。從該單株衍生的BC2F3群體挑選到3個SeqRHs,經自交和基因型檢測構建3個SeqRHs-NIL群體。通過各分離區(qū)間的遺傳作用比較,在該區(qū)間分解出2個控制千粒重的QTL,命名為和,前者位于區(qū)間RM11437–RM11615(3.6 Mb),ZS97等位基因增加粒重0.27 g;后者位于RM11615–RM11800(4.6 Mb),MY46等位基因增加粒重0.42 g[28](圖1)。
針對所在3.6 Mb區(qū)間,在Guo等[28]構建的群體中篩選到1個BC2F8RH單株,從其衍生群體中篩選到4個BC2F10SeqRHs,經自交及基因型檢測,構建4個BC2F11:12SeqRHs-NIL群體。經分析,從區(qū)間分解出2個控制千粒重的微效QTL,命名為和,前者位于Wn28447–RM11543(120.4 kb),控制粒重為主,ZS97等位基因增加粒重0.10 g;后者位于RM11554–RM11569(521.8 kb),通過增加粒長提高粒重,MY46等位基因增加粒長0.017 mm,增加粒重0.06 g[17](圖1)。
針對所在4.6 Mb區(qū)間,在Guo等[28]構建的BC2F2群體中篩選到1個在RM11448–RM11974(11.5 Mb)區(qū)間呈雜合的單株,通過多代自交及標記檢測,構建6個BC2F10:11SeqRHs-NIL群體。經各區(qū)間遺傳效應比較,從區(qū)間分解出3個微效粒重QTL,命名為、和。其中,位于區(qū)間RM11730–RM11762(933.6 kb),主要控制千粒重,MY46等位基因提高粒重0.18 g;位于區(qū)間RM11781–RM11800(418.8 kb),通過增加粒長提高粒重,MY46等位基因增加粒長0.02 mm,增加粒重0.08 g;位于區(qū)間RM11800-RM11885(2.1 Mb),通過增加粒寬提高粒重,MY46等位基因增加粒寬0.02 mm,增加粒重0.12 g[18](圖1)。之后,我們又分別對這3個微效粒重QTL進行精細定位和克隆。
2.3.1的精細定位
從ZS973/MY46的BC2F9群體中挑選1個RH單株,應用由其衍生的3個BC2F12SeqRHs-NIL群體將所在區(qū)間縮小至Wn32886–Wn33252(366.1 kb)。采用相同策略,進一步構建3套世代分別為BC2F14,BC2F16和BC2F17的SeqRHs-NIL群體,將精細定位至Wn33011–Wn33089(77.5 kb),MY46等位基因增加千粒重0.26 g,該區(qū)間內包含13個注釋基因[20]。
2.3.2的圖位克隆
從ZS973/MY46的BC2F9群體中挑選1個雜合區(qū)間為RM212–RM11800的RH單株。應用由其衍生的4個BC2F11:12和3個BC2F13:14SeqRHs-NIL群體,將精細定位至區(qū)間Wn34323–Wn34367(44.0 kb)。該微效QTL通過增加粒長提高粒重,MY46等位基因增加粒長0.021 mm,提高粒重0.13 g。應用CRISPR/Cas9敲除技術進行候選基因功能驗證,確認編碼VQ-motif蛋白的為的目標基因。在NIL中,兩種純合基因型的千粒重相差0.9%~2.0%,而敲除株系與野生型對照之間的千粒重差異達2.8%~9.8%,效應平均提高約6.1倍[15]。
2.3.3 qTGW1.2c分解成qGS1-35.2和qGW1-35.5
從ZS973/MY46的BC2F9群體中挑選1個雜合區(qū)間為RM11807–RM11842的RH單株,應用由其衍生的1個BC2F11:12和5個BC2F13:14SeqRHs-NIL群體,在區(qū)間又分解出2個微效粒型QTL,其中一個位于Wn35183–RM11828(132.4 kb),ZS97等位基因增加粒長0.027 mm,長寬比增加0.017,第1個分離標記位于基因組35.2 Mb位置,且主要控制粒形,將其命名為;另一個位于Wn35518–Wn35643(125.5 kb),MY46等位基因增加粒寬0.015 mm,增加粒重0.14 g,控制粒寬為主,將其命名為。針對,進一步構建3個BC2F14:15和2個BC2F15:16SeqRHs-NIL群體,將其精細定位至Wn35183–RM11824區(qū)間,大小約57.7 kb(圖2),該區(qū)間內共包含6個注釋基因[19]。目前已初步完成候選基因的功能驗證。
上述研究有力地證明了應用剩余雜合體策略構建SeqRHs-NIL群體能有效分解和精細定位微效QTL;同時,應用基因敲除技術可驗證微效QTL的候選基因功能,并在目標基因座位創(chuàng)制新的等位變異;另外,該結果也為控制同一性狀的QTL往往是成簇分布的理論提供新的證據。
粒重和粒型基因的克隆對水稻高產和外觀品質的改良具有重要作用。研究表明這些已克隆的粒重粒型QTL涉及植物激素、泛素-蛋白酶體通路、G-蛋白信號以及轉錄調控因子等多條途徑,并通過控制細胞增殖和(或)擴張影響粒長、粒寬和千粒重[29-32](表1)。但是,整個調控網絡還不完整,特別是各調控途徑之間的相互聯(lián)系,需要進一步深入研究,挖掘關鍵因子,不斷完善。
目前,水稻基因組功能研究技術成熟。QTL精細定位后,候選基因的功能驗證及分子機理研究水到渠成。因此,水稻重要農藝性狀的QTL克隆很大程度取決于精細定位的準確性。QTL定位方法除傳統(tǒng)的圖位克隆外,也涌現出新的方法,如全基因組關聯(lián)分析[54]和Ho-LAMap方法[37]。在已克隆的粒重和粒型QTL中,仍以圖位克隆為主,在精細定位階段大多采用回交方式構建NIL群體,回交次數最高的達到6次,群體大小至少在2000個樣本以上,最多的達到20 160個樣本(表1)。本文采用剩余雜合體構建SeqRHs-NIL群體策略,通過多輪定位逐步鎖定目標基因(圖2),它的優(yōu)勢在于:1)工作量降低。對于重組子,1個重組區(qū)域僅需篩選1個即可;對于分離群體,F2型群體約300個單株,NIL群體中雙親純合型株系各不超過40個。2)容錯率高。在分離群體中,相同基因型個體均包含大量樣本,個別基因型和表型錯誤不影響QTL定位結果,有利于微效QTL的鑒定。3)連鎖QTL鑒定效率高。在構建分離區(qū)間呈梯系排列的NIL群體時,易篩選到分離區(qū)間不交疊的重組單株,適宜連鎖QTL的鑒定和分解。4)遺傳背景一致性和QTL定位精度“自動”提高。在剩余雜合體篩選過程中,隨世代推進,背景殘存變異將“自動”逐步消除;剩余雜合體在加代過程中,目標分離區(qū)間自然重組,QTL作用區(qū)間精度“自動”提高。
表1 已克隆的水稻主效粒重和粒型QTL
遺傳變異是水稻品種改良的基礎,借助基因組編輯技術可針對目標基因進行定向改造,創(chuàng)建新的遺傳變異,該技術在水稻品種定向改良方面顯示出巨大潛力[55-58]。但從水稻產量性狀QTL研究進展看,已克隆的基本為主效基因,在基因組中占比很低,嚴重限制了基因組編輯的育種應用。本小組建立的技術體系能準確精細定位微效QTL,并可借助CRISPR/Cas9敲除技術確定目標基因。同時,該技術途徑還可在目標基因座位上創(chuàng)制新的等位變異,獲得新的水稻種質資源[15]。希望通過對該技術途徑的介紹,在方法上為水稻QTL圖位克隆及新種質創(chuàng)制提供更多選擇。
謝辭:感謝中國水稻研究所莊杰云研究員在微效粒重粒型QTL精細定位和圖位克隆研究中做出的貢獻以及對本文的指導。
[1] Ashikari M, Sakakibara H, Lin S, Yanamoto T, Takashi T, Nishimura A, Angeles R E, Qian Q, Kitano H, Matsuoka M.Cytokinin oxidase regulates rice grain production [J]., 2005, 309: 741-745.
[2] Huo X, Wu S, Zhu Z, Liu F, Fu Y, Cai H, Sun X, Gu P, Xie D, Tan L, Sun C.increases grain production in rice [J]., 2017, 8: 1497.
[3] Zhang Z, Wang K, Guo L, Zhu Y, Fan Y, Cheng S, Zhuang J.Pleiotropism of the photoperiod-insensitive allele ofon heading date, plant height and yield traits in rice [J]., 2012, 7: e52538.
[4] Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q.Natural variation inis an important regulator of heading date and yield potential in rice [J]., 2008, 40: 761-767.
[5] Wei X, Xu J, Guo H, Jiang L, Chen S, Yu C, Zhou Z, Hu P, Zhai H, Wan J.suppresses flowering in rice, influencing plant height and yield potential simultaneously [J]., 2010, 153: 1747-1758.
[6] Yan W H, Wang P, Chen H X, Zhou H J, Li Q P, Wang C R, Ding Z H, Zhang Y S, Yu S B, Xing Y Z, Zhang Q F.A major QTL,, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice [J]., 2011, 4: 319-330.
[7] Zhang Z H, Cao L Y, Chen J Y, Zhang Y X, Zhuang J Y, Cheng S H.Effects of Hd2 in the presence of the photoperiod-insensitive functional allele ofin rice [J]., 2016, 5: 1719-1726.
[8] Zhu Y, Fan Y, Wang K, Huang D, Liu W, Ying J, Zhuang J.Rice flowering locus T 1 plays an important role in heading date influencing yield traits in rice [J]., 2017, 7: 4918.
[9] Li N, Xu R, Li Y.Molecular networks of seed size control in plants [J]., 2019, 70: 11.
[10] Wang A, Hou Q, Si L, Huang X, Luo J, Lu D, Zhu J, Shangguan Y, Miao J, Xie Y, Wang Y, Zhao Q, Feng Q, Zhou C, Li Y, Fan D, Lu Y, Tian Q, Wang Z, Han B.The PLATZ transcription factor GL6 affect grain length and number in rice [J]., 2019, 180: 2077–2090.
[11] Ruan B, Shang L, Zhang B, Hu J, Wang Y, Lin H, Zhang A, Liu C, Peng Y, Zhu L, Ren D, Shen L, Dong G, Zhang G, Zeng D, Guo L, Qian Q, Gao Z.Natural variation in the promoter ofdetermines grain width and weight in rice [J]., 2020, 227(2): 3.
[12] Shi C L, Dong N Q, Guo T, Ye W W, Shan J X, Lin H X.A quantitative trait locuscontrols rice grain size and yield through the gibberellin pathway [J]., 2020, doi: 10.1111/tpj.14793.
[13] Li Q, Lu L, Liu H, Bai X, Zhou X, Wu B, Yuan M, Yang L, Xing Y.A minor QTL,, encoding an R2R3-MYB protein, negatively controls grain length in rice [J]., 2020, 133: 2387-2399. doi.org/10.1007/s00122-020-03606-z.
[14] Dong N Q, Sun Y, Guo T, Shi C L, Zhang Y M, Kan Y, Xiang Y H, Zhang H, Yang Y B, Li Y C, Zhao H Y, Yu H X, Lu Z Q, Wang Y, Ye W W, Shan J X, Lin H X.UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice [J]., 2020, doi.org/ 10.1038/s41467-020-16403-5.
[15] Chan A N, Wang L L, Zhu Y J, Fan Y Y, Zhuang J Y, Zhang Z H.Identification through fine mapping and verification using CRISRP/Cas9-targeted mutagenesis for a minor QTL controlling grain weight in rice[J].,2021,134: 327-337.https://doi.org/10.1007/s00122-020-03699-6.
[16] Noriko K, Masayuki K, Kei K, Takuya K, Tsutomu N, Yuji H, Itsuro T, Takashi S, Kiyoaki K.Identification of quantitative trait loci for rice grain quality and yield-related traits in two closely relatedL.subsp.cultivars grown near the northernmost limit for rice paddy cultivation[J]., 2017, 67: 191-206.
[17] Zhang H W, Fan Y Y, Zhu Y J, Chen J Y, Yu S B, Zhuang J Y.Dissection of theregion into two tightly-linked minor QTLs having stable effects for grain weight in rice[J]., 2016, 17: 98-107.
[18] Wang L L, Chen Y Y, Guo L, Zhang H W, Fan Y Y, Zhuang J Y.Dissection ofto three QTLs for grain weight and grain size in rice (L.)[J]., 2015, 202: 119-127.
[19] Dong Q, Zhang Z H, Wang LL, Zhu Y J, Fan Y Y, Mou T M, Ma L Y, Zhuang J Y.Dissection and fine-mapping of two QTL for grain size linked in a 460-kb region on chromosome 1 of rice[J]., 2018, 11: 44.
[20] Wang W, Wang L, Zhu Y, Fan Y, Zhuang J.Fine-mapping of, a quantitative trait locus for 1000-grain weight in rice[J]., 2019, 26(4): 220-228.
[21] Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity [J]., 2012, 337: 816.
[22] Hu X, Meng X, Liu Q, Wang K.Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice [J]., 2018, 16: 292-297.
[23] Meng X, Hu X, Liu Q, Song X, Gao C, Li J, Wang K.Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice [J]., 2018, 61: 122-125.
[24] Shan Q, Wang Y, Li J, Gao C.Genome editing in rice and wheat using the CRISPR/Cas system [J]., 2014, 9: 2395-2410.
[25] Zhao D S, Li Q F, Zhang C Q, Zhang C, Yang Q Q, Pan L X, Ren X Y, Lu J, Gu M H, Liu Q Q.acts as a transcriptional activator to regulate rice grain shape and appearance quality [J]., 2018, 9: 1240.
[26] Ying J Z, Ma M, Bai C, Huang X H, Liu J L, Fan Y Y, Song X J., a major QTL that negatively modulates grain length and weight in rice [J]., 2018, 11: 750-753.
[27] Zhuang J Y, Fan Y Y, Rao Z M, Wu J L, Xia Y W, Zheng K L.Analysis on additive effects and additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice [J]., 2002, 105: 1137-1145.
[28] Guo L, Wang K, Chen J, Huang D, Fan Y, Zhuang J Y.Dissection of two quantitative trait loci for grain weight linked in repulsion on the long arm of chromosome 1 of rice (L.) [J]., 2013, 1: 70-76.
[29] Li N, Xu R, Duan P, Li Y H.Control of grain size in rice., 2018, 31: 237-251.DOI: 10.1007/ s00497-018-0333-6.
[30] 劉喜, 牟昌鈴, 周春雷, 程治軍, 江玲, 萬建民.水稻粒型基因克隆和調控機制研究進展[J].中國水稻科學, 2018, 32(1): 1-11.
Liu X, Mou C, Zhou C, Cheng Z, Jiang L, Wang J.Research progress on cloning and regulation mechanism of rice grain shapes genes [J]., 2018, 32(1): 1-11.(in Chinese with English abstract).
[31] Fan Y, Li Y.Molecular, cellular and Yin-Yang regulation of grain size and number in rice [J]., 2019, 39: 163.
[32] 康藝維, 陳玉宇, 張迎信.水稻粒型基因克隆研究進展及育種應用展望[J].中國水稻科學, 2020, 34(6): 479-490.
Kang Y W, Chen Y Y, Zhang Y X.Research progress and breeding prospects of grain size associated genes in rice [J]., 2020, 34(6): 479-490.(in Chinese with English abstract).
[33] Song X J, Huang W, Shi M, Zhu M Z, Lin H X.A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase [J]., 2007, 39: 623-630.
[34] Hu J, Wang Y, Fang Y, Zeng L, Xu J, Yu H, Shi Z, Pan J, Zhang D, Kang S, Zhu L, Dong G, Guo L, Zeng D, Zhang G, Xie L, Xiong G, Li J, Qian Q.A rare allele ofenhances grain size and grain yield in rice[J]., 2015, 8: 1455-1465.
[35] Duan P, Ni S, Wang J, Zhang B, Xu R, Wang Y, Chen H, Zhu X, Li Y.Regulation ofby OsmiR396 controls grain size and yield in rice [J]., 2016, 2: 15203.
[36] Che R, Tong H, Shi B, Liu Y, Fang S, Liu D, Xiao Y, Hu B, Liu L, Wang H, Zhao M, Chu C.Control of grain size and rice yield by GL2-mediated brassinosteroid responses [J]., 2016, 2.
[37] Yu J, Xiong H, Zhu X, Zhang H, Li H, Miao J, Wang W, Tang Z, Zhang Z, Yao G, Zhang Q, Pan Y, Wang X, Rashid MAR, Li J, Gao Y, Li Z, Yang W, Fu X, Li Z.contributing to rice grain length and yield was mined by Ho-LAMap [J]., 2017, 15: 28-45.
[38] Yu J, Miao J, Zhang Z, Xiong H, Zhu X, Sun X, Pan Y, Liang Y, Zhang Q, Rashid MAR, Li J, Zhang H, Li Z.Alternative splicing ofcontrols grain length and yield in japonica rice [J]., 2018, doi:10.1111/pbi.12903.
[39] Liu Q, Han R, Wu K, Zhang J, Ye Y, Wang S, Chen J, Pan Y, Li Q, Xu X, Zhou J, Tao D, Wu Y, Fu X.G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice [J]., 2018, 9: 852.
[40] Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q., a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein [J]., 2006, 112: 1164-1171.
[41] Qi P, Lin Y S, Song X J, Shen J B, Huang W, Shan J X, Zhu M Z, Jiang L, Gao J P, Lin H X.The novel quantitative trait locuscontrols rice grain size and yield by regulating Cyclin-T1;3[J]., 2012, 22: 1666-1680.
[42] Zhang X, Wang J, Huang J, Lan H, Wang C, Yin C, Wu Y, Tang H, Qian Q, Li J, Zhang H.Rare allele ofassociated with grain length causes extra-large grain and a significant yield increase in rice [J]., 2012, 26, 109: 21 534-21 539.
[43] Hu Z, Lu S J, Wang M J, He H, Sun L, Wang H, Liu X H, Jiang L, Sun J L, Xin X, Kong W, Chu C, Xue H W, Yang J, Luo X, Liu J X.A novel QTLencodes the GSK3/SHAGGY-Like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice [J]., 2018, 11: 736-749.
[44] Xia D, Zhou H, Liu R, Dan W, Li P, Wu B, Chen J, Wang L, Gao G, Zhang Q, He Y., a novel QTL encoding a GSK3/SHAGGY-like kinase, epistatically interacts with GS3 to form extra-long grains in rice [J]., 2018, 11: 754-756.
[45] Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q.Natural variation inplays an important role in regulating grain size and yield in rice [J]., 2011, 43: 1266-1269.
[46] Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M.Deletion in a gene associated with grain size increased yields during rice domestication [J]., 2008, 40(8): 1023-1028.
[47] Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X, Wang J, Jiang L, Zhai H, Wan J.Isolation and initial characterization of, a major QTL associated with grain width and weight [J]., 2008, 18: 1199-1209.
[48] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu Bun-ichi, Onishi A, Miyagawa H, Katoh E.Loss of function of the IAA-glucose hydrolase geneenhances rice grain weight and increases yield [J]., 2013, 45: 707-711.
[49] Song X J, Kuroha T, Ayano M, Furuta T, Nagai K, Komeda N, Segami S, Miura K, Ogawa D, Kamura T, Suzuki T, Higashiyama T, Yamasaki M, Mori H, Inukai Y, Wu J, Kitano H, Sakakibara H, Jacobsen S E, Ashikari M.Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice [J]., 2015, 112: 76-81.
[50] Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, Zhou T, Lu T, Zhu J, Shangguan Y, Chen E, Gong C, Zhao Q, Jing Y, Zhao Y, Li Y, Cui L, Fan D, Lu Y, Weng Q, Wang Y, Zhan Q, Liu K, Wei X, An K, An G, Han B.controls grain size in cultivated rice [J]., 2016, 48: 447-456.
[51] Wang Y, Xiong G, Hu J, Jiang L, Yu H, Xu J, Fang Y, Zeng L, Xu E, Xu J, Ye W, Meng X, Liu R, Chen H, Jing Y, Wang Y, Zhu X, Li J, Qian Q.Copy number variation at thelocus contributes to grain size diversity in rice [J]., 2015, 47: 944-948.
[52] Wang S, Li S, Liu Q, Wu K, Zhang J, Wang S, Wang Y, Chen X, Zhang Y, Gao C, Wang F, Huang H, Fu X.The-regulatory module determines grain shape and simultaneously improves rice yield and grain quality [J]., 2015, 47: 949-954.
[53] Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X.Control of grain size, shape and quality byin rice [J]., 2012, 44: 950-954.
[54] Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler S E, Qian Q, Zhang Q-F, Li J, Han B.Genome-wide association studies of 14 agronomic traits in rice landraces [J]., 2010, 42(11): 961-969.
[55] Huang L, Zhang R, Huang G, Li Y, Melaku G, Zhang S, Chen H, Zhao Y, Zhang J, Zhang Y, Hu F.Developing superior alleles of yield genes in rice by artificial mutagenesis using the CRISPR/Cas9 system [J]., 2018, 6: 475-481.
[56] Wang C, Liu Q, Shen Y, Hua Y, Wang J, Lin J, Wu M, Sun T, Cheng Z, Mercier R, Wang K.Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes [J]., 2019, doi.org/10.1038/s41587-018-0003-0.
[57] Li S, Shen L, Hu P, Liu Q, Zhu X, Qian Q, Wang K, Wang Y.Developing disease-resistant thermosensitive male sterile rice by multiplex gene editing[J]., 2019, doi: 10.1111/jipb.12774.
[58] 黃忠明, 周延彪, 唐曉丹, 趙新輝, 周在為, 符星學, 王凱, 史江偉, 李艷鋒, 符辰建, 楊遠柱.基于CRISPR/Cas9技術的水稻溫敏不育基因突變體的構建[J].作物學報, 2018, 44(6): 844-851.
Huang Z M, Zhou Y B, Tang X D, Zhao X H, Zhou Z W, Fu X X, Wang K, Shi J W, Li Y F, Fu C J, Yang Y Z.Construction ofmutants in rice based on CRISPR/Cas9 technology [J]., 2018, 44(6): 844-851.(in Chinese with English abstract).
A New Approach for Fine-mapping and Map-based Cloning of Minor-Effect QTL in Rice
ZHU Yujun*, ZUO Ziwei, ZHANG Zhenhua, FAN Yeyang
(State Key Laboratory of Rice Biology / Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China;*Corresponding author, E-mail: zhuyujun@caas.cn)
Important agronomic traits in rice are generally controlled by a few major-effect QTLs and a large number of minor-effect QTLs.Great progresses have been made in the cloning of major QTLs, while minor QTLs remain difficult to be cloned due to their small genetic effects and the influence of measurement error.A new approach for fine-mapping and map-based cloning of rice minor-effect QTL was introduced in this article.The approach includes two steps: 1) Use the residual heterozygote to construct near isogenic lines for fine-mapping of the target QTL; 2) Use the genome editing to create mutants of candidate genes for gene function identification.Using the strategy, we fine-mapped six minor QTLs for grain weight and grain size on the long arm of chromosome 1, and successfully cloned the first minor QTL for grain weight.We expect that this approach could provide more options for QTL cloning and new germplasm creation.
rice (L.); grain size; minor QTL; map-based cloning
10.16819/j.1001-7216.2021.201206
2020-12-09;
2021-01-24。
浙江省“萬人計劃”杰出人才基金資助項目(2020R51007);中央級公益性科研院所基本科研業(yè)務費專項(CPSIBRF-CNRRI-202112);水稻生物學國家重點實驗室課題(2020ZZKT10105)。