江南 顏旭1, 2 周延彪 周群豐 王凱 楊遠柱
水稻鎘積累影響因素與低鎘稻米生產(chǎn)策略
江南1, 3, #顏旭1, 2, #周延彪1, 3周群豐1, 3王凱1, 3楊遠柱1, 2, 3, 4,*
(1袁隆平農(nóng)業(yè)高科技股份有限公司 農(nóng)業(yè)農(nóng)村部南方水稻品種創(chuàng)制重點實驗室/抗病蟲水稻育種湖南省工程實驗室,長沙 410125;2華中農(nóng)業(yè)大學 植物科學技術學院,武漢 430070;3湖南亞華種業(yè)科學研究院,長沙 410604;4湖南農(nóng)業(yè)大學 農(nóng)學院,長沙 410128;#共同第一作者;*通信聯(lián)系人,E-mail: yzhuyah@163.com)
鎘是一種生物毒性極強且分布廣泛的重金屬元素。農(nóng)田中的鎘不僅影響作物的生長發(fā)育,而且可通過食物鏈進入人體內(nèi),當富集到一定程度會危害人體健康。水稻是我國重要的糧食作物之一,在保障我國糧食安全中的地位舉足輕重,但水稻同時也是對鎘吸收和積累最強的大宗谷類作物之一。近些年“鎘大米”事件在我國頻繁發(fā)生,稻米鎘污染已成為一個備受社會關注的嚴峻問題,治理稻米鎘污染迫在眉睫。本文從低鎘水稻品種篩選與培育、優(yōu)化水分管理、調(diào)節(jié)土壤pH值、施用葉面阻隔劑等方面對稻米鎘污染治理技術的研究進展進行了綜述,旨在為技術的集成、推廣和應用提供理論依據(jù),同時為新技術的研發(fā)提供新的思路。
水稻;鎘積累;食品安全;品種;灌溉;pH
隨著現(xiàn)代工農(nóng)業(yè)的快速發(fā)展以及城市化進程的推進,土壤重金屬污染的問題日趨嚴重,已成為當前全球面臨的一個重要環(huán)境議題,而我國面臨的土壤重金屬污染形勢則尤為嚴峻[1]。2014年環(huán)境保護部和國土資源部共同發(fā)布《全國土壤污染狀況調(diào)查公報》,該公報指出我國耕地土壤點位超標率達19.4%,遠高于林地、草地和未利用地。土壤污染類型以無機型為主,其超標點位數(shù)占全部超標點位的82.8%。在鎘、汞、砷、銅、鉛、鉻、鋅、鎳8種主要無機重金屬污染物中,鎘(Cadmium, Cd)的點位超標率達7.0%,遠超其他7種重金屬。而早在2005年,有報道顯示,我國受鎘污染的耕地面積已達到1.33萬hm2,涉及11個省份的25個地區(qū),導致每年糧食減產(chǎn)1000多萬t,受污染糧食達1200多萬t,合計經(jīng)濟損失至少達200億元[2]。鎘是生物非必需元素,不參與生物體的結(jié)構組成與代謝活動,且具有較強潛伏性和毒性,世界衛(wèi)生組織(World Health Organization, WHO)將鎘列為重點研究的食品污染物[3]。國際癌癥研究機構(International Agency for Research on Cancer, IARC)將鎘歸類為人類致癌物[4]。美國毒物和疾病登記署(Agency for Toxic Substances and Disease Registry, ATSDR)將鎘列為第7位危害人體健康的物質(zhì)[5]。水稻是全球三大糧食作物之一和半數(shù)以上人口的主糧,是世界糧食安全的基石,同時也是對鎘吸收最強的大宗谷類作物之一[6]。近些年,我國南方地區(qū)相繼發(fā)生的 “鎘大米”事件,使得包括稻米等農(nóng)產(chǎn)品鎘污染問題受到社會的極大關注。近期的一項研究對我國20個省份的160份市場銷售稻米樣品進行檢測,發(fā)現(xiàn)有10%的樣品鎘含量超過國家標準(0.2 mg/kg),3.8%的樣品鎘含量甚至超過0.4 mg/kg[7],可見,我國稻米鎘污染的管控與治理已十分緊迫??紤]到稻米鎘污染問題的嚴重性,我國制定了《土壤環(huán)境質(zhì)量-農(nóng)用地土壤污染風險管控標準(試行)》(GB 15618-2018)和《食品中污染物限量》(GB2762-2012),對農(nóng)田和稻米中的鎘含量進行了明確規(guī)定。國內(nèi)外針對水稻鎘積累影響因素與低鎘稻米生產(chǎn)開展了系列相關研究。湖南省農(nóng)業(yè)科學院、中國科學院亞熱帶農(nóng)業(yè)生態(tài)研究所、湖南農(nóng)業(yè)大學等單位聯(lián)合攻關,開展稻米鎘污染控制技術的研究,構建了VIP+n(V,Variety,鎘低積累水稻品種;I,Irrigation,優(yōu)化水分管理;P,土壤pH值,施用石灰等提高土壤pH值;n, 噴施葉面阻隔劑)的綜合控鎘技術(圖1),可有效降低糙米中的鎘含量,保障中、輕度鎘污染土壤條件下的稻米生產(chǎn)安全[8-10]。本文圍繞VIP+n技術,針對鎘低積累水稻品種篩選與培育、田間水分管理、土壤pH值調(diào)節(jié)以及噴施葉面阻隔劑等研究進展進行了綜述,以期為該技術進一步提升和推廣應用提供參考信息。
圖1 VIP+n稻米鎘污染控制技術
Fig.1.VIP+n strategies for reducing cadmium accumulation in rice.
不同水稻基因型在鎘積累特性方面存在豐富的變異[11],這為鎘低積累水稻品種的篩選、相關基因的發(fā)掘與功能研究以及遺傳改良奠定了基礎。在土壤鎘污染沒有得到根本治理的情況下,篩選、培育和推廣鎘低積累水稻品種是降低稻米鎘污染風險的有效技術手段之一。推廣鎘低積累水稻品種,不需要增加額外投入,也不改變現(xiàn)有種植結(jié)構與方式,農(nóng)民容易接受,投入少,見效快。但對于何為“鎘低積累品種”,目前尚未有明確定義和標準[12]。從生產(chǎn)者的角度來看,鎘低積累水稻品種是在鎘污染土壤中能夠生產(chǎn)出稻米鎘含量達到國家食品安全標準的水稻品種;從遺傳學家的角度來看,鎘低積累水稻品種是在相同土壤環(huán)境條件下稻米鎘含量較低的水稻品種,只是一個相對的概念。由于稻米鎘積累受土壤環(huán)境和農(nóng)藝措施的綜合調(diào)控,目前還未發(fā)現(xiàn)有絕對的鎘低積累水稻資源或品種。綜合不同層面的認識,對什么是鎘低積累水稻品種已形成了一些基本共識,即在中、輕度鎘污染土壤條件和正常栽培管理措施下種植,稻米鎘含量達到國家食品安全標準的水稻品種[12]。
利用當?shù)氐闹髟运酒贩N就地篩選,可快速實現(xiàn)推廣和應用。湖南是農(nóng)業(yè)大省,同時也是有色金屬之鄉(xiāng),礦產(chǎn)品采選冶煉產(chǎn)業(yè)發(fā)達,造成農(nóng)田嚴重污染,稻田鎘污染尤為突出[13]。2014年,湖南省啟動了長株潭耕地重金屬污染修復試點及農(nóng)作物種植結(jié)構調(diào)整試點項目,鎘低積累水稻品種篩選是其中的重要課題之一。通過多年、多點、多重復的大田與盆栽試驗,從主栽品種中篩選出了49個稻米鎘積累較低的品種作為應急性鎘低積累品種(表1),其中湘早秈45號等常規(guī)稻品種6個,株兩優(yōu)189等兩系雜交稻品種27個,欣榮優(yōu)123等三系雜交稻品種16個(http://agri.hunan.gov.cn/agri/index.html)。上述品種在湖南省安全利用區(qū)域推廣面積達40萬hm2[12]。此外,Duan等[14]通過兩年多點試驗,從471個南方大面積推廣種植的水稻品種中篩選出8個鎘低積累的秈型雜交稻品種,它們在所有試驗點的糙米鎘含量均低于國家標準(<0.2 mg/kg)。這些品種具有高產(chǎn)和廣適等優(yōu)異特性,可快速在我國南方中、輕度鎘污染稻區(qū)應用。
土壤中的鎘被水稻根系吸收,經(jīng)木質(zhì)部加載向地上部運輸,然后通過莖節(jié)完成定向轉(zhuǎn)運與分配,最終通過葉片等器官的韌皮部轉(zhuǎn)移至谷粒中[15]。針對水稻鎘吸收、轉(zhuǎn)運和積累的過程與分子機制,學者進行了廣泛研究,一系列相關基因被克隆[15-16],其中一些關鍵基因具有重大育種應用價值。自然抗性相關巨噬細胞蛋白(natural resistance-associated macrophage protein, NRAMP)是一類高度保守的二價金屬離子轉(zhuǎn)運蛋白家族,廣泛存在于各類生物中[17]。水稻基因組中有7個基因[18],其中主要在根的表皮、外皮層、皮層外層以及木質(zhì)部周邊組織表達,其編碼的蛋白定位于細胞質(zhì)膜上,主要參與根系對錳(Manganese, Mn)和鎘的吸收[18-19]。基因敲除和表達下調(diào)可顯著降低水稻對鎘和錳的吸收以及二者在稻米中的積累,但是植株在低錳的環(huán)境中生長與產(chǎn)量會受到影響,可能由于材料遺傳背景、突變類型以及土壤條件等因素導致受影響程度不同[18-25]。近期Lü等[26]對1143份秈型雜交稻親本材料進行重測序,發(fā)現(xiàn)紅蓮型不育系珞紅3A與珞紅4A在第7染色體基因位點存在一段408 kb的基因組片段缺失,表型鑒定顯示兩份材料葉片與根中鎘含量顯著低于對照品種華占,與華占背景的基因敲除突變體接近。近期的另一項研究發(fā)現(xiàn),基因的過量表達增加了根對鎘和錳的吸收,但是通過破壞鎘徑向運輸?shù)街兄⑦M行木質(zhì)部裝載從而減少了鎘從根到莖的轉(zhuǎn)運,最終使谷粒中鎘的濃度降低了49%~94%[27]。水稻NRAMP家族中的另一個成員OsNARMP1與OsNARMP5具有高度同源性,主要在中央維管束之外的其他根部細胞和葉肉細胞中表達。OsNARMP1同樣具備轉(zhuǎn)運鎘和錳的能力,基因敲除會導致根部對鎘和錳的吸收以及二者在地上部與谷粒中的積累顯著下降,但是下降幅度不及敲除基因,而同時敲除兩個基因可進一步降低對鎘和錳的吸收。突變體生長同樣受到抑制,但受影響程度小于突變體以及雙突變體[28]。
Ueno等[29-30]利用地上部鎘高積累秈稻品種Anjana Dhan與鎘低積累粳稻品種日本晴構建的遺傳群體在第7染色體定位并克隆到一個控制鎘積累的基因,它屬于P1B類型的重金屬ATP (Heavy Metal ATPase, HMA)酶基因家族成員,主要在根部表達[30]?;虺聊瑫龠M鎘從根部向地上部的轉(zhuǎn)運,而過量表達則效果相反[30-31]。進一步功能研究發(fā)現(xiàn)OsHMA3能夠?qū)㈡k轉(zhuǎn)運至根部細胞的液泡中從而將其隔離[31-32]。第80位的氨基酸由精氨酸突變?yōu)榻M氨酸,是導致Anjana Dhan中OsHMA3蛋白功能喪失的原因[30]。在鎘高積累秈稻品種Cho-Ko-Koku和Jarjan中觀察到了相同的突變[31-32]。之后,又相繼發(fā)現(xiàn)了其他新的等位基因型[33-37]。
Yan等[38]對127份水稻材料進行全基因組關聯(lián)分析,在水稻第3染色體鑒定到一個谷粒鎘積累相關基因,它屬于MFS家族(major facilitator superfamily),主要在根細胞質(zhì)膜上表達。敲除基因可顯著降低植株對鎘的吸收和在谷粒中的積累,但會對產(chǎn)量造成影響。進一步分析發(fā)現(xiàn),基因在秈稻與粳稻之間出現(xiàn)明顯分化,粳稻主要是OsCd1等位基因型,秈稻中主要是OsCd1等位基因型。兩種等位基因型在表達水平和亞細胞定位方面未表現(xiàn)出明顯差異。將粳稻OsCd1等位基因型導入至秈稻中可顯著降低谷粒鎘含量,而對植株生長和產(chǎn)量未產(chǎn)生顯著影響。
利用誘變技術結(jié)合表型篩選,是選育鎘低積累水稻品種的手段之一。Ishikawa等[20]采用碳離子束對日本高檔優(yōu)質(zhì)稻品種越光進行輻射獲得了3個鎘低積累突變體,經(jīng)鑒定發(fā)現(xiàn)是由基因的突變導致了鎘積累量的顯著下降。其中兩個突變體與的生長狀況、產(chǎn)量和品質(zhì)與野生型越光無明顯差異,而生長和產(chǎn)量受到較大影響。進行品種登記并重新命名為Kan 1(Koshihikari Kan 1)[39]。Cao等[40]對秈稻品種9311進行EMS化學誘變獲得鎘低積累突變體,在不同田塊的谷粒鎘含量為0.02~0.13 mg/kg,遠低于野生型(1.02~4.44 mg/kg),進一步研究發(fā)現(xiàn)是基因一個堿基的突變導致了鎘積累量的降低。相關QTL和基因的鑒定為通過分子標記輔助選擇(marker-assisted selection, MAS)策略培育鎘低積累新品種奠定了基礎。我國在這一領域發(fā)展較快,取得了一系列進展。隆平高科、湖南農(nóng)業(yè)大學、中國水稻研究所等單位利用高代回交結(jié)合MAS的策略,將鎘低積累等位基因轉(zhuǎn)育到9311、H819、創(chuàng)5S等雜交水稻親本中,均顯著降低了谷粒中鎘的積累[37, 41, 42]。Yan等[38]將粳稻日本晴中的OsCd1等位基因?qū)胫炼i稻9311中顯著降低谷粒鎘含量,而對植株生長和產(chǎn)量未產(chǎn)生顯著影響。近些年以CRISPR/Cas9為代表的基因編輯技術發(fā)展日新月異,簡單、精準、高效等特點使其成為學者研究的熱點。Tang等[22]利用CRISPR/Cas9基因編輯手段對大面積推廣種植的雜交水稻品種隆兩優(yōu)華占雙親的基因進行敲除,培育出稻米鎘積累量極低的改良隆兩優(yōu)華占(兩優(yōu)低鎘1號),其稻米鎘積累量比野生型隆兩優(yōu)華占降低98%以上(<0.05 mg/kg),且產(chǎn)量未受任何影響。由全國農(nóng)技推廣中心組織的兩優(yōu)低鎘1號多環(huán)境測試試驗也表明,在長江中下游稻區(qū)總鎘濃度0.2~2.43 mg/kg的土壤中種植,按當?shù)亓晳T栽培方式進行田間管理,10個測試點中測試品種兩優(yōu)低鎘1號的稻米鎘含量均符合安全標準(≤0.2 mg/kg),且產(chǎn)量和主要品質(zhì)性狀與隆兩優(yōu)華占相當(未發(fā)表數(shù)據(jù))。之后又有多項研究在不同遺傳背景的水稻材料中靶向編輯基因,獲得了一系列鎘低積累株系[23, 24, 43]。
表1 湖南省篩選認定的鎘低積累水稻品種
續(xù)表1
田間水分管理可改變土壤的Eh與pH值,影響鎘的形態(tài)和生物活性,進而影響水稻對鎘的吸收和富集[44]。同其他稻米鎘污染治理措施相比,水分管理相對簡單易行、可操作性強、成本較低。
土壤Eh值即土壤氧化還原電位值。土壤氧化還原反應使得土壤物理、化學、生物環(huán)境發(fā)生變化并影響土壤中鎘的形態(tài)。淹水條件下,土壤Eh值低,處于還原狀態(tài),土壤中的氧化組分包括NO? 3、SO2? 4、Fe3+和Mn3+/Mn4+,通過接受土壤微生物呼吸作用所釋放的電子,還原成NO?2、S2?、Fe2+和Mn2+, S2?與Cd2+形成CdS沉淀,降低了土壤中鎘的生物有效性[45]。另外,水稻可以通過葉片將大氣中的氧氣輸送到根系并釋放到根際,使大量的 Fe2+與Mn2+等氧化形成Fe-Mn氧化物,對土壤中的鎘吸附增加,從而降低了水稻根系對鎘的吸收[46-50]。相反,在排水條件下,有效態(tài)鎘被釋放,促進了水稻對鎘的吸收[47, 49, 50]。
土壤pH值是影響鎘形態(tài)、分布、轉(zhuǎn)化與生物有效性的另外一個重要因素[51],在堿性和弱酸性土壤中,有效鎘的比例隨著pH值下降而增加[52]。當土壤pH值升高時,土壤中的氧化物、礦物質(zhì)膠體、有機質(zhì)表面的負電荷增加,為游離態(tài)的鎘離子提供了更多吸附結(jié)合位點,土壤的吸附降低了生物有效態(tài)鎘的濃度,降低了鎘的遷移能力,從而減少了水稻對鎘的吸收和富集[49, 52]。酸性土壤淹水后,由于氧化物質(zhì)發(fā)生還原作用而消耗了大量的質(zhì)子和H2CO3-HCO3?反應形成的緩沖作用,使得土壤pH值趨于中性[54-55]。因此,通過水分管理可調(diào)節(jié)土壤的pH值,從而控制水稻對鎘的吸收和積累。
目前,已有一系列研究證實長期淹水能有效降低稻米的鎘含量。張麗娜等[56]研究了不同水分管理方式對于水稻產(chǎn)量和稻米鎘積累的影響,全生育期淹水處理的水稻糙米鎘含量最低,而旱作栽培處理最高,全生育期淹水的水稻糙米鎘含量僅為旱作栽培處理的37.6%。Arao等[57]研究了不同水分管理方式對稻米鎘和砷積累的影響,發(fā)現(xiàn)抽穗前后3周長時間淹水對于降低稻米中的鎘濃度是最有效的,其中,全生育期淹水處理的稻米鎘濃度最低,而抽穗后淹水3周比抽穗前淹水3周更為有效。劉昭兵等[58]發(fā)現(xiàn)淹水時間顯著影響水稻鎘的吸收和累積,淹水時間越長,糙米中的鎘含量越低,并且因生育期的不同會出現(xiàn)一定差異,分蘗盛期開始淹水對抑制糙米鎘積累優(yōu)于灌漿期開始淹水。楊小粉等[59]研究發(fā)現(xiàn)長期淹水灌溉比濕潤灌溉和階段性濕潤灌溉能更有效降低糙米鎘含量。然而,長期淹水會提高另外一種重金屬元素砷(Arsenic, As)在稻米中的積累[57, 60-62]。因此,在實際操作過程中,需根據(jù)土壤類型、理化性質(zhì)、重金屬組成與含量等具體情況,分析和權衡鎘和砷在稻米中積累的相對風險,合理地選擇水分管理方式。
通過施撒石灰類等堿性物質(zhì)提高酸性土壤的pH值,可降低土壤中有效態(tài)鎘含量,進而減少水稻對鎘的吸收[63]。在我國南方地區(qū),通常在水稻分蘗期采用施加少量生石灰(CaO)于稻田表層土壤的方法,降低糙米中的鎘含量。但是,Wang等[64]研究發(fā)現(xiàn)單獨采取此措施對提高土壤pH值、降低糙米鎘含量作用有限,而且由于生石灰具有較強的腐蝕性,使用不當會對作物的生長造成影響。大田試驗表明,在水稻種植前一次性施用7.5 t/hm2的CaCO3粉末,可將土壤pH值從5.5提升至6.5,在此田塊連續(xù)三季種植水稻的稻米鎘含量比未經(jīng)任何處理田塊低70%~80%,而施用CaCO3未對水稻產(chǎn)量、稻米中微量元素(鐵和鋅)以及無機砷的含量造成顯著影響[65, 66]。但是值得注意的是,農(nóng)田連續(xù)、大量的施用CaCO3和CaO,會引起土壤的鈣化、板結(jié),顯著降低土壤肥效。因此,在施用石灰類堿性物質(zhì)時,需考慮頻率、用量、施用方法等。生物炭是由廢棄生物質(zhì)在完全或部分缺氧、低溫或相對低溫的條件下(<700℃)熱分解所產(chǎn)生的一種高碳固體殘渣[67]。生物炭具有較大的比表面積和豐富的微孔結(jié)構,因此具有較強的吸附能力。另外,由于生物炭含有灰分而呈堿性,而且其表面有機官能團可吸收土壤中的H+,因此施加生物炭可提高土壤的pH值[68]。多點田間試驗表明,在鎘污染稻田施用生物炭修復劑,可降低糙米中20%~90%的鎘[69]。此外,生物炭還具有促進作物生長和降低土壤溫室氣體排放等優(yōu)點[70-71]。此外,海泡石、坡縷石、膨潤土、磷酸鹽等無機物也可通過提高土壤pH值,減少水稻等作物對于鎘等重金屬的吸收[72]。
葉面追肥在農(nóng)業(yè)生產(chǎn)上應用有悠久的歷史,但是近些年發(fā)現(xiàn)葉面噴施營養(yǎng)元素等可調(diào)控重金屬元素在作物植株內(nèi)的分配,減少向食用部分的轉(zhuǎn)移[73]。硅(Silicon, Si)是地殼第二豐富的元素,在植物中廣泛存在[74]。盡管不是大多數(shù)植物生長發(fā)育的必需元素,但是大量證據(jù)顯示施用硅對植物生長是有益的[75-76]。在水稻中,通過葉面施用硅不僅能促進植株的生長發(fā)育,提高產(chǎn)量和品質(zhì)以及對各種脅迫的抗性[77-78],還可顯著降低鎘在稻米中的積累[79-81]。Shao等[82]發(fā)現(xiàn)施用硅可下調(diào)和基因的表達,進而減少了對鎘的吸收和轉(zhuǎn)運。硒(Selenium, Se)與硅類似,同樣是對植物生長有益的元素,同時對減少水稻鎘吸收和積累[83-85]。硒處理可下調(diào)植株與基因的表達,同時上調(diào)基因的表達[86]。
我國農(nóng)田土壤的重金屬污染問題日益嚴重,稻米鎘超標事件頻繁發(fā)生,嚴重威脅著人們的健康。盡管近些年來,國內(nèi)外學者在鎘低積累水稻品種的篩選與培育,農(nóng)藝措施降鎘,水稻鎘吸收、轉(zhuǎn)運與籽粒鎘積累的分子機制等方面取得了一系列豐碩研究成果,但是仍然存在許多問題,有待進一步研究:1)鑒定的水稻鎘吸收、轉(zhuǎn)運和積累相關的基因數(shù)量有限,真正具有育種應用價值的基因更是屈指可數(shù),有待進一步發(fā)掘和研究;2)利用基因編輯手段敲除基因創(chuàng)制的“去鎘”水稻新品種,受制于轉(zhuǎn)基因作物法規(guī)監(jiān)管,目前難以產(chǎn)業(yè)化應用,需創(chuàng)新誘變等育種技術的應用,加快創(chuàng)制非轉(zhuǎn)基因“去鎘”水稻新種質(zhì)或品種;3)長期淹水灌溉可顯著減輕稻米中的鎘積累,但是對于耐長期淹灌、延遲收獲的水稻品種的應用和基礎研究還很少;4)葉面阻隔劑降鎘的分子機理還不是非常清楚;5)對于中、低水平鎘污染稻田種植水稻可采取綜合措施實現(xiàn)稻米安全生產(chǎn),但是對于重度污染田塊目前還缺少有效手段,需要加強高效、低成本的鎘污染土壤治理技術的研究。
[1] Zhao F J, Ma Y, Zhu Y G, Tang Z, McGrath S P.Soil contamination in China: Current status and mitigation strategies[J].2015, 49(2): 750-759.
[2] 程旺大, 姚海根, 吳偉, 張國平.土壤-水稻體系中的重金屬污染及其控制[J].中國農(nóng)業(yè)科技導報, 2005, 7(4): 51-54.
Cheng W D, Yao H G, Wu W, Zhang G P.Heavy metal pollution and its countermeasures in soil-rice system[J]., 2005, 7(4): 51-54.(in Chinese with English abstract)
[3] World Health Organization (WHO).Environmental health criteria 134: Cadmium[R].Geneva: WHO, 1992.
[4] International Agency for Research on Cancer (IARC).Beryllium, cadmium, mercury and exposures in the glass manufacturing industry[R].Lyon: IARC, 1993.
[5] Agency for Toxic Substances and Disease Registry (ATSDR).Toxicological profile for cadmium[R].Atlanta: ATSDR, 1999.
[6] Clemens S, Ma J F.Toxic heavy metal and metalloid accumulation in crop plants and foods[J]., 2016, 67(1): 489.
[7] Chen H P, Tang Z, Wang P, Zhao F J.Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice[J]., 2018, 238: 482-490.
[8] 王蜜安, 尹麗輝, 彭建祥, 聶凌利, 李翊君, 何杰, 張文, 敖和軍.綜合降鎘(VIP)技術對降低糙米鎘含量的影響研究[J].中國稻米, 2016, 22(1): 43-47.
Wang M A, Yin L H, Peng J X, Nie L L, Li Y J, He J, Zhang W, Ao H J.Effects of VIP technology on reducing cadmium content in rice[J]., 2016, 22(1): 43-47.(in Chinese with English abstract)
[9] Zhu H H, Xu C, Zhu Q H, Huang D Y.Strategies to enable the safe use of cadmium-contaminated paddy soils in Southern China[M]//Luo Y M, Tu C.Twenty Years of Research and Development on Soil Pollution and Remediation in China.Singapore: Springer, 2018: 429-439.
[10] 楊小粉, 劉欽云, 袁向紅, 吳勇俊, 鄭海飄, 聶凌利, 李翊君, 張文, 敖和軍.綜合降鎘技術在不同污染程度稻田土壤下的應用效果研究[J].中國稻米, 2018, 24(2): 37-41.
Yang X F, Liu Q Y, Yuan X H, Wu Y J, Zhen H P, Nie L L, Li Y J, Zhang W, Ao H J.Effects of VIP technology on reducing cadmium under different cadmium pollution degree paddy soil[J]., 2018, 24(2): 37-41.(in Chinese with English abstract)
[11] Morishita T, Fumoto N, Yoshizawa T, Kagawa K.Varietal differences in cadmium levels of rice grains of,,, and hybrid varieties produced in the same plot of a field[J]., 1987, 33(4): 629-637.
[12] 陳彩艷, 唐文幫.篩選和培育鎘低積累水稻品種的進展和問題探討[J].農(nóng)業(yè)現(xiàn)代化研究, 2018, 39(6): 1044-1051.
Chen C Y, Tang W B.A perspective on the selection and breeding of low-Cd rice[J]., 2018, 39(6): 1044-1051.(in Chinese)
[13] Liu X J, Tian G J, Jiang D, Zhang C, Kong L Q.Cadmium (Cd) distribution and contamination in Chinese paddy soils on national scale[J]., 2016, 23(18): 17941-17952.
[14] Duan G L, Shao G S, Tang Z, Chen H P, Wang B X, Tang Z, Yang Y P, Liu Y C, Zhao F J.Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars[J]., 2017, 10(1): 9.
[15] Chen J G, Zou W L, Meng L J, Fan X R, Xu G H, Ye G Y.Advances in the uptake and transport mechanisms and QTLs mapping of cadmium in rice[J]., 2019, 20(14): 3417.
[16] 丁仕林, 劉朝雷, 錢前, 高振宇.水稻重金屬鎘吸收和轉(zhuǎn)運的分子遺傳機制研究進展[J].中國水稻科學, 2019, 33(5): 383-390.
Ding S L, Liu C L, Qian Q, Gao Z Y.Research advances on molecular genetic mechanism for cadmium absorption and transportation in rice., 2019, 33(5): 383-390.(in Chinese with English abstract)
[17] Nelson N.Metal ion transporters and homeostasis[J]., 1999, 18(16): 4361-4371.
[18] Sasaki A, Yamaji N, Yokosho K, Ma J F.Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J]., 2012, 24(5): 2155-2167.
[19] Ishimaru Y, Takahashi R, Bashir K,Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T, Nakanishi H, Nishizawa N K.Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport[J]., 2012, 2: 286.
[20] Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa N K, Nakanishi H.Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice[J]., 2012, 109(47): 19166-19171.
[21] Yang M, Zhang Y Y, Zhang L J, Hu J T, Zhang X, Lu K, Dong H X, Wang D J, Zhao F J, Huang C F, Lian X M.OsNRAMP5 contributes to manganese translocation and distribution in rice shoots[J]., 2014, 65(17): 4849-4861.
[22] Tang L, Mao B G, Li Y K, Lv Q M, Zhang L P, Chen C Y, He H J, Wang W P, Zeng X F, Pan Y L, Hu Y Y, Peng Y, Fu X Q, Li H Q, Xia S T, Zhao B R.Knockout ofusing the CRISPR/Cas9 system produces low Cd-accumulatingrice without compromising yield[J]., 2017, 7(1): 1-12.
[23] Yang C H, Zhang Y, Huang C F.Reduction in cadmium accumulation inrice grains by CRISPR/Cas9-mediated editing of[J]., 2019, 18(3): 688-697.
[24] Wang T K, Li Y X, Fu Y F, Xie H J, Song S F, Qiu M D, Wen J, Chen M W, Chen G, Tian Y, Li C X, Yuan D Y, Wang J L, Li L.Mutation at different sites of metal transporter geneaffects Cd accumulation and related agronomic traits in rice (L.)[J]., 2019, 10: 1081.
[25] Liu C L, Chen G, Li Y Y, Peng Y L, Zang A P, Hong K, Jiang H Z, Ruan B P, Zhang B, Yang S L, Gao Z Y, Qian Q.Characterization of a major QTL for manganese accumulation in rice grain[J]., 2017, 7(1): 1-12.
[26] Lv Q M, Li W G, Sun Z Z, Ouyang N, Jing X, He Q, Wu J, Zheng J K, Zheng J T, Tao S Q, Zhu R S, Tian Y, Duan M J, Tan Y N, Yu D, Sheng X B, Sun X W, Jia G F, Gao H Z, Qin Zeng, Li Y F, Tang L, Xu Q S, Zhao B R, Huang Z Y, Lu H F, Li N, Zhao J, Zhu L H, Li D, Yuan L P, Yuan D Y.Resequencing of 1,143 indica rice accessions reveals important genetic variations and different heterosis patterns[J]., 2020, 11(1): 1-10.
[27] Chang J D, Huang S, Konishi N, Wang P, Chen J, Huang X Y, Ma J F, Zhao F J.Overexpression of the manganese/cadmium transporterreduces cadmium accumulation in rice grain[J]., 2020, 71(18): 5705-5715.
[28] Chang J D, Huang S, Yamaji N, Zhang W W, Ma J F, Zhao F J.OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice[J]., 2020, 43(10): 2476-2491.
[29] Ueno D, Koyama E, Kono I, Tsuyu A, Yano M, Ma J F.Identification of a novel major quantitative trait locus controlling distribution of Cd between roots and shoots in rice[J]., 2009, 50(12): 2223-2233.
[30] Ueno D, Yamaji N, Kono I, Huang C F, Ando T, Yano M, Ma J F.Gene limiting cadmium accumulation in rice[J]., 2010, 107(38): 16500-16505.
[31] Sasaki A, Yamaji N, Ma J F.Overexpression ofenhances Cd tolerance and expression of Zn transporter genes in rice[J]., 2014, 65(20): 6013-6021.
[32] Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H.OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles[J]., 2011, 189(1): 190-199.
[33] Ueno D, Koyama E, Yamaji N, Ma J F.Physiological, genetic, and molecular characterization of a high-Cd-accumulating rice cultivar, Jarjan[J]., 2011, 62(7): 2265-2272.
[34] Yan J L, Wang P T, Wang P, Yang M, Lian X M, Tang Z, Huang C F, Salt D E, Zhao F J.A loss-of-function allele ofassociated with high cadmium accumulation in shoots and grain ofrice cultivars[J]., 2016, 39(9): 1941-1954.
[35] Sun C J, Yang M, Li Y, Tian J J, Zhang Y Y, Lian L M, Liu Z H, Chen K, Li Y T, Lv K, Lian X M.Comprehensive analysis of variation of cadmium accumulation in rice and detection of a new weak allele of[J]., 2019, 70(21): 6389-6400.
[36] Sui F Q, Zhao D K, Zhu H T, Gong Y F, Tang Z, Huang X Y, Zhang G Q, Zhao F J.Map-based cloning of a new total loss-of-function allele ofcauses high cadmium accumulation in rice grain[J]., 2019, 70(10): 2857-2871.
[37] Liu C L, Gao Z Y, Shang L G, Shang L G, Yang C H, Ruan B P, Zeng D L, Guo L B, Zhao F J, Huang C F, Qian Q.Natural variation in the promoter ofcontributes to differential grain cadmium accumulation betweenandrice[J]., 2020, 62(3): 314-329.
[38] Yan H L, Xu W X, Xie J Y, Gao Y W, Wu L L, Sun L, Feng L, Chen X, Zhang T, Dai C H, Li T, Lin X N, Zhang Z Y, Wang X Q, Li F M, Zhu X Y, Li J J, Li Z C, Chen C Y, Ma M, Zhang H L, He Z Y.Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies[J]., 2019, 10(1): 1-12.
[39] Ishikawa S, Abe T, Kuramata M, Hayashi S.Development of Low-Cadmium-Accumulating Rice[M] //Cadmium Toxicity.Singapore: Springer, 2019: 139-150.
[40] Cao Z Z, Lin X Y, Yang Y J, Guan M Y, Xu P, Chen M X.Gene identification and transcriptome analysis of low cadmium accumulation rice mutant () in response to cadmium stress using MutMap and RNA-seq[J]., 2019, 19(1): 1-13.
[41] Wang K, Yan T, Xu S, Yan X, Zhou Q, Zhao X, Li Y, Wu Z, Qin P, Fu C, Fu J, Zhou Y, Yang Y.Validating a segment on chromosome 7 of japonica for establishing low-cadmium accumulating indica rice variety[J]., 2021, 11(1): 1-10.
[42] Chen Q H, Tang W, Zeng G, Sheng H W, Shi W J, Xiao Y H.Reduction of cadmium accumulation in the grains of male sterile rice Chuang-5S carryingorthrough marker-assisted selection[J]., 2020, 10(12): 1-10.
[43] Liu S M, Jiang J, Liu Y, Meng J, Xu S L, Tan Y Y, Li Y F, Shu Q Y, Huang J Z.Characterization and evaluation ofandmutants generated through CRISPR/Cas9-mediated mutagenesis for breeding low Cd rice[J]., 2019, 26(2): 88-97.
[44] Honma T, Ohba H, Kaneko-Kadokura A, Makino T, Nakamura K, Katou H.Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains[J]., 2016, 50(8): 4178-4185.
[45] de Livera J, McLaughlin M J, Hettiarachchi G M, Kirby J K, Beak D G.Cadmium solubility in paddy soils: Effects of soil oxidation, metal sulfides and competitive ions[J]., 2011, 409(8): 1489-1497.
[46] Liu J, Cao C, Wong M, Wong M H, Zhang Z J, Chai Y H.Variations between rice cultivars in iron and manganese plaque on roots and the relation with plant cadmium uptake[J]., 2010, 22(7): 1067-1072.
[47] Sebastian A, Prasad M N V.Iron-and manganese-assisted cadmium tolerance inL.: lowering of rhizotoxicity next to functional photosynthesis[J]., 2015, 241(6): 1519-1528.
[48] Zhou H, Zeng M, Zhou X, Liao B H, Peng P Q, Hu M, Zhu W, Wu Y J, Zou Z J.Heavy metal translocation and accumulation in iron plaques and plant tissues for 32 hybrid rice (L.) cultivars[J]., 2015, 386: 317-329.
[49] Wang J, Wang P M, Gu Y, Kopittke P M, Zhao F J, Wang P.Iron-manganese (oxyhydro) oxides, rather than oxidation of sulfides, determine mobilization of cd during soil drainage in paddy soil systems[J]., 2019, 53(5): 2500-2508.
[50] Furuya M, Hashimoto Y, Yamaguchi N.Time-course changes in speciation and solubility of cadmium in reduced and oxidized paddy soils[J]., 2016, 80(4): 870-877.
[51] Zeng F R, Ali S, Zhang H T, Ouyang Y N, Qiu B Y, Wu F B, Zhang G P.The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants[J]., 2011, 159(1): 84-91.
[52] Zhu H, Chen C, Xu C, Zhu Q H, Huang D Y.Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China[J]., 2016, 219: 99-106.
[53] Smolders E, Mertens J.Cadmium//Alloway B J.Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability.Netherlands, Dordrecht: Springer 2013: 283-311.
[54] Hindersmann I, Mansfeldt T.Trace element solubility in a multimetal-contaminated soil as affected by redox conditions[J]., 2014, 225(10): 2158.
[55] Pan Y Y, Bonten L T C, Koopmans G F, Song J, Luo Y M, Temminghoff E J M, Comans R N J.Solubility of trace metals in two contaminated paddy soils exposed to alternating flooding and drainage[J]., 2016, 261: 59-69.
[56] 張麗娜, 宗良綱, 付世景, 沈振國.水分管理方式對水稻在Cd污染土壤上生長及其吸收Cd的影響[J].安全與環(huán)境學報, 2006, 6(5): 49-52.
Zhang L N, Zong L G, Fu S J, Shen Z G.Effects of water management on rice growth and cadmium absorption on cadmium-contaminated soil[J]., 2006, 6(5): 49-52.(in Chinese with English abstract)
[57] Arao T, Kawasaki A, Baba K, Mori S, Matsumoto S.Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice[J]., 2009, 43(24): 9361-9367.
[58] 劉昭兵, 紀雄輝, 官迪, 謝運河, 朱堅, 彭建偉.鎘脅迫條件下淹水時間對水稻吸收累積鎘的影響[J].生態(tài)與農(nóng)村環(huán)境學報, 2017, 33(12): 1125-1131.
Liu Z B, Ji X H, Guan D, Xie Y H, Zhu J, Peng J W.Effects of timing and duration of waterlogging on Cd absorption and accumulation., 2017, 33(12): 1125-1131.(in Chinese with English abstract)
[59] 楊小粉, 吳勇俊, 張玉盛, 汪澤錢, 敖和軍.水分管理對水稻鎘吸收的影響[J].中國稻米, 2019, 25(4): 34-37.
Yang X F, Wu Y J, Zhang Y S, Wang Z Q, Ao H J.Effects of water management on rice cadmium absorption[J]., 2019, 25(4): 34-37.(in Chinese with English abstract)
[60] Hu P J, Li Z, Yuan C, Ouyang Y N, Zhou L Q, Huang J X, Huang Y J, Luo Y M, Christie P, Wu L H.Effect of water management on cadmium and arsenic accumulation by rice (L.) with different metal accumulation capacities[J]., 2013, 13(5): 916-924.
[61] Sun L M, Zheng M N, Liu H Y, Peng S B, Huang J L, Cui K H, Nie L X.Water management practices affect arsenic and cadmium accumulation in rice grains[J]., 2014: 596438.
[62] Matsumoto S, Kasuga J, Taiki N, Makino T, Arao T.Reduction of the risk of arsenic accumulation in rice by the water management and material application in relation to phosphate status[J]., 2015, 10(1): 65-74.
[63] Bolan N S, Makino T, Kunhikrishnan A, Kim P, Ishikawa S, Murakami M, Naidu R, Kirkham M B.Cadmium contamination and its risk management in rice ecosystems[J]., 2013, 119: 183-273.
[64] Wang M E, Yang Y, Chen W P.Manganese, zinc, and pH affect cadmium accumulation in rice grain under field conditions in southern China[J]., 2018, 47(2): 306-311.
[65] Chen H P, Zhang W W, Yang X P, Wang P, McGrath S P, Zhao F J.Effective methods to reduce cadmium accumulation in rice grain[J]., 2018, 207: 699-707.
[66] Wang P, Chen H P, Kopittke P M, Zhao F J.Cadmium contamination in agricultural soils of China and the impact on food safety[J]., 2019, 249: 1038-1048.
[67] Cao X D, Harris W.Properties of dairy-manure-derived biochar pertinent to its potential use in remediation[J]., 2010, 101(14): 5222-5228.
[68] Beesley L, Moreno-Jiménez E, Gomez-Eyles J L, Harris E, Robinson B, Sizmur T.A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils[J]., 2011, 159(12): 3269-3282.
[69] Bian R J, Chen D, Liu X Y, Cui L Q, Li L Q, Pan G X, Xie D, Zheng J W, Zhang X H, Zheng J F, Chang A.Biochar soil amendment as a solution to prevent Cd-tainted rice from China: Results from a cross-site field experiment[J]., 2013, 58: 378-383.
[70] Chan K Y, Van Zwieten L, Meszaros I, Downie A, Joseph S.Agronomic values of greenwaste biochar as a soil amendment[J], 2008, 45(8): 629-634.
[71] Chan K Y, Van Zwieten L, Meszaros I, Downie A, Joseph S.Using poultry litter biochars as soil amendments[J]., 2008, 46(5): 437-444.
[72] 孫麗娟, 秦秦, 宋科, 喬紅霞, 薛永.鎘污染農(nóng)田土壤修復技術及安全利用方法研究進展[J].生態(tài)環(huán)境學報, 2018(7): 1377-1386.
Sun L J, Qin Q, Song K, Qiao H X, Xue Y.The remediation and safety utilization techniques for Cdcontaminated farmland soil: A review[J]., 2018(7): 1377-1386.(in Chinese with English abstract)
[73] Liu J H, Hou H, Zhao L, Sun Z J, Lu Y F, Li H.Mitigation of Cd accumulation in rice from Cd-contaminated paddy soil by foliar dressing of S and P[J]., 2019, 690: 321-328.
[74] Ma J F, Yamaji N.Silicon uptake and accumulation in higher plants[J]., 2006, 11(8): 392-397.
[75] Epstein E.The anomaly of silicon in plant biology[J]., 1994, 91(1): 11-17.
[76] Ma J F, Yamaji N.Silicon uptake and accumulation in higher plants[J]., 2006, 11(8): 392-397.
[77] Meharg C, Meharg A A.Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice?[J]., 120: 8-17.
[78] Nascimento A M, Assis F A, Moraes J C, Souza B H S.Silicon application promotes rice growth and negatively affects development of Spodoptera frugiperda (JE Smith)[J]., 2018, 142(1-2): 241-249.
[79] 王世華, 羅群勝, 劉傳平, 李芳柏, 沈振國.葉面施硅對水稻籽實重金屬積累的抑制效應[J].生態(tài)環(huán)境, 2007(3): 875-878.
Wang S H, Luo Q S, Liu C P, Li F B, Shen Z G.Effects offoliar application of nanometer silicon to the accumulation of heavy metals in rice grains[J]., 2007, 16(3): 875-878.(in Chinese with English abstract)
[80] Liu C P, Li F B, Luo C L, Liu X M, Wang S H, Liu T X, Li X D.Foliar application of two silica sols reduced cadmium accumulation in rice grains[J]., 2009, 161(2-3): 1466-1472.
[81] Gao M, Zhou J, Liu H L, Zhang W T, Hu Y M, Liang J N, Zhou J.Foliar spraying with silicon and selenium reduces cadmium uptake and mitigates cadmium toxicity in rice[J]., 2018, 631: 1100-1108.
[82] Shao J F, Che J, Yamaji N, Shen R F, Ma J F.Silicon reduces cadmium accumulation by suppressing expression of transporter genes involved in cadmium uptake and translocation in rice[J]., 2017, 68(20): 5641-5651.
[83] Lin L, Zhou W H, Dai H X, Cao F B, Zhang G P, Wu F B.Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice[J]., 2012, 235: 343-351.
[84] Hu Y, Norton G J, Duan G L, Huang Y C, Liu Y X.Effect of selenium fertilization on the accumulation of cadmium and lead in rice plants[J]., 2014, 384(1-2): 131-140.
[85] Gao M, Zhou J, Liu H, et al.Foliar spraying with silicon and selenium reduces cadmium uptake and mitigates cadmium toxicity in rice[J]., 2018, 631: 1100-1108.
[86] Cui J H, Liu T X, Li Y D, Li F B.Selenium reduces cadmium uptake into rice suspension cells by regulating the expression of lignin synthesis and cadmium-related genes[J]., 2018, 644: 602-610.
Factors Affecting Cadmium Accumulation in Rice and Strategies for Minimization
JIANG Nan1, 3, #, YAN Xu1, 2, #, ZHOU Yanbiao1, 3, ZHOU Qunfeng1, 3, WANG Kai1, 3, YANG Yuanzhu1, 2, 3, 4,*
(Key Laboratory of Southern Rice Innovation and Improvement,,.,.,,; College of Plant Science and Technology,,;,;College of Agronomy,,,;These authors contributed equally to this work;)
Cadmium (Cd) is an extremely toxic and widely distributed heavy metal.Cd in farmland has adverse impacts on crop growth and development, and threatens human health via the food chain.Rice, as a staple food crop in China, plays an important role in food security.However, rice tends to absorb and accumulate more Cd compared with other cereal crops.The ‘Cd-polluted rice’ events were frequently reported in recent years, which has made Cd pollution a serious public concern.Reducing the Cd accumulation in rice grains is urgent.In this review, we summarize the advances in screening and breeding for rice varieties with low Cd, water management, adjustment of soil pH and foliar dressing strategies.The article aims to lay a theoretical foundation for technological integration, extension and application, and development of new technologies.
rice;cadmium accumulation; food safety; variety; irrigation; pH
2020-09-18;
2021-01-15。
長株潭國家自主創(chuàng)新示范區(qū)專項(2018XK2005);湖南省科技創(chuàng)新計劃資助項目(2018NK1020);湖南省科技人才專項(2019RS2054)。
10.16819/j.1001-7216.2021.200913