張娟 牛百曉 鄂志國 陳忱, *
水稻胚乳發(fā)育遺傳調(diào)控的研究進(jìn)展
張娟1牛百曉1鄂志國2陳忱1, *
(1揚(yáng)州大學(xué) 江蘇省作物基因組學(xué)和分子育種重點(diǎn)實(shí)驗(yàn)室/植物功能基因組學(xué)教育部重點(diǎn)實(shí)驗(yàn)室, 揚(yáng)州 225009;2中國水稻研究所 水稻生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室, 杭州 310006;*通信聯(lián)系人, E-mail: chenchen@yzu.edu.cn)
胚乳是被子植物雙受精產(chǎn)物之一,為種子發(fā)育提供營養(yǎng);同時(shí),水稻胚乳也是人類口糧的重要來源。胚乳組織約占水稻種子干質(zhì)量的70%以上,其發(fā)育直接影響稻米產(chǎn)量和品質(zhì)。目前我們對水稻胚乳發(fā)育調(diào)控的分子機(jī)制有了較為深入的認(rèn)識(shí),克隆了一些重要基因,同時(shí)發(fā)現(xiàn)表觀遺傳調(diào)控在胚乳發(fā)育中也發(fā)揮重要作用。本文主要以水稻為例,同時(shí)穿插擬南芥和玉米等植物的相關(guān)研究進(jìn)展,系統(tǒng)總結(jié)了胚乳細(xì)胞化、糊粉層細(xì)胞分化、儲(chǔ)藏物質(zhì)積累等胚乳發(fā)育重要生物學(xué)事件的遺傳調(diào)控機(jī)制。最后我們也指出了關(guān)于胚乳發(fā)育過程中有待進(jìn)一步深入研究的科學(xué)問題,以期能為今后相關(guān)研究提供一些思路。
水稻;胚乳發(fā)育;遺傳調(diào)控;細(xì)胞分化;基因組印記
被子植物的種子是雙受精的產(chǎn)物。其中,胚是由胚囊中的卵細(xì)胞(n)與花粉粒中一個(gè)精細(xì)胞(n)融合形成的合子(2n)發(fā)育而來,胚乳則是由胚囊中的中央細(xì)胞(2n)與花粉粒中另一個(gè)精細(xì)胞融合形成的原初胚乳細(xì)胞(3n)發(fā)育形成。所以就遺傳組成而言,胚乳與胚是不同的:胚乳由兩個(gè)母本基因組(m)拷貝和一個(gè)父本基因組(p)拷貝組成(2m:1p),胚由一個(gè)母本基因組拷貝和一個(gè)父本基因組拷貝組成(1m:1p)。水稻穎果主要由母體組織(果皮和種皮)、胚以及胚乳組成[1]。其中,果皮由子房壁發(fā)育而來,種皮由子房珠被和珠心組織發(fā)育而來;胚和胚乳是雙受精的產(chǎn)物,與母體組織分屬不同遺傳世代。近年來的研究表明,除了遺傳構(gòu)成的差異外,被子植物胚乳基因組的表觀修飾特征與胚也有著明顯不同[2-4]。本文主要以禾本科模式植物水稻為例,圍繞胚乳發(fā)育的關(guān)鍵生物學(xué)事件和生物學(xué)過程,對胚乳發(fā)育相關(guān)的遺傳和表觀遺傳調(diào)控機(jī)制進(jìn)行系統(tǒng)梳理和總結(jié)。
水稻胚乳屬于核型胚乳,根據(jù)細(xì)胞的形態(tài)和生理特征可以將水稻胚乳發(fā)育劃分成四個(gè)主要階段:1)游離核期(受精后0~3 d);2)細(xì)胞化期(受精后3~5 d);3)儲(chǔ)藏物質(zhì)積累期(受精后5~20 d);4)成熟期(受精20 d后)[5]。原初胚乳核在受精后約3.5 h即開始分裂,但是該過程只有細(xì)胞核分裂而無細(xì)胞分裂,因此形成的是一個(gè)具有多游離細(xì)胞核的單個(gè)胚乳細(xì)胞(又稱為合胞體)[5];在受精2~3 d后,這些游離核開始同時(shí)進(jìn)行細(xì)胞分裂并產(chǎn)生細(xì)胞壁,這一過程稱為細(xì)胞化(圖1)。細(xì)胞化在種子受精后5 d左右基本完成,此時(shí)胚乳細(xì)胞完全填滿胚囊腔,并開始合成淀粉、蛋白和脂類等儲(chǔ)藏物質(zhì)(圖1)。儲(chǔ)藏物質(zhì)積累可以持續(xù)到受精后20 d,隨后胚乳的干質(zhì)量增長基本停滯,同時(shí)含水量進(jìn)一步減少[5]。
不同水稻品種胚乳發(fā)育各階段的時(shí)間長短有所不同,尤其是儲(chǔ)藏物質(zhì)積累期和成熟期差異較大,這主要是由于遺傳差異造成的。此外,水稻胚乳的發(fā)育對于環(huán)境特別是溫度十分敏感。有研究表明,中等程度的高溫脅迫(35℃)能夠促進(jìn)胚乳細(xì)胞化發(fā)生,而嚴(yán)重的高溫脅迫(39℃)直接導(dǎo)致細(xì)胞化不發(fā)生[6-7]。胚乳發(fā)育早期短時(shí)間(24~48 h)高溫處理即能對胚乳發(fā)育產(chǎn)生不可逆轉(zhuǎn)的影響,即使隨后解除高溫脅迫,水稻種子仍然不能正常發(fā)育,成熟種子的活力也受到抑制[6]。儲(chǔ)藏物質(zhì)積累階段,水稻種子對溫度也非常敏感,高溫脅迫可以導(dǎo)致稻米外觀品質(zhì)和食味品質(zhì)同時(shí)下降。
游離核期和細(xì)胞化期在整個(gè)胚乳發(fā)育進(jìn)程中的時(shí)間占比較?。▓D1),但卻是水稻胚乳發(fā)育的關(guān)鍵生物學(xué)事件,游離核期向細(xì)胞化期轉(zhuǎn)變發(fā)生時(shí)間的提前或者延后均能導(dǎo)致種子敗育[8-11]。例如亞洲栽培稻()作為母本,與長雄野生稻()雜交產(chǎn)生的雜種胚乳細(xì)胞化提前,而與斑點(diǎn)野生稻()雜交產(chǎn)生的雜種胚乳細(xì)胞化延后,這兩種類型的雜交種均不能正常積累儲(chǔ)藏物質(zhì),最終導(dǎo)致種子敗育[11]。利用胚拯救技術(shù)進(jìn)行體外培養(yǎng)這些雜種胚,往往可以獲得能夠進(jìn)行正常營養(yǎng)生長的F1植株,表明胚乳敗育是引起雜種敗育的主要原因。不同倍性的水稻雜交(劑量失衡)也能導(dǎo)致細(xì)胞化異常,例如母本基因組過量(4n水稻作為母本和2n水稻雜交)可以使細(xì)胞化提前,而父本基因組過量(2n水稻作為母本和4n水稻雜交)則導(dǎo)致細(xì)胞化遲滯[8-9]。這些種子表現(xiàn)出和上述水稻種間雜交種類似的表型。
在2 DAF(受精后2 d),水稻原初胚乳細(xì)胞處于合胞體狀態(tài),胚乳細(xì)胞只進(jìn)行核分裂,因而一個(gè)胚乳細(xì)胞里有多個(gè)游離的細(xì)胞核;在3 DAF左右胚乳細(xì)胞開始發(fā)生細(xì)胞化,合胞體游離細(xì)胞核同時(shí)進(jìn)行分裂,圍繞胚囊腔形成一層胚乳細(xì)胞,隨后這層胚乳細(xì)胞進(jìn)行進(jìn)一步平周分裂;在5 DAF左右,胚乳細(xì)胞填滿胚囊腔并開始積累淀粉等儲(chǔ)藏物質(zhì);在7 DAF左右可以看到最外層胚乳細(xì)胞分化成糊分層細(xì)胞,此時(shí)內(nèi)層胚乳細(xì)胞進(jìn)行旺盛的儲(chǔ)藏物質(zhì)合成和積累。
Fig.1.Schematic illustration of the early endosperm development in rice.
多梳復(fù)合體2(PRC2,Polycomb Repressive Complex2)參與染色質(zhì)的表觀修飾,能夠催化組蛋白H3第27位賴氨酸進(jìn)行二甲基化或三甲基化(H3K27me2/3)[12]。PRC2在植物的發(fā)育階段轉(zhuǎn)變(developmental transition)中發(fā)揮重要作用[13],其中FIS(Fertilization Independent Seed)-PRC2參與擬南芥胚乳由游離核向細(xì)胞化過程的轉(zhuǎn)變調(diào)控[14–17]。擬南芥FIS-PRC2復(fù)合體由四個(gè)核心成員組成,包括FIS2、FIE(Fertilization Independent Endosperm)、MEA(MEDEA)和MSI1(Multicopy Suppressor of IRA1)[12]。這些多梳家族蛋白(polycomb group proteins)的編碼基因發(fā)生突變導(dǎo)致細(xì)胞化延遲或失敗[14-17]。水稻基因組編碼有兩個(gè)同源基因[18],其中在胚乳中特異表達(dá),在不同組織中組成性表達(dá)[19-20]。和擬南芥類似,突變體種子不能正常細(xì)胞化,胚乳細(xì)胞無法積累儲(chǔ)藏物質(zhì),進(jìn)而引起種子敗育[21]。有意思的是,突變并不影響水稻細(xì)胞化,但可以抑制種子休眠[21],表明和在種子發(fā)育中的功能發(fā)生了分化,其中在胚乳發(fā)育后期發(fā)揮作用,而參與調(diào)控胚乳細(xì)胞化過程。此外,值得注意的是,水稻中缺少和的同源基因[18, 22],因而參與調(diào)控水稻胚乳發(fā)育的PRC2復(fù)合體的成員組成仍不明了[23]。最近的研究顯示水稻多梳家族基因在細(xì)胞化過程中發(fā)揮著與擬南芥類似的功能[24-25]。OsEMF2a同源蛋白OsEMF2b通過調(diào)控MADS-box基因的表達(dá)影響水稻花器官發(fā)育及其育性[26-28],另外,研究表明該基因也可以影響水稻株高和種子休眠[29-30]。
MADS-box家族轉(zhuǎn)錄因子在動(dòng)物和植物中廣泛存在,根據(jù)序列特征可以將其分成Ⅰ型和Ⅱ型(又稱MIKC型)兩大類[31]。其中,Ⅱ型MADS轉(zhuǎn)錄因子主要參與植物的花器官發(fā)育和開花調(diào)控,而Ⅰ型MADS-box基因推測在植物生殖發(fā)育中發(fā)揮重要作用[32]。一些Ⅰ型MADS轉(zhuǎn)錄因子能夠抑制胚乳細(xì)胞化,如擬南芥MADS-box基因()和發(fā)生突變后細(xì)胞化提前[33-34],又如()、和功能缺失能夠部分恢復(fù)突變體或擬南芥種間雜交種細(xì)胞化延遲導(dǎo)致的種子敗育[35,36]。相較于Ⅱ型MADS-box基因,Ⅰ型成員進(jìn)化速率更快,也存在更多的變異[37]。雖然水稻Ⅰ型MADS成員的相對數(shù)量遠(yuǎn)少于擬南芥[38],然而關(guān)于這類基因調(diào)控胚乳發(fā)育的作用機(jī)制尚缺少深入研究。表達(dá)分析顯示許多Ⅰ型MADS基因在水稻種子受精后2~3 d被短暫激活后迅速關(guān)閉,這一激活時(shí)間點(diǎn)對應(yīng)于胚乳細(xì)胞由合胞體向細(xì)胞化的轉(zhuǎn)變[6]。在種間雜交種、父本基因組過量雜交種以及諸如和突變體等細(xì)胞化發(fā)生遲滯的水稻胚乳中,都伴隨有Ⅰ型MADS-box基因的持續(xù)激活[10-11, 24-25]。另外,有證據(jù)表明、、等Ⅰ型MADS-box基因被敲除或被干擾(RNAi)后能引起水稻胚乳細(xì)胞化過程提前[6, 39],暗示這些基因在調(diào)控合胞體向細(xì)胞化過渡的過程中扮演著與PRC2相反的作用(表1、圖2)。最新的研究表明,水稻中有少部分Ⅰ型MADS-box基因直接受到PRC2介導(dǎo)的H3K27me3修飾,但另一些伴隨細(xì)胞化發(fā)生而被激活的基因(如等)并無H3K27me3修飾的顯著富集[24-25]。因此,關(guān)于Ⅰ型MADS-box基因與PRC2復(fù)合體在調(diào)控胚乳細(xì)胞化過程中的相互作用關(guān)系仍不明確。
顯而易見,游離核期和細(xì)胞化期細(xì)胞增殖所進(jìn)行的細(xì)胞周期是不同的:游離核期細(xì)胞核分裂完成后細(xì)胞周期即已完成,而細(xì)胞化期核分裂與細(xì)胞質(zhì)分裂相耦合,需經(jīng)歷一個(gè)典型的細(xì)胞周期[40]。在胚乳發(fā)育過程中,諸如合胞體形成、胚乳細(xì)胞化及隨后發(fā)生的胚乳細(xì)胞內(nèi)復(fù)制等生物學(xué)事件,都伴隨嚴(yán)格的細(xì)胞周期調(diào)控[41]。例如,當(dāng)水稻細(xì)胞周期蛋白Orysa;CycB1;1的編碼基因被RNA干涉后,胚乳細(xì)胞化延遲,種子敗育[42]。有證據(jù)表明細(xì)胞周期蛋白依賴性激酶的抑制因子是水稻合胞體中重要的細(xì)胞周期調(diào)控因子,過量表達(dá)能導(dǎo)致水稻胚乳細(xì)胞不能正常分裂[43-44]。水稻無胚乳基因()編碼一個(gè)SNF2家族解旋酶,參與有絲分裂后期染色體分離過程中DNA連環(huán)(DAN catenation)的解除[45]。雖然胚乳合胞體細(xì)胞能夠細(xì)胞化,但由于細(xì)胞周期異常這些胚乳細(xì)胞不能進(jìn)一步分裂,產(chǎn)生種子“無胚乳”表型[45]。最近Cheng等[24]發(fā)現(xiàn)突變體胚乳細(xì)胞化障礙伴隨細(xì)胞周期相關(guān)基因的持續(xù)激活,進(jìn)一步證明嚴(yán)格的細(xì)胞周期調(diào)控對于胚乳早期發(fā)育具有重要作用。此外,擬南芥同源基因?qū)τ谒九呷樵缙诎l(fā)育是必需的[46]。在突變體中,胚乳細(xì)胞游離核的增殖及定位異常,游離核只分布在珠孔端,并且細(xì)胞化推遲[46]。
表1 水稻胚乳發(fā)育相關(guān)基因
MEG?母本印記基因。MEG, Maternally expressed gene.
與擬南芥以及某些禾谷類作物(如玉米)相比,水稻胚乳細(xì)胞的分化類型較少,一般認(rèn)為胚乳組織主要由中央胚乳(又稱淀粉胚乳)細(xì)胞和糊粉層細(xì)胞組成[5]。這兩類細(xì)胞在形態(tài)、內(nèi)含物組成以及生物學(xué)功能上都存在顯著差異。糊粉層細(xì)胞位于中央胚乳外側(cè),其細(xì)胞內(nèi)富含蛋白質(zhì)、脂類和礦物元素,主要行使物質(zhì)轉(zhuǎn)運(yùn)、營養(yǎng)貯藏的功能;中央胚乳細(xì)胞主要進(jìn)行淀粉的合成與積累[47]。伴隨水稻種子發(fā)育,中央胚乳細(xì)胞自主發(fā)生程序化死亡,在成熟種子的胚乳組織中,只有糊粉層細(xì)胞是有活性的[5]。因而在種子萌發(fā)過程中,糊粉層細(xì)胞能夠感受胚胎組織傳遞的信號,通過合成并向中央胚乳細(xì)胞分泌α-淀粉酶,促進(jìn)淀粉分解,為種子萌動(dòng)提供能量[48]。
水稻種子受精5 d后細(xì)胞化過程基本結(jié)束,合胞體細(xì)胞通過平周分裂及隨后若干次平周、垂周分裂產(chǎn)生的胚乳細(xì)胞填滿整個(gè)胚囊腔,胚乳細(xì)胞開始積累儲(chǔ)藏物質(zhì)[5]。在受精后6 d左右,最外層的胚乳細(xì)胞在形態(tài)上逐漸區(qū)別于內(nèi)側(cè)胚乳細(xì)胞,其內(nèi)胞質(zhì)濃郁,這種差異在受精后7~9 d更為明顯。此時(shí)外層胚乳細(xì)胞特化成糊粉層細(xì)胞(圖1),富含蛋白體和脂質(zhì)體而少淀粉體[5]。由此可見,糊粉層細(xì)胞分化和儲(chǔ)藏物質(zhì)開始積累基本是同步發(fā)生的。水稻成熟穎果不同部位糊粉層細(xì)胞的層數(shù)存在顯著差異,靠近穎果背部維管束附近細(xì)胞層數(shù)最多(3~4層),穎果腹部的糊粉層由1~2層細(xì)胞組成,而穎果兩側(cè)通常只有1層糊粉細(xì)胞[5]。
目前對植物糊粉細(xì)胞分化和增殖的分子調(diào)控機(jī)制了解相對較少[47]。研究人員分離了一系列玉米糊粉層異常的突變體,并克隆了其中一些重要基因,包括()、()、()、、和等[49-52]。這些基因的同源基因可能對于水稻糊粉層細(xì)胞的命運(yùn)決定也有重要作用,例如在水稻中抑制玉米類受體激酶同源基因的表達(dá),可導(dǎo)致種子糊粉細(xì)胞缺失[53]。與此類似,水稻() 基因突變后也不能形成糊粉層,圖位克隆發(fā)現(xiàn)編碼一個(gè)植物特異的半胱氨酸蛋白酶,與玉米DEK1同源[54]。這些結(jié)果表明禾谷類植物糊粉層細(xì)胞分化的調(diào)控機(jī)制可能是非常保守的。()編碼一個(gè)Dof家族轉(zhuǎn)錄因子,參與調(diào)控種子儲(chǔ)藏蛋白的合成。當(dāng)該基因表達(dá)降低后,水稻糊粉細(xì)胞層數(shù)變多[55];玉米基因RNA干涉后也表現(xiàn)出類似表型[56]。有意思的是,當(dāng)調(diào)控水稻儲(chǔ)藏物質(zhì)積累的另一個(gè)關(guān)鍵基因()/與基因被同時(shí)干涉后,水稻種子糊粉細(xì)胞層數(shù)進(jìn)一步增加,然而單獨(dú)敲低/對糊粉層的數(shù)目沒有明顯影響[55]。
最近有證據(jù)表明表觀遺傳調(diào)控也參與水稻糊粉細(xì)胞的命運(yùn)決定。Liu等[57]分離到一個(gè)糊粉細(xì)胞層數(shù)顯著增多的突變體(),該突變表型是由于水稻DNA去甲基化酶基因發(fā)生弱突變引起的。進(jìn)一步研究顯示,可以通過調(diào)節(jié)和啟動(dòng)子區(qū)DNA甲基化水平影響基因表達(dá),從而調(diào)控糊粉細(xì)胞的命運(yùn)決定[57]。有趣的是的遺傳模式表現(xiàn)為配子體母體效應(yīng),只有母本等位基因?qū)ε呷榘l(fā)育和糊粉細(xì)胞分化具有決定性作用[57]。
水稻籽粒中淀粉、儲(chǔ)藏蛋白以及脂類等物質(zhì)的積累,對稻米產(chǎn)量及品質(zhì)形成具有決定性作用。狹義上講,儲(chǔ)藏物質(zhì)積累的過程即水稻的灌漿過程,其遺傳調(diào)控基礎(chǔ)十分復(fù)雜,既受二倍體母體植株核基因組的影響,又受三倍體胚乳基因組的影響。同時(shí),母體組織、胚乳和胚之間存在復(fù)雜的信號交流,協(xié)調(diào)三者的同步發(fā)育。對籽粒灌漿分子調(diào)控機(jī)制的認(rèn)識(shí)目前主要是通過突變體的篩選及其基因克隆、以及利用反向遺傳學(xué)手段獲得的。
Liu等[58]從穞稻中克隆了一個(gè)影響灌漿速度的QTL(),在果皮中高表達(dá),其編碼蛋白可以與Rubisco互作,通過調(diào)節(jié)母體組織中蔗糖合成影響灌漿。源器官中合成的蔗糖需要轉(zhuǎn)運(yùn)到籽粒中并進(jìn)一步分解成單糖,為胚乳中淀粉的合成提供底物。蔗糖在籽粒中的轉(zhuǎn)運(yùn)需要蔗糖轉(zhuǎn)運(yùn)蛋白(SUT,sucrose transporter)的參與,例如主要在水稻糊粉層中表達(dá),當(dāng)該基因的表達(dá)被RNA干涉時(shí)籽粒不能正常灌漿[59]。近來研究發(fā)現(xiàn)SWEET家族蛋白也參與蔗糖和己糖在植物體內(nèi)的轉(zhuǎn)運(yùn),例如玉米蛋白可以通過調(diào)控葡萄糖從轉(zhuǎn)移細(xì)胞向胚乳細(xì)胞轉(zhuǎn)運(yùn)參與灌漿發(fā)生;是玉米的同源基因,敲除該基因也會(huì)影響水稻正常灌漿[60]。水稻中和參與蔗糖從穎果背部維管束向珠被細(xì)胞的卸載來調(diào)控籽粒灌漿,和突變體均表現(xiàn)出籽粒不充實(shí)的表型[61-62]。水稻()編碼細(xì)胞壁轉(zhuǎn)移酶OsCIN2,主要在種子的背部維管束表達(dá),能夠?qū)⒄崽欠纸獬晒呛推咸烟?,同時(shí)可能還參與了糖分由韌皮部向籽粒的卸載過程,因而突變體籽粒灌漿不完全,粒重降低并表現(xiàn)出粉質(zhì)胚乳表型[63]。有趣的是和在水稻和玉米馴化過程中均受到了強(qiáng)烈的人工選擇[60, 63],暗示籽粒灌漿特性是單子葉作物馴化的重要目標(biāo)性狀。SPK是一個(gè)在胚乳中高表達(dá)的鈣依賴的蛋白激酶,能夠通過磷酸化果糖合酶調(diào)控灌漿,反義表達(dá)能夠抑制淀粉在籽粒中的合成[64]。
籽粒灌漿主要是蔗糖轉(zhuǎn)化為淀粉,將光合產(chǎn)物向籽粒轉(zhuǎn)移的過程,因此淀粉合成的障礙能夠直接導(dǎo)致灌漿受阻。淀粉合酶可以分為GBSSⅠ、SSⅠ、SSⅡ、SSⅢ和SSⅣ等五類,相關(guān)基因突變可以引發(fā)淀粉合成異?;颍ê停┑矸劢Y(jié)構(gòu)改變,進(jìn)而影響產(chǎn)量及品質(zhì)形成[65]。例如,水稻()編碼葡萄糖焦磷酸化酶大亞基,當(dāng)突變后籽粒中不能生成足夠底物來合成淀粉,進(jìn)而導(dǎo)致種子淀粉合成障礙[66]。目前克隆到的一些參與淀粉合成的關(guān)鍵調(diào)控基因(圖2),包括bZIP轉(zhuǎn)錄因子家族基因/、DOF轉(zhuǎn)錄因子家族基因、MADS-box轉(zhuǎn)錄因子家族基因以及AP2轉(zhuǎn)錄因子家族成員等,均能通過調(diào)控胚乳淀粉或儲(chǔ)藏蛋白合成相關(guān)基因的表達(dá)來影響灌漿[55, 67-69]。
最近的研究表明,一些NF-Y家族轉(zhuǎn)錄因子參與調(diào)控胚乳中儲(chǔ)藏物質(zhì)的積累。NF-Y轉(zhuǎn)錄因子由NF-YA、NF-YB和NF-YC三種亞基組成,NF-Y轉(zhuǎn)錄因子的經(jīng)典作用模型認(rèn)為NF-YB和NF-YC在細(xì)胞質(zhì)中形成二聚體后被轉(zhuǎn)運(yùn)到細(xì)胞核中,再與NF-YA形成異源三聚體發(fā)揮作用;其中NF-YA能夠識(shí)別并結(jié)合CCAAT基序,而NF-YB和NF-YC具有表達(dá)激活活性[70]。E等[71]發(fā)現(xiàn)包括水稻、,、,,,,在內(nèi)的一類NF-Y家族基因在禾本作物的籽粒中特異表達(dá),它們的編碼蛋白可以相互作用形成NF-Y轉(zhuǎn)錄因子復(fù)合體。現(xiàn)有研究顯示除NF-YA外,NF-YB和NF-YC還能夠與其他轉(zhuǎn)錄因子相互作用。例如OsNF-YB1、OsNF-YC12(或OsNF-YC10)可以在細(xì)胞核內(nèi)與bHLH家族轉(zhuǎn)錄因子OsbHLH144以及ERF家族轉(zhuǎn)錄因子OsERF115形成復(fù)合物,調(diào)控下游基因(如蔗糖轉(zhuǎn)運(yùn)蛋白基因、淀粉合成基因/等)的表達(dá),從而調(diào)控水稻中儲(chǔ)藏物質(zhì)積累[72-73]。OsNF-YB1和OsNF-YB9還可以與OsbZIP76相互作用,參與調(diào)控水稻細(xì)胞化的發(fā)生[74]。Bai等[75]發(fā)現(xiàn)OsNF-YB1通過識(shí)別并直接結(jié)合CCAAT基序調(diào)控表達(dá),而Xu等[72]通過ChIP-seq方法在全基因組水平對OsNF-YB1的DNA結(jié)合位點(diǎn)進(jìn)行分析,發(fā)現(xiàn)GCC盒被顯著富集,但未見CCAAT基序富集。對擬南芥NF-YB家族成員LEC1的研究發(fā)現(xiàn),LEC1在種子發(fā)育不同時(shí)期所結(jié)合的DNA元件是不一樣的,CCAAT元件只在發(fā)育早期被富集[76-77]。因此我們推測水稻中也存在類似的情況,不同發(fā)育時(shí)期OsNF-YB1識(shí)別位點(diǎn)的差異可能是由OsNF-YB1轉(zhuǎn)錄因子復(fù)合物的組成差異決定的。
箭頭表示正調(diào)控,“T”表示負(fù)調(diào)控,實(shí)線表示已有充分證據(jù)支持該調(diào)控作用,虛線和問號表示該調(diào)控路徑尚不明確或缺少實(shí)驗(yàn)證據(jù)。
Fig.2.Schematic illustration of the molecular controls of rice endosperm development.
近來陸續(xù)有研究報(bào)道NAC(NAM, ATAF1/2, and CUC2)家族轉(zhuǎn)錄因子參與玉米、水稻、小麥等禾谷類作物胚乳儲(chǔ)藏物質(zhì)的積累調(diào)控[78-79]。和特異地在水稻種子中表達(dá),兩個(gè)基因同時(shí)突變后籽粒變粉質(zhì),同時(shí)淀粉和儲(chǔ)藏蛋白含量降低。這兩個(gè)功能冗余的NAC轉(zhuǎn)錄因子能夠直接結(jié)合淀粉和儲(chǔ)藏蛋白合成途徑中多個(gè)關(guān)鍵基因的啟動(dòng)子,參與這些基因的表達(dá)調(diào)控[79]。玉米和通過類似的作用機(jī)制影響玉米籽粒發(fā)育。Ren等[80]發(fā)現(xiàn)另外兩個(gè)水稻種子特異表達(dá)的NAC轉(zhuǎn)錄因子ONAC127和ONAC129可以通過調(diào)控等糖分轉(zhuǎn)運(yùn)相關(guān)基因的表達(dá)影響籽粒灌漿,敲除或過量表達(dá)或,均能抑制種子中儲(chǔ)藏物質(zhì)的合成。有意思的是,這兩個(gè)基因在水稻灌漿的高溫響應(yīng)中也發(fā)揮作用[80]。在水稻中異位表達(dá)另一個(gè)胚乳特異表達(dá)的NAC基因,能夠?qū)е碌矸哿T谵D(zhuǎn)基因植株?duì)I養(yǎng)組織中異常積累,這一發(fā)現(xiàn)也表明可能參與水稻淀粉合成調(diào)控[81]。有研究發(fā)現(xiàn),水稻突變體穎果中,,和等NAC基因的表達(dá)水平降低[74],暗示OsbZIP76可能參與這些NAC家族基因的表達(dá)調(diào)控。
脂類也是大米重要的營養(yǎng)組成成分之一,同時(shí)影響稻米的食味品質(zhì)和儲(chǔ)藏品質(zhì)。稻米中脂質(zhì)主要以甘油三酯、磷脂和游離脂肪酸組成,存在于麩皮、胚和胚乳中[82-83]。稻米脂質(zhì)含量受多個(gè)QTL調(diào)控,但是水稻中脂質(zhì)生物合成的遺傳調(diào)控研究還相對欠缺[84-86]。脂肪酸去飽和酶(FAD)在水稻籽粒脂質(zhì)組成中發(fā)揮重要作用。OsFAD3可以將水稻籽粒中亞油酸(C18:2)轉(zhuǎn)化為亞麻酸(C18:3),胚乳中過表達(dá)可以導(dǎo)致亞麻酸(C18:3)含量顯著提高[87];OsFAD2在水稻籽粒發(fā)育中可以將油酸(C18:1)轉(zhuǎn)化為亞油酸(C18:3),抑制的表達(dá)可以顯著提高籽粒中油脂的含量[88]。近日, Zhou等[89]利用GC-MS鑒定了533份栽培稻種子中脂肪酸的組分和含量,發(fā)現(xiàn)各種脂肪酸組分存在廣泛的變異并且在栽培稻亞群之間存在明顯的差異,并通過全基因組關(guān)聯(lián)分析,鑒定了與11個(gè)油脂相關(guān)性狀的99個(gè)QTL,進(jìn)一步克隆了其中4個(gè)(、、和)對油脂組成自然變異有重要貢獻(xiàn)的基因。該發(fā)現(xiàn)解析了稻米品種中油脂的含量和組成的遺傳基礎(chǔ),為優(yōu)質(zhì)稻米的培育提供重要的基因資源。
植物激素在植物發(fā)育調(diào)控過程中發(fā)揮著極其重要的作用。對不同發(fā)育時(shí)期水稻胚乳中各種激素進(jìn)行定量分析發(fā)現(xiàn),1)細(xì)胞分裂素(CK)含量在胚乳游離核期迅速增加,而當(dāng)種子開始細(xì)胞化(受精后0~4 d)其合成受到強(qiáng)烈抑制;2)生長素的合成(以吲哚乙酸IAA為例)在種子受精后3 d開始被激活,伴隨儲(chǔ)藏物質(zhì)的積累,胚乳中生長素的含量也迅速增加;3)種子受精后脫落酸(ABA)的合成穩(wěn)步增加,當(dāng)細(xì)胞化期完成時(shí)(受精后5~6 d)其含量到達(dá)峰值,隨后開始降低;4)茉莉酸含量在游離核期維持較高水平,隨后迅速下降,在受精6 d后其含量非常低(圖3)[90]。關(guān)于其他激素(如赤霉素、油菜素內(nèi)酯等)在水稻穎果內(nèi)的積累動(dòng)態(tài),目前尚缺少可靠、系統(tǒng)的研究報(bào)道。此外,對于不同激素在調(diào)控胚乳發(fā)育中的功能也亟待深入研究。
植物體內(nèi)生長素的合成首先通過色氨酸氨基轉(zhuǎn)移酶(TAA1/TAR)將色氨酸轉(zhuǎn)變成吲哚-3-丙酮酸,進(jìn)一步以此為底物,在YUCCA家族類黃素單加氧酶(YUC)的催化下合成IAA[91]。擬南芥、、三重突變體不能正常合成生長素,其胚乳細(xì)胞增殖發(fā)生異常[92]。此外,擬南芥父本過量雜交種(2n × 4n)由于生長素的過量積累細(xì)胞化遲滯;與此一致,在正常二倍體種子中過量表達(dá)生長素也能導(dǎo)致類似表型[93]。這些發(fā)現(xiàn)表明生長素參與擬南芥胚乳細(xì)胞化調(diào)控。
圖3 水稻胚乳發(fā)育過程中不同激素積累的模式圖
Fig.3.Schematic illustration of the phytohormones accumulation in developing rice endosperm.
對水稻穎果中生長素積累的動(dòng)態(tài)分析以及對相關(guān)基因表達(dá)的時(shí)空特性分析,推測生長素對水稻胚乳發(fā)育也是必需的[90, 94]。水稻YUC家族成員中,,在穎果中高表達(dá)或特異表達(dá),其中的激活要早于和,在受精后4 d出現(xiàn)表達(dá)峰值,隨后迅速沉默;和在胚乳細(xì)胞開始細(xì)胞化時(shí)逐漸激活,并在受精后15 d左右到達(dá)峰值[95]。有趣的是,水稻突變體胚乳細(xì)胞化延遲伴隨表達(dá)異常上調(diào),但是穎果中生長素含量卻顯著低于野生型[24];同時(shí)水稻功能缺失突變體也并未表現(xiàn)出胚乳細(xì)胞化異常[95],這些結(jié)果提示我們,生長素在水稻胚乳細(xì)胞化過程中的作用可能與擬南芥存在差異。又如,水稻千粒重基因()編碼IAA-葡萄糖水解酶。對于功能正常型水稻品種,能夠在TGW6作用下催化籽粒中IAA-葡萄糖向游離IAA轉(zhuǎn)變,因而與缺陷型品種相比其籽粒中IAA水平更高,導(dǎo)致細(xì)胞化發(fā)生提前[96],這一發(fā)現(xiàn)與擬南芥種子中高IAA水平抑制細(xì)胞化的表型是不一致的。此外,外施活性生長素類似物2,4-二氯苯氧乙酸(2,4-D)能夠促進(jìn)玉米胚乳細(xì)胞化[97]。這些結(jié)果暗示生長素在調(diào)控雙子葉和單子葉植物胚乳細(xì)胞化中的功能可能是不同的。
與擬南芥種子在受精后立即積累IAA[92]不同,水稻種子在細(xì)胞化階段才開始逐步積累生長素并在儲(chǔ)藏物質(zhì)積累期維持較高IAA水平(圖3)[90],這與和的表達(dá)模式一致[95]。功能缺失突變體種子灌漿緩慢,其穎果內(nèi)的IAA含量只有野生型對照的2%左右,表明是調(diào)控水稻胚乳中生長素合成的最關(guān)鍵因子[95]。玉米同源基因發(fā)生突變后,玉米籽粒中生長素含量只有對照的1%~7%[98]。由于和在胚乳中特異表達(dá),我們推測胚乳中相當(dāng)比例的生長素可能是原位合成的。與突變也能導(dǎo)致粒重降低、堊白增加,但表型嚴(yán)重程度遠(yuǎn)小于[95]。水稻中和的表達(dá)可能直接受OsNF-YB1的調(diào)控[95]。
生長素可能還參與糊粉層細(xì)胞的分化調(diào)控[47],外施生長素運(yùn)輸抑制劑NPA能夠增加玉米糊粉層數(shù)[99]。此外,水稻籽粒母體組織的程序化死亡也受生長素調(diào)控。水稻穎果背部維管束中的養(yǎng)分主要通過珠心突起由母體組織向籽粒轉(zhuǎn)運(yùn),在種子發(fā)育早期珠心突起逐漸程序化死亡(PCD),并且這種PCD對種子正常灌漿是必需的[1]。目前已知是水稻珠心突起PCD發(fā)生的重要調(diào)控因子,基因突變后由于珠心突起PCD障礙導(dǎo)致胚乳細(xì)胞不能正常積累儲(chǔ)藏物質(zhì)[68]。有證據(jù)表明的表達(dá)受生長素調(diào)控[68]。由此可見,生長素參與了水稻胚乳細(xì)胞化、糊粉層分化、母體組織PCD以及儲(chǔ)藏物質(zhì)積累等一系列重要發(fā)育事件,是種子發(fā)育調(diào)控的重要激素之一。
目前對ABA調(diào)控種子發(fā)育的相關(guān)研究多集中于休眠和萌發(fā)。值得注意的是,雖然不同研究報(bào)道水稻穎果中ABA含量峰值出現(xiàn)的時(shí)間有所差異(從受精后6~14 d),但均出現(xiàn)在儲(chǔ)藏物質(zhì)積累期(圖3),而非在種子成熟期(對應(yīng)于種子休眠),并且不同研究均顯示水稻種子在發(fā)育過程中始終維持一定水平的ABA[90, 100-101],這一點(diǎn)和其他激素是有差異的。
ABA在胚乳發(fā)育過程中究竟扮演什么樣的角色,特別是如何調(diào)控儲(chǔ)藏物質(zhì)積累,目前仍有待深入研究。對水稻等不同禾本作物的生理研究發(fā)現(xiàn),ABA積累能夠提高種子中淀粉合成關(guān)鍵酶的活性,有助于儲(chǔ)藏物質(zhì)合成。部分ABA合成關(guān)鍵基因在種子中表達(dá)豐度與ABA含量呈正相關(guān),表明這些基因可能直接參與ABA在籽粒的原位合成。也有研究認(rèn)為,籽粒中ABA是由葉片等營養(yǎng)器官轉(zhuǎn)運(yùn)而來的。近日Qin等[102]通過對水稻灌漿缺陷突變體()分析,發(fā)現(xiàn)編碼的MATE(multidrug and toxic compound extrusion)轉(zhuǎn)運(yùn)蛋白通過參與ABA由葉片向籽粒長距離運(yùn)輸,影響水稻種子灌漿。突變體籽粒中,參與調(diào)控儲(chǔ)藏物質(zhì)積累的重要轉(zhuǎn)錄因子(如RISBZ1/OsbZIP58、RPBF、OsNF-YB1、OsNF-YC12、OsbHLH144等)及淀粉合成關(guān)鍵酶編碼基因的表達(dá)受到抑制。在玉米中敲除同源基因也能引起類似灌漿缺陷表型[102],這些結(jié)果表明通過長距離運(yùn)輸向籽粒中轉(zhuǎn)運(yùn)ABA對灌漿是必需的。大麥胚乳皺縮突變體籽粒中ABA含量降低也可能是由母體組織向籽粒轉(zhuǎn)運(yùn)ABA缺陷導(dǎo)致的,除不能正常積累儲(chǔ)藏物質(zhì)外,還伴隨細(xì)胞化異常[103]。ABA參與調(diào)控細(xì)胞化發(fā)生在水稻和玉米等其他禾本植物中尚無直接證據(jù),但Xing等[104]通過比較游離核期和細(xì)胞化期胚乳轉(zhuǎn)錄組,發(fā)現(xiàn)生長素和ABA信號途徑在這兩個(gè)時(shí)期的差異表達(dá)基因中被富集,暗示ABA與生長素一起,在細(xì)胞化過程中可能發(fā)揮作用。
水稻、玉米、小麥和大麥等禾谷作物籽粒中細(xì)胞分裂素(CK)含量在種子受精后迅速增加,并且這些CK主要是在籽粒中合成的。有證據(jù)表明在水稻開花后外施激動(dòng)素(一種內(nèi)源CK分子)能夠促進(jìn)籽粒細(xì)胞分裂,增加粒重;通過在種子中特異表達(dá)CK合成關(guān)鍵基因增加種子中CK含量,也能直接影響植物粒重。水稻種子中CK含量在胚乳細(xì)胞進(jìn)入細(xì)胞化期后穩(wěn)步下降。突變體合胞體變大、游離核數(shù)目增多,同時(shí)細(xì)胞化延遲[24]。這些表型伴隨穎果CK含量的異常增高和細(xì)胞周期相關(guān)基因的表達(dá)激活,因而我們推測CK可以通過調(diào)節(jié)細(xì)胞周期影響水稻細(xì)胞化進(jìn)程。
通過比較優(yōu)勢粒和弱勢粒,發(fā)現(xiàn)乙烯可以負(fù)調(diào)控水稻的灌漿。但是遺傳證據(jù)表明,乙烯信號關(guān)鍵基因/突變后水稻種子千粒重變小,過量表達(dá)/可以增加粒重[105]。目前關(guān)于乙烯調(diào)控胚乳發(fā)育的機(jī)制亟待進(jìn)一步深入[106]。
研究發(fā)現(xiàn)胚乳基因組表觀修飾特征明顯有別于胚和營養(yǎng)器官,胚乳全基因組DNA甲基化水平較低,參與表觀修飾的基因發(fā)生突變往往伴隨種子發(fā)育異?;驍∮@鐓⑴c介導(dǎo)組蛋白H3K27me3修飾的PRC2核心成員和突變后水稻胚乳不能正常細(xì)胞化,/和突變能夠抑制淀粉和儲(chǔ)藏蛋白積累[21, 24, 107-108]。H3K9甲基化也是一個(gè)表達(dá)抑制標(biāo)簽,突變后水稻H3K9me2和H3K9me3水平均降低的同時(shí)伴隨籽粒變小和粒重降低[109]。染色質(zhì)重塑因子復(fù)合體成員基因功能缺失影響水稻胚乳早期發(fā)育,游離核數(shù)目減少、不能細(xì)胞化[110];干擾去乙酰化酶基因在水稻中的表達(dá)能夠引起籽粒淀粉合成障礙[111]。除組蛋白修飾外,DNA甲基化是另一種重要的表觀修飾形式。水稻甲基轉(zhuǎn)移酶基因突變體籽粒皺縮敗育;去甲基化酶基因強(qiáng)突變導(dǎo)致種子不能合成淀粉,弱突變致使糊粉層增厚[57];另一個(gè)去甲基化酶基因/突變后約15%的種子皺縮,不能正常灌漿[112]。
目前我們對表觀修飾調(diào)控種子發(fā)育和儲(chǔ)藏物質(zhì)積累的分子機(jī)理的認(rèn)識(shí)還非常有限。通過對籽粒不同發(fā)育時(shí)期基因組DNA甲基化分析,發(fā)現(xiàn)在胚乳細(xì)胞由游離核期向細(xì)胞化期過渡的過程中,全基因組DNA甲基化水平顯著降低,而在細(xì)胞化完成后基因組甲基化水平增高[104]。這種表觀修飾的動(dòng)態(tài)變化是如何影響胚乳發(fā)育進(jìn)程的,其作用機(jī)制尚需深入研究。有研究發(fā)現(xiàn)調(diào)控胚乳發(fā)育的一些關(guān)鍵基因(如/和)的表達(dá)激活伴隨DNA甲基化水平的下降[104]。
基因組印記是一種在高等動(dòng)、植物中均普遍存在的非孟德爾遺傳現(xiàn)象。對于基因組編碼的絕大多數(shù)基因,胚乳中父母本轉(zhuǎn)錄本的比值符合1p:2m,但是有少部分基因(即印記基因)的父母本等位基因表達(dá)量顯著偏離1p:2m,并且在正、反雜交種中均表現(xiàn)出這種依賴親本來源的表達(dá)偏好性。通常我們將只表達(dá)(或主要表達(dá))母本等位基因的印記基因稱為母本印記基因(MEGs,maternally expressed genes),將只表達(dá)(或主要表達(dá))父本等位基因的印記基因稱為父本印記基因(PEGs,paternally expressed genes)[113]?;蚪M印記現(xiàn)象是在植物中首先發(fā)現(xiàn)的。早在1970年,Kermical等[114]就發(fā)現(xiàn)控制玉米籽粒糊粉層顏色的基因座位上只表達(dá)母源等位基因,父源等位基因并不參與表型決定。近年來隨著二代測序技術(shù)的飛速發(fā)展,利用物種內(nèi)豐富的單核苷酸多態(tài)性,研究人員已經(jīng)對多種植物物種進(jìn)行了系統(tǒng)的印記基因發(fā)掘[115-123]。對植物而言,基因組印記現(xiàn)象主要存在于胚乳中[115, 121, 124]。有趣的是,雖然基因印記的現(xiàn)象在高等生物中廣泛存在,并且受類似的表觀遺傳機(jī)制調(diào)控,但是不同植物物種間印記基因的保守性非常低,目前只發(fā)現(xiàn)少數(shù)幾個(gè)基因在擬南芥、玉米和水稻三種物種中都表現(xiàn)出印記表達(dá)模式[118, 113]。通過對擬南芥等十字花科的植物分析發(fā)現(xiàn),印記基因確實(shí)往往存在于轉(zhuǎn)座元件附近[125-126]。但是值得注意的是,水稻中并沒有發(fā)現(xiàn)印記基因和轉(zhuǎn)座元件之間存在物理位置上的直接關(guān)聯(lián)[117-118]。
胚乳中基因組印記的產(chǎn)生主要是由于雌雄配子在受精前表觀修飾的狀態(tài)存在差異[127]。對擬南芥研究表明,中央細(xì)胞中DNA甲基化酶基因表達(dá)水平較低,而去甲基化酶基因()表達(dá)水平較高,因此中央細(xì)胞整體上維持較低DNA甲基化水平,但是精細(xì)胞中由于不表達(dá),整體上維持較高DNA甲基化水平[128]。同時(shí),由于PRC2復(fù)合體在精細(xì)胞和中央細(xì)胞中的表達(dá)差異,導(dǎo)致兩者染色質(zhì)的組蛋白甲基化修飾不同[127]。當(dāng)中央細(xì)胞和精細(xì)胞融合形成原初胚乳核后,胚乳細(xì)胞中父本和母本基因組的表觀修飾差異,導(dǎo)致只有一個(gè)等位基因表達(dá),另一個(gè)沉默。通常MEGs受DNA甲基化影響較大,而PEGs還受組蛋白修飾(如H3K27me3)狀態(tài)的調(diào)控[127]。
越來越多的證據(jù)表明胚乳敗育伴隨著基因組印記的紊亂,并且很多印記基因的表達(dá)水平也發(fā)生改變[10, 119, 130-131]。對擬南芥印記基因功能的研究表明,許多MEGs通過調(diào)控胚乳細(xì)胞化的發(fā)生影響種子發(fā)育[24-25, 74, 132-133],而PEGs突變通常不影響植物的正常生長發(fā)育[134]。近來研究表明PEGs可能直接參與調(diào)控物種間的生殖隔離,在擬南芥遠(yuǎn)源雜交種的胚乳中PEGs表現(xiàn)出比MEGs更為顯著的表達(dá)紊亂,而一些PEG突變體能夠抑制擬南芥遠(yuǎn)源雜交或父本基因組過量引起的胚乳敗育[130, 134-135]。
目前在水稻中已經(jīng)發(fā)現(xiàn)了數(shù)百個(gè)可能的印記基因,然而對水稻印記基因生物學(xué)功能尚缺乏深入研究。有研究發(fā)現(xiàn),許多水稻印記基因和產(chǎn)量相關(guān)性狀共定位[136]。例如Chen等[118]發(fā)現(xiàn)水稻粒重QTL在胚乳中主要表達(dá)母本等位基因。與擬南芥中的報(bào)道類似,一些水稻MEGs參與胚乳早期發(fā)育,如和能夠影響細(xì)胞化的發(fā)生[6,74]。盡管擬南芥PEGs突變通常不影響胚乳和種子發(fā)育[134],但Yuan等[136]報(bào)道水稻(編碼一個(gè)依賴酮戊二酸和鐵的加氧酶)在胚乳中特異表達(dá)來自父本的等位基因,當(dāng)這個(gè)基因被敲除后,胚乳細(xì)胞中不能正常積累淀粉等儲(chǔ)藏物質(zhì),因此成熟的籽粒是完全空癟的。另外,Xu等[95]發(fā)現(xiàn)水稻灌漿調(diào)控基因也是一個(gè)PEG基因。這些研究表明MEGs和PEGs均能參與不同時(shí)期的水稻胚乳發(fā)育。
從前文介紹可知,目前已經(jīng)克隆了多個(gè)參與水稻胚乳發(fā)育的重要調(diào)控基因(表1),對相關(guān)分子調(diào)控機(jī)制也有了較為深入的了解。由于儲(chǔ)藏物質(zhì)積累與稻米產(chǎn)量和品質(zhì)息息相關(guān),目前多數(shù)研究主要圍繞淀粉、蛋白合成以及灌漿調(diào)控展開。研究顯示胚乳早期發(fā)育對儲(chǔ)藏物質(zhì)積累也有重要影響,但是對胚乳游離核期和細(xì)胞化期的研究相對滯后。胚乳在細(xì)胞化完成后即開始合成儲(chǔ)藏物質(zhì),這一過程究竟是如何激活的?其作用機(jī)制是什么?表觀遺傳調(diào)控在這一過程中發(fā)揮什么樣的影響?相關(guān)調(diào)控機(jī)制尚亟待深入研究。種子由母體組織、胚和胚乳組成。越來越多的證據(jù)顯示不同組織之間可能存在廣泛的信號和物質(zhì)交流,協(xié)同影響種子發(fā)育。水稻胚乳是如何影響其他種子組織發(fā)育的,其自身發(fā)育又是如何受到其他組織的影響的,都是值得今后進(jìn)一步深入探討的方向。
種子(包括胚乳)發(fā)育易受環(huán)境影響。近來有研究發(fā)現(xiàn)一些參與儲(chǔ)藏物質(zhì)積累的重要調(diào)控因子能夠直接響應(yīng)高溫脅迫,表明遺傳調(diào)控在胚乳發(fā)育環(huán)境響應(yīng)過程中也具有重要作用[6, 80, 137]。深刻理解水稻胚乳發(fā)育受環(huán)境(如高溫、高二氧化碳等)影響的作用機(jī)制,在全球氣候變化的大趨勢下顯得尤為重要。目前對水稻胚乳發(fā)育調(diào)控機(jī)制的研究多基于突變體材料的分離及其基因克隆,而這些基因突變往往導(dǎo)致水稻胚乳發(fā)育的缺陷,因此在生產(chǎn)上難以直接應(yīng)用,利用自然群體分離并克隆具有應(yīng)用潛力的相關(guān)基因是今后研究的一個(gè)重要方向。此外,隨著水稻耕作方式向集約化、機(jī)械化的轉(zhuǎn)變,亟需培育一批灌漿特性與耕作方式調(diào)整相匹配的新品種。發(fā)掘諸如調(diào)控儲(chǔ)藏物質(zhì)積累速率和效率的關(guān)鍵基因,將具有非常重要的現(xiàn)實(shí)意義。
[1] Wu X, Liu J, Li D, Liu C M.Rice caryopsis development: I.Dynamic changes in different cell layers[J]., 2016, 58(9): 772-785.
[2] Zhang M, Xie S, Dong X, Zhao X, Zeng B, Chen J, Li H, Yang W, Zhao H, Wang G, Chen Z, Sun S, Hauck A, Jin W, Lai J.Genome-wide high resolution parental-specific DNA and histone methylation maps uncover patterns of imprinting regulation in maize[J]., 2014, 24(1): 167-176.
[3] Zemach A, Kim M Y, Silva P, Rodrigues J A, Dotson B, Brooks M D, Zilberman D.Local DNA hypomethylation activates genes in rice endosperm[J]., 2010, 107(43): 18729- 18734.
[4] Hsieh T F, Ibarra C I, Silva P, Zemach A, Eshed-Williams L, Fischer R L, Zilberman D.Genome- wide demethylation ofendosperm[J]., 2009, 324: 1451-1454.
[5] Wu X, Liu J, Li D, Liu C M.Rice caryopsis development II: Dynamic changes in the endosperm[J]., 2016, 58(9): 786-798.
[6] Chen C, Begcy K, Liu K, Folsom J J, Wang Z, Zhang C, Walia H.Heat stress yields a unique MADS box transcription factor in determining seed size and thermal sensitivity[J]., 2016, 171(1): 606-622.
[7] Paul P, Dhatt B K, Sandhu J, Hussain W, Irvin L, Morota G, Staswick P, Walia H.Divergent phenotypic response of rice accessions to transient heat stress during early seed development[J]., 2020, 4(1): 1-13.
[8] Zhang H, Luo M, Johnson S D, Zhu X, Liu L, Huang F, Liu Y, Xu P, Wu X.Parental genome imbalance causes post-zygotic seed lethality and deregulates imprinting in rice[J]., 2016, 9(1): 43.
[9] Sekine D, Ohnishi T, Furuumi H, Ono A, Yamada T, Kurata N, Kinoshita T.Dissection of two major components of the post-zygotic hybridization barrier in rice endosperm[J]., 2013, 76(5): 792-799.
[10] Tonosaki K, Sekine D, Ohnishi T, Ono A, Furuumi H, Kurata N, Kinoshita T.Overcoming the species hybridization barrier by ploidy manipulation in the genus[J]., 2018, 93(3): 534-544.
[11] Ishikawa R, Ohnishi T, Kinoshita Y, Eiguchi M, Kurata N, Kinoshita T.Rice interspecies hybrids show precocious or delayed developmental transitions in the endosperm without change to the rate of syncytial nuclear division[J]., 2011, 65(5): 798-806.
[12] Mozgova I, Hennig L.The polycomb group protein regulatory network[J]., 2015, 66(1): 269-296.
[13] Holec S, Berger F.Polycomb group complexes mediate developmental transitions in plants[J]., 2012, 158(1): 35-43.
[14] Ohad N, Margossian L, Hsu Y C, Williams C, Repetti P, Fischer R L.A mutation that allows endosperm development without fertilization[J]., 1996, 93(11): 5319-5324.
[15] Eacock W J A P, Chaudhury A M, Ming L, Miller C, Craig S, Dennis E S, Peacock W J.Fertilization- independent seed development in[J]., 1997, 94: 4223-4228.
[16] Kiyosue T, Ohad N, Yadegari R, Hannon M, Dinneny J, Wells D, Katz A, Margossian L, Harada J J, Goldberg R B, Fischer R L.Control of fertilization-independent endosperm development by the MEDEA polycomb gene in[J]., 1999, 96(7): 4186-4191.
[17] K?hler C, Hennig L, Bouveret R, Gheyselinck J, Grossniklaus U, Gruissem W.MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development[J]., 2003, 22(18): 4804-4814.
[18] Luo M, Platten D, Chaudhury A, Peacock W J, Dennis E S.Expression, imprinting, and evolution of rice homologs of the polycomb group genes[J]., 2009, 2(4): 711-723.
[19] Li S, Zhou B, Peng X, Kuang Q, Huang X, Yao J, Du B, Sun M X.OsFIE2 plays an essential role in the regulation of rice vegetative and reproductive development[J]., 2014, 201(1): 66-79.
[20] Zhang L, Cheng Z, Qin R, Qiu Y, Wang J L, Cui X, Gu L, Zhang X, Guo X, Wang D, Jiang L, Wu C Y, Wang H, Cao X, Wan J.Identification and characterization of an Epi-allele of FIE1 reveals a regulatory linkage between two epigenetic marks in rice[J]., 2012, 24(11): 4407-4421.
[21] Cheng X, Pan M, E Z, Zhou Y, Niu B, Chen C, Cheng X, Niu B, Chen C, Pan M, Zhiguo E, Zhou Y, Niu B, Chen C.Functional divergence of two duplicated fertilization independent endosperm genes in rice with respect to seed development[J]., 2020, 104(1): 124-137.
[22] Furihata H Y, Suenaga K, Kawanabe T, Yoshida T, Kawabe A.Gene duplication, silencing and expression alteration govern the molecular evolution ofgenes in plants[J]., 2016, 91(2): 85-95.
[23] Tonosaki K, Kinoshita T.Possible roles for polycomb repressive complex 2 in cereal endosperm[J]., 2015, 6: 1-5.
[24] Cheng X, Pan M, E Z G, Zhou Y, Niu B, Chen C.The maternally expressed polycomb group geneis essential for endosperm cellularization and imprinting in rice[J]., 2020, 2: 100092.
[25] Tonosaki K, Ono A, Kunisada M, Nishino M, Nagata H, Sakamoto S, Kijima S T, Furuumi H, Nonomura K I, Sato Y, Ohme-Takagi M, Endo M, Comai L, Hatakeyama K, Kawakatsu T, Kinoshita T.Mutation of the imprinted geneinduces autonomous endosperm development and delayed cellularization in rice [J]., 2021, 33(1): 85-103.
[26] Deng L, Zhang S, Wang G, Fan S, Li M, Chen W, Tu B, Tan J, Wang Y, Ma B, Li S, Qin P.Down-regulation of OsEMF2b caused semi-sterility due to anther and pollen development defects in rice[J]., 2017, 8: 1998.
[27] Xie S, Chen M, Pei R, Ouyang Y, Yao J.OsEMF2b acts as a regulator of flowering transition and floral organ identity by mediating H3K27me3 deposition at OsLFL1 and OsMADS4 in rice[J]., 2015, 33(1): 121-132.
[28] Conrad L J, Khanday I, Johnson C, Guiderdoni E, An G, Vijayraghavan U, Sundaresan V.The polycomb group gene EMF2B is essential for maintenance of floral meristem determinacy in rice[J]., 2014, 80(5): 883-894.
[29] Chen M, Xie S, Ouyang Y, Yao J.Rice PcG genecontrols seed dormancy and seedling growth by regulating the expression of OsVP1[J]., 2017, 260: 80-89.
[30] Zhong J, Peng Z, Peng Q, Cai Q, Peng W, Chen M, Yao J.Regulation of plant height in rice by the Polycomb group genes,and[J]., 2018, 267: 157-167.
[31] Smaczniak C, Immink R G H, Angenent G C, Kaufmann K.Developmental and evolutionary diversity of plant MADS-domain factors: Insights from recent studies[J]., 2012, 139(17): 3081-3098.
[32] Masiero S, Colombo L, Grini P E, Schnittger A, Kater M M.The emerging importance of type I MADS box transcription factors for plant reproduction[J]., 2011, 23(3): 865-872.
[33] Kang I H, Steffen J G, Portereiko M F, Lloyd A, Drews G N.The AGL62 MADS domain protein regulates cellularization during endosperm development in[J]., 2008, 20(3): 635-647.
[34] Portereiko M F, Lloyd A, Steffen J G, Punwani J A, Otsuga D, Drews G N.AGL80 is required for central cell and endosperm development in[J]., 2006, 18(8): 1862-1872.
[35] Kohler C.The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene[J]., 2003, 17(12): 1540-1553.
[36] Walia H, Josefsson C, Dilkes B, Kirkbride R, Harada J, Comai L.Dosage-dependent deregulation of an AGAMOUS-LIKE gene cluster contributes to interspecific incompatibility[J]., 2009, 19(13): 1128-1132.
[37] Nam J, Kim J, Lee S, An G, Ma H, Nei M.Type I MADS-box genes have experienced faster birth-and -death evolution than type II MADS-box genes in angiosperms[J]., 2004, 101(7): 1910-1915.
[38] Gramzow L, Thei?en G.Phylogenomics of MADS-box genes in plants: Two opposing life styles in one gene family[J]., 2013, 2(3): 1150–1164.
[39] Paul P, Dhatt B K, Miller M, Folsom J J, Wang Z, Krassovskaya I, Liu K, Sandhu J, Yu H, Zhang C, Obata T, Staswick P, Walia H.andare essential regulators of early seed development in rice[J]., 2020, 182(2): 933-948.
[40] Olsen O A.: Cellularization and cell fate specification[J]., 2001, 52(1): 233-267.
[41] Dante R, Larkins B, Sabelli P.Cell cycle control and seed development[J]., 2014, 5: 493.
[42] Guo J, Wang F, Song J, Sun W, Zhang X S.The expression of Orysa;CycB1;1 is essential for endosperm formation and causes embryo enlargement in rice[J]., 2010, 231(2): 293-303.
[43] Mizutani M, Naganuma T, Tsutsumi K, Saitoh Y.The syncytium-specific expression of the Orysa;KRP3 CDK inhibitor: Implication of its involvement in the cell cycle control in the rice (L.) syncytial endosperm[J]., 2010, 61(3): 791-798.
[44] Barr?co R M, Peres A, Droual A M, De Veylder L, Nguyen L S L, De Wolf J, Mironov V, Peerbolte R, Beemster G T S, Inzé D, Broekaert W F, Frankard V.The cyclin-dependent kinase inhibitor Orysa;KRP1 plays an important role in seed development of rice[J]., 2006, 142(3): 1053-1064.
[45] Hara T, Katoh H, Ogawa D, Kagaya Y, Sato Y, Kitano H, Nagato Y, Ishikawa R, Ono A, Kinoshita T, Takeda S, Hattori T.Rice SNF2 family helicase ENL1 is essential for syncytial endosperm development[J]., 2015, 81(1): 1-12.
[46] Huang X, Peng X, Sun M X.is essential for rice fertility and required for embryo dorsal-ventral pattern formation and endosperm development[J]., 2017, 215(3): 1039-1058.
[47] Becraft P W, Yi G.Regulation of aleurone development in cereal grains[J]., 2011, 62(5): 1669-1675.
[48] Yan D, Duermeyer L, Leoveanu C, Nambara E.The functions of the endosperm during seed germination[J]., 2014, 55(9): 1521-1533.
[49] Wu H, Gontarek B C, Yi G, Beall B D, Neelakandan A K, Adhikari B, Chen R, McCarty D R, Severin A J, Becraft P W.The thick aleurone1 gene encodes a NOT1 subunit of the CCR4-NOT complex and regulates cell patterning in endosperm[J]., 2020, 184: 00703.2020.DOI: 10.1104/pp.20.00703
[50] Lid S E, Gruis D, Jung R, Lorentzen J A, Ananiev E, Chamberlin M, Niu X, Meeley R, Nichols S, Olsen O A.The defective kernel 1 (dek1) gene required for aleurone cell development in the endosperm of maize grains encodes a membrane protein of the calpain gene superfamily[J]., 2002, 99(8): 5460-5465.
[51] Yi G, Neelakandan A K, Gontarek B C, Vollbrecht E, Becraft P W.The naked endosperm genes encode duplicate INDETERMINATE domain transcription factors required for maize endosperm cell patterning and differentiation[J]., 2015, 167(2): 443-456.
[52] Gontarek B C, Neelakandan A K, Wu H, Becraft P W.NKD transcription factors are central regulators of maize endosperm development[J]., 2016, 28(12): 2916-2936.
[53] Pu C X, Ma Y, Wang J, Zhang Y C, Jiao X W, Hu Y H, Wang L L, Zhu Z G, Sun D, Sun Y.Crinkly4 receptor-like kinase is required to maintain the interlocking of the palea and lemma, and fertility in rice, by promoting epidermal cell differentiation[J]., 2012, 70(6): 940-953.
[54] Hibara K ichiro, Obara M, Hayashida E, Abe M, Ishimaru T, Satoh H, Itoh J, Nagato Y.Thegene functions in leaf and embryonic pattern formation in rice[J]., 2009, 334(2): 345-354.
[55] Kawakatsu T, Yamamoto M P, Touno S M, Yasuda H, Takaiwa F.Compensation and interaction between RISBZ1 and RPBF during grain filling in rice[J]., 2009, 59(6): 908-920.
[56] Qi X, Li S, Zhu Y, Zhao Q, Zhu D, Yu J.ZmDof3, a maize endosperm-specific Dof protein gene, regulates starch accumulation and aleurone development in maize endosperm[J]., 2017, 93(1-2): 7-20.
[57] Liu J, Wu X, Yao X, Yu R, Larkin P J, Liu C M.Mutations in the DNA demethylase OsROS1 result in a thickened aleurone and improved nutritional value in rice grains[J]., 2018, 115(44): 11327-11332.
[58] Liu E, Zeng S, Zhu S, Liu Y, Wu G, Zhao K, Liu X, Liu Q, Dong Z, Dang X, Xie H, Li D, Hu X, Hong D.Favorable alleles ofincrease the grain-filling rate and yield of rice[J]., 2019, 181(3): 1207-1222.
[59] Scofield G N, Hirose T, Gaudron J A, Upadhyaya N M, Ohsugi R, Furbank R T.Antisense suppression of the rice sucrose transporter gene,, leads to impaired grain filling and germination but does not affect photosynthesis[J]., 2002, 29(7): 815-826.
[60] Sosso D, Luo D, Li Q B, Sasse J, Yang J, Gendrot G, Suzuki M, Koch K E, McCarty D R, Chourey P S, Rogowsky P M, Ross-Ibarra J, Yang B, Frommer W B.Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport[J]., 2015, 47(12): 1489-1493.
[61] Ma L, Zhang D, Miao Q, Yang J, Xuan Y, Hu Y.Essentialerduring the early stage of rice grain filling[J]., 2017, 58(5): 863-873.
[62] Yang J, Luo D, Yang B, Frommer W B, Eom J S.SWEET11 and 15 as key players in seed filling in rice[J].The, 2018, 218(2): 604-615.
[63] Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, Lu B, Lin H, Ma H, Zhang G, He Z.Control of rice grain-filling and yield by a gene with a potential signature of domestication[J]., 2008, 40(11): 1370-1374.
[64] Asano T, Kunieda N, Omura Y, Ibe H, Kawasaki T, Takano M, Sato M, Furuhashi H, Mujin T, Takaiwa F, Wu Cy C, Tada Y, Satozawa T, Sakamoto M, Shimada H.Rice SPK, a calmodulin-like domain protein kinase, is required for storage product accumulation during seed development: phosphorylation of sucrose synthase is a possible factor[J]., 2002, 14(3): 619-628.
[65] Jeon J S, Ryoo N, Hahn T R, Walia H, Nakamura Y.Starch biosynthesis in cereal endosperm[J].and Biochemistry, Elsevier Masson SAS, 2010, 48(6): 383-392.
[66] Wei X, Jiao G, Lin H, Sheng Z, Shao G, Xie L, Tang S, Xu Q, Hu P.regulates grain filling and starch synthesis during rice caryopsis development[J]., 2017, 59(2): 134-153.
[67] Wang J C C, Xu H, Zhu Y, Liu Q Q Q, Cai X L L.OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm[J]., 2013, 64(11): 3453-3466.
[68] Yin L L, Xue H W.The MADS29 transcription factor regulates the degradation of the nucellus and the nucellar projection during rice seed development[J]., 2012, 24(3): 1049-1065.
[69] Fu F F, Xue H W.Coexpression analysis identifies, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator[J]., 2010, 154(2): 927-938.
[70] Laloum T, De Mita S, Gamas P, Baudin M, Niebel A.CCAAT-box binding transcription factors in plants: Y so many?[J]., 2013, 18(3): 157-166.
[71] Zhiguo E, Li T, Zhang H, Liu Z, Deng H, Sharma S, Wei X, Wang L, Niu B, Chen C.A group of nuclear factor y transcription factors are sub-functionalized during endosperm development in monocots[J]., 2018, 69(10): 2495-2510.
[72] Xu J J, Zhang X F, Xue H W.Rice aleurone layer specific OsNF-YB1 regulates grain filling and endosperm development by interacting with an ERF transcription factor[J]., 2016, 67(22): 6399-6411.
[73] Bello B K, Hou Y, Zhao J, Jiao G, Wu Y, Li Z, Wang Y, Tong X, Wang W, Yuan W, Wei X, Zhang J.NF-YB1-YC12-bHLH144 complex directly activates Wx to regulate grain quality in rice (L.)[J]., 2019, 17(7): 1222-1235.
[74] Niu B, Deng H, Li T, Sharma S, Yun Q, Li Q, E Z G, Chen C.OsbZIP76 interacts with OsNF-YBs and regulates endosperm cellularization in rice()[J]., 2020, 62(12): 1983-1996.
[75] Bai A N, Lu X D, Li D Q, Liu J X, Liu C M.NF-YB1-regulated expression of sucrose transporters in aleurone facilitates sugar loading to rice endosperm[J]., 2016, 26(3): 384-388.
[76] Pelletier J M, Kwong R W, Park S, Le B H, Baden R, Cagliari A, Hashimoto M, Munoz M D, Fischer R L, Goldberg R B, Harada J J.LEC1 sequentially regulates the transcription of genes involved in diverse developmental processes during seed development[J]., 2017, 114(32): E6710-E6719.
[77] Jo L, Pelletier J M, Hsu S, Baden R, Goldberg R B, Harada J J.Combinatorial interactions of thetranscription factor specify diverse developmental programs during soybean seed development[J]., 2020, 117(2): 1223-1232.
[78] Zhang Z, Dong J, Ji C, Wu Y, Messing J.NAC-type transcription factors regulate accumulation of starch and protein in maize seeds[J]., 2019, 116(23): 11223-11228.
[79] Wang J, Chen Z, Zhang Q, Meng S, Wei C.The NAC transcription factorsandregulate starch and storage protein synthesis[J]., 2020, 184(4): 1775-1791.
[80] Ren Y, Huang Z, Jiang H, Wang Z, Wu F, Xiong Y, Yao J.A heat stress responsive NAC transcription factor heterodimer plays key roles in rice grain filling[J]., 2021, 72(8): 2947-2964.
[81] Mathew I E, Priyadarshini R, Mahto A, Jaiswal P, Parida S K, Agarwal P.participates in rice grain filling[J]., 2020, 4(9): 1-25.
[82] Zhou H, Xia D, He Y Q.Rice grain quality-traditional traits for high quality rice and health-plus substances[J]., 2020, 40(1): 1.DOI:10.1007/ s11032-019-1080-6.
[83] Liu L, Waters D L E, Rose T J, Bao J, King G J.Phospholipids in rice: Significance in grain quality and health benefits: A review[J]., 2013, 139(1-4): 1133-1145
[84] Hu Z L, Li P, Zhou M Q, Zhang Z H, Wang L X, Zhu L H, Zhu Y G.Mapping of quantitative trait loci (QTLs) for rice protein and fat content using doubled haploid lines[J]., 2004, 135(1-2): 47-54.
[85] Liu W, Zeng J, Jiang G, He Y.QTLs identification of crude fat content in brown rice and its genetic basis analysis using DH and two backcross populations[J]., 2009, 169(2): 197-205.
[86] Qin Y, Kim S M, Zhao X, Lee H S, Jia B, Kim K M, Eun M Y, Sohn J K.QTL detection and MAS selection efficiency for lipid content in brown rice (L.)[J]., 2010, 32(6): 506-512.
[87] Liu H L, Yin Z J, Xiao L, Xu Y N, Qu L Q.Identification and evaluation of ω-3 fatty acid desaturase genes for hyperfortifying α-linolenic acid in transgenic rice seed[J]., 2012, 63(8): 3279-3287.
[88] Zaplin E S, Liu Q, Li Z, Butardo V M, Blanchard C L, Rahman S.Production of high oleic rice grains by suppressing the expression of thegene[J]., 2013, 40(10): 996-1004.
[89] Zhou H, Xia D, Li P, Ao Y, Xu X, Wan S, Li Y, Wu B, Shi H, Wang K, Gao G, Zhang Q, Wang G, Xiao J, Li X, Yu S, Lian X, He Y.Genetic architecture and key genes controlling the diversity of oil composition in rice grains[J]., 2021, 14(3): 456-469.
[90] Zhang X F, Tong J H, Bai A N, Liu C M, Xiao L T, Xue H W.Phytohormone dynamics in developing endosperm influence rice grain shape and quality[J]., 2020, 62(10): 1625-1637.
[91] Zhao Y.Auxin biosynthesis[J].TheBook, 2014, 12: e0173.
[92] Figueiredo D D, Batista R A, Roszak P J, K?hler C.Auxin production couples endosperm development to fertilization[J]., 2015, 1: 15184.
[93] Batista R A, Figueiredo D D, Santos-González J, K?hler C.Auxin regulates endosperm cellularization in Arabidopsis[J]., 2019, 33(7-8): 466-476.
[94] Abu-Zaitoon Y M, Bennett K, Normanly J, Nonhebel H M.A large increase in IAA during development of rice grains correlates with the expression of tryptophan aminotransferase OsTAR1 and a grain-specific YUCCA[J]., 2012, 146(4): 487-499.
[95] Xu X, Zhang D, Niu B, Chen C, Yun Q, Zhou Y.OsYUC11-mediated auxin biosynthesis is essential for endosperm development of rice[J]., 2021, 185(3): 934-950.
[96] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B I, Onishi A, Miyagawa H, Katoh E.Loss of function of the IAA-glucose hydrolase geneenhances rice grain weight and increases yield[J]., 2013, 45(6): 707-711.
[97] Lur H S, Setter T L.Role of auxin in maize endosperm development (timing of nuclear DNA endoreduplication, zein expression, and cytokinin)[J]., 1993, 103(1): 273-280.
[98] Bernardi J, Lanubile A, Li Q B, Kumar D, Kladnik A, Cook S D, Ross J J, Marocco A, Chourey P S.Impaired auxin biosynthesis in the defective endosperm18 mutant is due to mutational loss of expression in thegene encoding endosperm-specific YUCCA1 protein in maize[J]., 2012, 160(3): 1318-1328.
[99] Forestan C, Meda S, Varotto S.ZmPIN1-mediated auxin transport is related to cellular differentiation during maize embryogenesis and endosperm development[J]., 2010, 152(3): 1373-1390.
[100]Wang Z, Xu Y, Chen T, Zhang H, Yang J, Zhang J.Abscisic acid and the key enzymes and genes in sucrose-to-starch conversion in rice spikelets in response to soil drying during grain filling[J]., 2015, 241(5): 1091-1107.
[101]Zhang D, Zhang M, Zhou Y, Wang Y, Shen J, Chen H, Zhang L, Lü B, Liang G, Liang J.The rice G protein γ subunit DEP1/qPE9-1 positively regulates grain-filling process by increasing auxin and cytokinin content in rice grains[J]., 2019, 12(1): 91.
[102]Qin P, Zhang G, Hu B, Wu J, Chen W, Ren Z, Liu Y, Xie J, Yuan H, Tu B, Ma B, Wang Y, Ye L, Li L, Xiang C, Li S.Leaf-derived ABA regulates rice seed development via a transporter-mediated and temperature-sensitive mechanism[J]., 2021, 7(3): eabc8873.
[103]Sreenivasulu N, Radchuk V, Alawady A, Borisjuk L, Weier D, Staroske N, Fuchs J, Miersch O, Strickert M, Usadel B, Wobus U, Grimm B, Weber H, Weschke W.De-regulation of abscisic acid contents causes abnormal endosperm development in the barley mutant[J]., 2010, 64(4): 589-603.
[104]Xing M Q, Zhang Y J, Zhou S R, Hu W Y, Wu X X, Ye Y J, Wu X T, Xiao Y P, Li X, Xue H W.Global analysis reveals the crucial roles of DNA methylation during rice seed development[J]., 2015, 168(4): 1417-1432.
[105]Yang C, Ma B, He S, Xiong Q, Duan K, Yin C, Chen H, Lu X, Chen S, Zhang J.andregulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice[J]., 2015, 169(1): 148-165.
[106]Yin C, Zhao H, Ma B, Chen S, Zhang J.Diverse roles of ethylene in regulating agronomic traits in rice[J]., 2017, 8: 1676.DOI:10.3389/fpls.2017.01676.
[107]Huang X, Lu Z, Wang X, Ouyang Y, Chen W, Xie K, Wang D, Luo M, Luo J, Yao J.Imprinted gene OsFIE1 modulates rice seed development by influencing nutrient metabolism and modifying genome H3K27me3[J]., 2016, 87(3): 305-317.
[108]Liu X, Wang P.SDG711 is involved in rice seed development through regulation of starch metabolism gene expression in coordination with other histone modi cations[J]., 2021, 14(1): 25.
[109]Qin F J, Sun Q W, Huang L M, Chen X S, Zhou D X.Rice SUVH histone methyltransferase genes display specific functions in chromatin modification and retrotransposon repression[J]., 2010, 3(4): 773-782.
[110]Qi D, Wen Q, Meng Z, Yuan S, Guo H, Zhao H, Cui S.OsLFR is essential for early endosperm and embryo development by interacting with SWI/SNF complex members in[J]., 2020, 104(4): 901-916.
[111]Zhang H, Lu Y, Zhao Y, Zhou D X.OsSRT1 is involved in rice seed development through regulation of starch metabolism gene expression[J]., 2016, 248: 28-36.
[112]La H, Ding B, Mishra G P, Zhou B, Yang H, Bellizzi M D R, Chen S, Meyers B C, Peng Z, Zhu J K, Wang G L.A 5-methylcytosine DNA glycosylase/lyase demethylates the retrotransposon Tos17 and promotes its transposition in rice[J]., 2011, 108(37): 15498-15503.
[113]K?hler C, Wolff P, Spillane C.Epigenetic mechanisms underlying genomic imprinting in plants[J]., 2012, 63(1): 331-352.
[114]Kermicle J L.Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission[J]., 1970, 66(1): 69-85.
[115]Gehring M, Missirian V, Henikoff S.Genomic analysis of parent-of-origin allelic expression inseeds[J]., 2011, 6(8): e23687.DOI: 10.1371/journal.pone.0023687
[116]Yang G, Liu Z, Gao L, Yu K, Feng M, Yao Y, Peng H, Hu Z, Sun Q, Ni Z, Xin M.Genomic imprinting was evolutionarily conserved during wheat polyploidization [J]., 2018, 30(1): 37-47.
[117]Luo M, Taylor J M, Spriggs A, Zhang H, Wu X, Russell S, Singh M, Koltunow A.A genome-wide survey of imprinted genes in rice seeds reveals imprinting primarily occurs in the endosperm[J]., 2011, 7(6): e1002125.
[118]Chen C, Li T, Zhu S, Liu Z, Shi Z, Zheng X, Chen R, Huang J, Shen Y, Luo S, Wang L, Liu Q Q, E Z G.Characterization of imprinted genes in rice reveals conservation of regulation and imprinting with other plant species[J]., 2018, 177(4): 1754-1771.
[119]Florez-Rueda A M, Paris M, Schmidt A, Widmer A, Grossniklaus U, St?dler T.Genomic imprinting in the endosperm is systematically perturbed in abortive hybrid tomato seeds[J]., 2016, 33(11): 2935-2946.
[120]Xu W, Dai M, Li F, Liu A.Genomic imprinting, methylation and parent-of-origin effects in reciprocal hybrid endosperm of castor bean[J]., 2014, 42(11): 6987-6998.
[121]Hsieh T-F F, Shin J, Uzawa R, Silva P, Cohen S, Bauer M J, Hashimoto M, Kirkbride R C, Harada J J, Zilberman D, Fischer R L.Regulation of imprinted gene expression inendosperm[J]., 2011, 108(5): 1755-1762.
[122]Waters A J, Bilinski P, Eichten S R, Vaughn M W, Ross-Ibarra J, Gehring M, Springer N M.Comprehensive analysis of imprinted genes in maize reveals allelic variation for imprinting and limited conservation with other species[J]., 2013, 110(48): 19639-19644.
[123]Zhang M, Li N, He W, Zhang H, Yang W, Liu B.Genome-wide screen of genes imprinted in sorghum endosperm and the roles of allelic differential cytosine methylation[J].,2015: 424-436.
[124]Waters A J, Makarevitch I, Eichten S R, Swanson-Wagner R A, Yeh C T, Xu W, Schnable P S, Vaughn M W, Gehring M, Springer N M.Parent-of -origin effects on gene expression and DNA methylation in the maize endosperm[J]., 2011, 23(12): 4221-4233.
[125]Hatorangan M R, Laenen B, Steige K, Slotte T, K?hler C.Rapid evolution of genomic imprinting in two species of the brassicaceae[J]., 2016, 28(8): 1815-1827.
[126]Pignatta D, Erdmann R M, Scheer E, Picard C L, Bell G W, Gehring M.Natural epigenetic polymorphisms lead to intraspecific variation ingene imprinting[J]., 2014: e03198.
[127]Batista R A, K?hler C.Genomic imprinting in plants-revisiting existing models[J]., 2020, 34(1-2): 24-36.
[128]Huh J H, Bauer M J, Hsieh T F, Fischer R L.Cellular programming of plant gene imprinting[J]., 2008, 132(5): 735-744.
[129]Burkart-Waco D, Ngo K, Lieberman M, Comai L.Perturbation of parentally biased gene expression during interspecific hybridization[J]., 2015, 10(2): e0117293.
[130]Kradolfer D, Wolff P, Jiang H, Siretskiy A, Kohler C.An imprinted gene underlies postzygotic reproductive isolation in[J]., 2013, 26(5): 525-535.
[131]Jullien P E, Berger F.Parental genome dosage imbalance deregulates imprinting in[J]., 2010, 6(3): e1000885.
[132]Kinoshita T, Yadegari R, Harada J J, Goldberg R B, Fischer R L.Imprinting of the MEDEA polycomb gene in theendosperm[J]., 1999, 11(10): 1945-1952.
[133]Liu P, Qi M, Wang Y, Chang M, Liu C, Sun M, Yang W, Ren H.RAN1 mediates seed development through its parental ratio by affecting the onset of endosperm cellularization[J]., 2014, 7(8): 1316-1328.
[134]Wolff P, Jiang H, Wang G, Santos-González J, K?hler C.Paternally expressed imprinted genes establish postzygotic hybridization barriers in[J]., 2015, 4: 1-14.
[135]Wang G, Jiang H, Del Toro de León G, Martinez G, K?hler C.Sequestration of a transposon-derived sirna by a target mimic imprinted gene induces postzygotic reproductive isolation in[J]., 2018, 46(6): 696-705.
[136]Yuan J, Chen S, Jiao W, Wang L, Wang L, Ye W, Lu J, Hong D, You S, Cheng Z, Yang D L, Chen Z J.Both maternally and paternally imprinted genes regulate seed development in rice[J]., 2017, 216(2): 373-387.
[137]Folsom J J, Begcy K, Hao X, Wang D, Walia H.Rice fertilization-independent endosperm1 regulates seed size under heat stress by controlling early endosperm development[J]., 2014, 165(1): 238-248.
Towards Understanding the Genetic Regulations of Endosperm Development in Rice
ZHANG Juan1, NIU Baixiao1, E Zhiguo2, CHEN Chen1, *
(1Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China;2State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China;*Corresponding author, E-mail: chenchen@yzu.edu.cn)
Endosperm, a product of double fertilization, is a tissue nourishingthe developing embryo.In addition, cereal endosperm is the primary source of calories of humans.Rice endosperm consists more than seventypercentof the seed dry mass, whose development directly determines the yield and quality of rice grains.To date, we have had a profound understanding of the genetic and epigenetic regulations for rice endosperm development.Many of the important genes required for rice endosperm development have been identified.In this review, we summarize the molecular controls of the key events/processes of endosperm development, including the syncytium-cellualrization transition, endosperm cell differentiation and storage compounds accumulation.We mainly focus on the new findings in rice; however, some important findings inand other cereal crops are also introduced.We also discuss some questions that need to be elucidated in the future for rice endosperm development.
rice; endosperm development; genetic regulation; cell differentiation; genomic imprinting
2021-03-09;
2021-04-25。
國家自然科學(xué)基金資助項(xiàng)目(31771744);江蘇省杰出青年基金資助項(xiàng)目(BK20180047);江蘇省“六大人才高峰”高層次人才項(xiàng)目(NY-142)。
10.16819/j.1001-7216.2021.210307