白雪,惠騰,王振宇,曹云剛,張德權(quán)
高效液相色譜-熒光檢測法檢測烤肉制品中5種硝基多環(huán)芳烴
1陜西科技大學食品與生物工程學院,西安 710021;2中國農(nóng)業(yè)科學院農(nóng)產(chǎn)品加工研究所/農(nóng)業(yè)農(nóng)村部農(nóng)產(chǎn)品加工重點實驗室,北京 100193
【】明確烤肉制品中硝基多環(huán)芳烴(NPAHs)的含量水平,建立固相萃取柱結(jié)合高效液相色譜-熒光檢測器測定烤肉制品中5種NPAHs(1-硝基萘、2-硝基芴、3-硝基熒蒽、1-硝基芘和6-硝基苯并[]芘)的方法。稱取1 g真空冷凍干燥的烤肉樣品,加入二氯甲烷超聲提取并過濾收集濾液,重復(fù)提取3次。將濾液氮吹至近干,加入3 mL正己烷溶解。依次用二氯甲烷和正己烷活化多環(huán)芳烴固相萃取柱,上樣后用正己烷蕩洗樣品管然后繼續(xù)上柱;用正己烷淋洗,二氯甲烷洗脫;將洗脫液氮吹至近干,用乙腈溶解得到NPAHs待測液。向待測液中加入酸化甲醇和鐵粉,磁力攪拌水浴加熱40 min,離心并過濾膜后通過高效液相色譜-熒光檢測器檢測,其中色譜柱為Agilent ZORBAX Eclipse PAH柱,設(shè)置柱溫40℃,進樣量20 μL,流動相選用水和乙腈,采用梯度洗脫模式。5種NPAHs在相應(yīng)質(zhì)量濃度范圍內(nèi)線性關(guān)系良好,相關(guān)系數(shù)大于0.9940,檢出限為0.12—2.17 μg·kg-1,定量限為0.38—7.23 μg·kg-1,平均回收率為53.16%—129.64%,精密度為1.91%—30.73%。利用該方法對我國5類典型的烤肉樣品進行檢測,測得5種NPAHs總含量為50.19—82.36 μg·kg-1,其中6-硝基苯并[]芘含量最高,約為31.01—35.89 μg·kg-1,其次是3-硝基熒蒽,約為9.99—23.06 μg·kg-1。固相萃取柱結(jié)合高效液相色譜-熒光檢測法適用于烤肉制品中NPAHs的分析;我國烤肉制品中普遍存在NPAHs。
硝基多環(huán)芳烴;烤肉制品;高效液相色譜-熒光檢測;固相萃取
【研究意義】硝基多環(huán)芳烴(nitropolycyclic aromatic hydrocarbons,NPAHs)是多環(huán)芳烴(polycyclic aromatic hydrocarbons,PAHs)的硝基化衍生物,含有兩個或兩個以上苯環(huán)結(jié)構(gòu)和至少一個硝基基團。毒理學研究表明,PAHs類物質(zhì)具有“三致”(致癌、致畸和致突變)等危害[1-3],且NPAHs與母體PAHs相比,其致突變性和致癌性更強[4]。Durant等[5]通過毒理學試驗證實了NPAHs的致癌性是其母體PAHs的10余倍,致突變性更是其母體PAHs的10萬余倍,具有直接毒性,對人體健康危害更大。通常情況下,人們通過吸入受污染空氣、食用受污染食物或皮膚接觸等途徑暴露于PAHs類物質(zhì)[6]。食品中NPAHs的來源包括環(huán)境污染物遷移到食物中[7-9]以及食品的高溫加熱過程生成[10-11]?,F(xiàn)有研究表明通過食物攝取是人們接觸PAHs類物質(zhì)的主要途徑[12-14],其中肉制品(尤其是烤肉制品)是成人從食物中攝取NPAHs的主要來源,在所有暴露途徑中的占比最高可達71.00%[14-15]。肉制品在烤制過程中,由于木炭的不完全燃燒[16-17],肉中的脂肪、蛋白質(zhì)和碳水化合物等PAHs前體物在高溫下發(fā)生熱解氧化[18-19]等,都是烤肉制品中PAHs(包括NPAHs)的形成原因。目前PAHs類物質(zhì)在烤肉制品中的具體形成路徑尚不明確[20],NPAHs可能是在肉制品烤制過程中直接生成或由PAHs與含氮活性物質(zhì)反應(yīng)形成[21-22]。因此,建立烤肉制品中NPAHs的檢測方法,分析烤肉制品中NPAHs的含量水平,對于明晰NPAHs的形成機制及探究NPAHs的減控措施具有十分重要的意義?!厩叭搜芯窟M展】現(xiàn)有研究證實肉和肉制品中存在NPAHs[23-25],其中1-硝基萘(1-Nitronaphthalene,1-NN)、2-硝基芴(2-Nitrofluorene,2-NF)和1-硝基芘(1-Nitropyrene,1-NP)的含量較為豐富。SCHLEMITZ等[26]發(fā)現(xiàn)烤豬肉中1-NN、2-NF和1-NP的含量分別為1.5、1.0和0.5 μg?kg-1,熏肉中這3種NPAHs的含量分別為7.2、2.0和2.2 μg?kg-1。DENG等[25]檢測到我國香港地區(qū)豬肉中1-NN含量為2.8 μg?kg-1,雞肉中的1-NP含量為18.5 μg?kg-1,香腸中2-NF最高可達到241.7 μg?kg-1。【本研究切入點】目前關(guān)于肉制品中NPAHs的檢測方法較少,且現(xiàn)有檢測方法前處理操作復(fù)雜或同時檢測NPAHs的種類較少,因此亟待建立一種相對簡便快捷,并能同時檢測多種NPAHs的方法。此外,當前肉制品中NPAHs的相關(guān)研究非常有限,尤其是我國大陸地區(qū)肉制品中NPAHs的含量水平尚未見報道。大陸地區(qū)是我國肉制品消費的主要地區(qū),傳統(tǒng)燒烤類肉制品消費量巨大,這些烤肉制品在高溫加工時容易形成NPAHs,危害消費者健康,因此有必要了解我國烤肉制品中NPAHs的含量水平?!緮M解決的關(guān)鍵問題】本研究將對烤肉制品中NPAHs的提取、凈化、衍生化和檢測等關(guān)鍵程序進行研究,建立一種基于高效液相色譜串聯(lián)熒光檢測器檢測烤肉制品中NPAHs的方法;利用該方法對我國烤肉制品中5種NPAHs進行檢測,初步揭示我國烤肉制品中NPAHs的含量水平,為我國居民的健康消費提供參考,也為后續(xù)烤肉制品中NPAHs的具體形成途徑及減控研究奠定基礎(chǔ)。
試驗于2019年10月至2020年5月在中國農(nóng)業(yè)科學院農(nóng)產(chǎn)品加工研究所農(nóng)業(yè)農(nóng)村部農(nóng)產(chǎn)品加工重點實驗室進行。
小尾寒羊與蒙古羊雜交的二寒羊公羊羊后腿(購自內(nèi)蒙古巴彥淖爾草原宏寶食品有限公司,二寒羊公羊來自于集中飼養(yǎng),屠宰平均月齡5個月,體重約30 kg),于(6.0±2.0)℃、濕度(95±5)%排酸24 h,至羊后腿肉半膜肌pH為5.7±0.2,4℃條件下立即將上述羊后腿去皮去骨,修掉可見的結(jié)締組織,收集肌肉組織儲存于-20℃?zhèn)溆谩?/p>
烤肉制品包括北京烤鴨、烤羊腿、烤豬肉片(均購自北京市海淀區(qū)幸福榮耀超市),烤雞翅(購自北京市海淀區(qū)幸福榮耀超市和北京市海淀區(qū)烤肉店)和烤羊肉串(購自北京市海淀區(qū)烤肉店)5類。從烤肉店購買的烤雞翅和烤羊肉串均采用炭烤方式烤制,烤制過程中采用多通路溫度巡檢儀檢測到炭火溫度為500—600℃,肉塊表面溫度為80—90℃。
主要試劑:二氯甲烷(分析純)、正己烷(分析純)、鐵粉、1-硝基萘(1-Nitronaphthalene,1-NN)、2-硝基芴(2-Nitrofluorene,2-NF)、1-硝基芘(1- Nitropyrene,1-NP),上海阿拉丁生化科技股份有限公司;3-硝基熒蒽(3-Nitrofluoranthene,3-NF)、6-硝基苯并[]芘(6-Nitrobenzo[]pyrene,6-NBAP),德國Dr.Ehrenstorfer GmbH公司;甲醇、乙腈(均為色譜純),美國賽默飛世爾科技公司;乙酸(分析純),國藥集團化學試劑有限公司。
Agilent Infinity ?? 1260高效液相色譜系統(tǒng)(配有熒光檢測器和二極管陣列檢測器)、Agilent ZORBAX Eclipse PAH柱(4.6 mm×250 mm,5-Micron),美國Agilent公司;ML204電子天平,上海梅特勒-托利多儀器有限公司;LGJ-10真空冷凍干燥機,北京四環(huán)科學儀器廠有限公司;渦旋振蕩器,美國Scientific Industries公司;3737025勻漿機,德國IKA公司;TTL-DC ??氮吹儀,青島明博環(huán)??萍加邢薰荆籑IP-PAHs固相萃取柱,德國CNW公司;D-37520離心機,德國Sigma公司;FCR1000-UF-E超純水機,青島富勒姆科技有限公司。
1.3.1 樣品烤制 將羊后腿從-20℃轉(zhuǎn)移至4℃冰箱,解凍12 h后剔除脂肪和結(jié)締組織,取羊后腿肉切塊,規(guī)格為2.0 cm×2.0 cm×2.0 cm。將切好的肉塊用鐵釬串好,每根鐵釬串3塊肉塊,肉塊之間間隔1 cm,然后采用雙匠SJD-305-16無煙電燒烤爐進行烤制,設(shè)置火力檔位為70,烤制10 min(每分鐘翻轉(zhuǎn)一次)?;鹆υO(shè)置為70時檢測到熱源溫度為500—600℃,烤制結(jié)束時,肉塊中心溫度約為72℃。烤制過程中均不額外添加任何物質(zhì),烤制結(jié)束后自然冷卻至室溫。
1.3.2 樣品前處理 參考DENG等[25]的方法并進行優(yōu)化改進。烤肉樣品用料理機絞碎,稱重(濕基質(zhì)量,記為M0),平鋪于一次性培養(yǎng)皿中,在-60℃下真空冷凍干燥24 h至完全干燥,稱重(干基質(zhì)量,記為M1)。用高速粉碎機將凍干后的樣品磨粉并準確稱取1.00 g于50 mL離心管中,加入20 mL二氯甲烷并混勻,超聲提取30 min,超聲結(jié)束后將懸濁液過定量濾紙,收集提取液(濾液)。重復(fù)上述操作3次,將同一樣品的3次提取液合并在一起,在室溫下用氮氣緩慢吹至近干,加入3 mL正己烷,渦旋混勻,待凈化。
1.3.3 樣品凈化 依次用5 mL二氯甲烷和5 mL正己烷活化固相萃取柱。加入1.3.2中得到的3 mL正己烷與樣品的混合液,再用2 mL正己烷洗滌離心管后繼續(xù)加入固相萃取柱,取6 mL正己烷分兩次淋洗,每次3 mL。用10 mL二氯甲烷洗脫NPAHs并收集洗脫液,室溫下用氮氣緩慢吹至近干后用1 mL乙腈溶解。
1.3.4 樣品衍生化 由于NPAHs不具有熒光特性,使用HPLC-FLD法檢測NPAHs前需要對其進行衍生化處理,將NPAHs還原為具有熒光特性的氨基多環(huán)芳烴[26-27]。參考DENG等[25]的方法并進行優(yōu)化改進。吸取1.3.3中得到的溶于乙腈的提取物100 μL,加入900 μL酸化甲醇(15%乙酸,v/v)和10 mg鐵粉,渦旋振蕩混勻。在60℃下用磁力攪拌水浴鍋水浴加熱40 min,轉(zhuǎn)速設(shè)置為500 r/min,加熱結(jié)束后取出冷卻至室溫,13 800 r/min離心10 min,吸取上清液過0.22 μm聚四氟乙烯濾膜,待檢測。
1.3.5 色譜分析條件 采用Agilent ZORBAX Eclipse PAH柱(4.6 mm×250 mm,5-Micron)進行色譜分析,流動相為水和乙腈。設(shè)置柱溫為40℃,進樣量20 μL,恒定流速1 mL?min-1,梯度洗脫程序見表1。
表1 HPLC梯度洗脫程序
1.3.6 方法學驗證 稱取1.00 g凍干粉碎后的粉末狀烤肉樣品,分別進行20、60和100 ng?g-13個加標水平的空白基質(zhì)加標回收率試驗,按照上述方法進行前處理、凈化、衍生化和HPLC-FLD分析測定,計算回收率和精密度。
1.3.7 烤肉制品中NPAHs檢測分析 利用上述HPLC-FLD分析方法對我國典型的北京烤鴨、烤羊腿、烤豬肉片、烤雞翅、烤羊肉串進行NPAHs檢測分析(樣品編號1和2分別代表同一種類但不同品牌的兩種樣品)。
本試驗采用Origin 2018作圖,采用IBM SPSS Statistics 22軟件進行統(tǒng)計分析,通過Duncan多重比較法進行差異顯著性分析(<0.05),結(jié)果以“平均值±標準差”表示。
對1-NN、2-NF、3-NF、1-NP和6-NBAP的單標溶液分別進行檢測,確定各NPAHs在表1洗脫梯度下的保留時間;通過熒光分光光度計對5種NPAHs進行熒光檢測,確定其最佳熒光檢測波長。最終確定的熒光檢測程序見表2。對濃度為50 ng?mL-1的混標溶液進行檢測,得到的液相色譜檢測圖譜如圖1所示,其中1-NN、2-NF和1-NP對熒光檢測器的響應(yīng)度相對較高,而3-NF和6-NBAP的響應(yīng)度相對較低,可能與這兩種物質(zhì)的理化性質(zhì)有關(guān)。
表2 熒光檢測器檢測程序
a:1-NN;b:2-NF;c:3-NF;d:1-NP;e:6-NBAP
配制濃度為1、5、10、20、50和100 ng?mL-1的NPAHs混標溶液,檢測并建立線性方程。由表3可知,5種NPAHs的質(zhì)量濃度與峰面積之間的線性關(guān)系良好,相關(guān)系數(shù)均大于0.9940,方法檢出限為0.12—2.12 μg?kg-1,定量限為0.38—7.23 μg?kg-1。
表3 5種NPAHs的線性方程、相關(guān)系數(shù)、檢出限和定量限
在20、60和100 ng?g-1這3個加標水平下,5種NPAHs的平均回收率在53.16%—129.64%,1-NN、2-NF和1-NP這3種NPAHs的精密度均小于8%(表4),但3-NF和6-NBAP的精密度較大,可能是由于這兩種物質(zhì)對熒光檢測器的響應(yīng)度較低,相應(yīng)的,其精密度也較大。
表4 方法的回收率和精密度
采用本研究優(yōu)化的方法,對北京烤鴨、烤羊腿、烤豬肉片、烤雞翅和烤羊肉串這5類烤肉制品(共16個檢測樣品)中NPAHs含量進行檢測,結(jié)果表明,在所有檢測樣品中,總NPAHs含量在50.19—82.36 μg?kg-1(表5)。從NPAHs種類來看,6-NBAP的含量普遍較高,其次是3-NF、1-NP、2-NF和1-NN;從樣品種類來看,北京烤鴨樣品中總NPAHs含量為55.90—82.36 μg?kg-1,烤羊腿中總NPAHs含量為64.00—70.32 μg?kg-1,烤豬肉片為67.73—68.55 μg?kg-1,烤雞翅為58.63—66.84 μg?kg-1,烤羊肉串為50.19—55.56 μg?kg-1。從總NPAHs含量來看,添加了NaNO2的北京烤鴨胸皮、北京烤鴨腿肉、北京烤鴨腿皮和烤羊腿、烤豬肉片樣品中的總NPAHs含量略高于不含NaNO2的樣品,但添加NaNO2的北京烤鴨胸肉和烤雞翅樣品中的總NPAHs含量略低于不含NaNO2的樣品。分別對不同檢測樣品中各種NPAHs含量和總NPAHs含量進行差異顯著性分析,發(fā)現(xiàn)烤羊腿2中1-NN含量顯著高于烤羊腿1和其他樣品(<0.05),這表明添加NaNO2對烤羊腿1中1-NN的形成無顯著影響;北京烤鴨1-胸肉和北京烤鴨2-胸肉中2-NF含量顯著高于烤羊肉串1和2(<0.05),可能是因為北京烤鴨胸肉比烤羊肉串更易形成2-NF;北京烤鴨2-胸皮、北京烤鴨2-腿肉和北京烤鴨2-腿皮中均未檢測到3-NF,而添加了NaNO2的北京烤鴨1中這3個部位均檢測到3-NF,說明NaNO2可能對3-NF的形成具有一定的促進作用;北京烤鴨1-胸皮中6-NBAP含量顯著高于北京烤鴨2-胸皮(<0.05),可能是NaNO2促進了北京烤鴨胸皮中6-NBAP的形成。由上可知,影響烤肉制品中NPAHs形成的因素很多,NaNO2與烤肉制品NPAHs含量之間的關(guān)系有待進一步深入研究。
本研究為獲得較好的提取效果,對加標量為60 ng?g-1的樣品進行了超聲和搖床提取兩種不同提取方式的回收率對比試驗,結(jié)果表明兩種提取方式之間無顯著性差異。由于搖床振蕩提取可能存在漏液風險,且超聲提取技術(shù)可以在樣品與提取液之間產(chǎn)生強烈的振動效應(yīng)、空化效應(yīng)及擴散作用,具有快速高效的優(yōu)點[28],因此,后續(xù)研究采用超聲輔助提取。
衍生化效率以衍生前后混標溶液的高效液相色譜—二極管陣列(HPLC-DAD)檢測圖譜中各物質(zhì)峰面積的差與衍生前的峰面積之比計算。參考DENG等[25]的方法在加熱過程中對衍生化試劑和樣品的混合液進行定時搖勻,計算發(fā)現(xiàn)5種NPAHs的衍生化效率在52.72%—82.92%,衍生化效率較低。于是對加熱方法進行改進,用磁力攪拌水浴加熱代替普通水浴加熱過程,設(shè)置轉(zhuǎn)速為500 r/min,加熱時間40 min。在磁力攪拌水浴加熱過程中,樣品中待衍生的物質(zhì)與衍生化試劑之間的接觸和反應(yīng)更加充分,可將衍生化效率提高至87.40%—96.92%。
表5 烤肉制品中NPAHs檢測結(jié)果
ND表示未檢出;μg?kg-1指每kg干基樣品中的NPAHs含量。同列不同小寫字母表示差異顯著(<0.05)
ND means not detected; μg?kg-1refers to the content of NPAHs in each kilogram dry sample. Different small letters in the same column indicate significantly different at<0.05
應(yīng)用已建立的分析方法檢測到北京烤鴨中含有NPAHs,尚未見烤鴨類產(chǎn)品中NPAHs含量的報道。DENG等[25]檢測到煙熏鴨胸肉中1-NN為2.60 μg?kg-1。兩種烤雞翅中均檢測到1-NN、2-NF和1-NP,但DENG等[25]在烤雞中未檢測到以上3種NPAHs,SCHLEMITZ等[26]發(fā)現(xiàn)烤火雞中含有0.30—0.50 μg?kg-1的2-NF。SCHLEMITZ等[24,26]分別通過GC-MS和HPLC-FLD檢測到烤豬肉中2-NF含量為2.00 μg?kg-1和0.50 μg?kg-1,1-NP含量為1.00 μg?kg-1和0.30 μg?kg-1,兩種方法均未檢出1-NN。烤羊肉中NPAHs含量在前人研究中也無報道。本研究通過超聲提取、固相萃取和高效液相色譜串聯(lián)熒光檢測法在烤雞翅、烤豬肉片和烤羊肉串等烤肉制品中均檢測到1-NN等NPAHs。
影響肉制品中PAHs類物質(zhì)含量的因素很多,首先與畜禽種類、產(chǎn)地及飼養(yǎng)方式有關(guān)[29];其次,在加工過程中,不同的加工方式、加熱溫度、加熱時間在很大程度上決定了肉制品中PAHs類物質(zhì)的含量[30-32];最后,不同前處理方法對樣品中目標物的提取效果不同,不同檢測儀器的靈敏度不同等因素均是影響檢測結(jié)果的重要原因。但現(xiàn)有研究及本研究的檢測結(jié)果均表明烤肉制品中普遍存在NPAHs,考慮到NPAHs對人體健康的危害,今后應(yīng)加大烤肉制品加工過程中NPAHs形成規(guī)律及減控措施研究。
采用超聲輔助溶劑萃取法提取烤肉制品中的NPAHs,通過固相萃取柱對提取液進行凈化,在酸性條件下將NPAHs還原為氨基多環(huán)芳烴,實現(xiàn)了HPLC- FLD法對1-NN、2-NF、3-NF、1-NP和6-NBAP這5種NPAHs的檢測。本方法前處理操作簡便、提取效果好,回收率較高,適用于烤肉制品中NPAHs的檢測,利用該方法進行檢測分析后發(fā)現(xiàn)我國烤肉制品中普遍存在NPAHs。
[1] KIM K H, JAHAN S A, KABIR E, BROWN R J C. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environment International, 2013, 60: 71-80.
[2] RAMESH A, WALKER S A, HOOD D B, GUILLéN M D, SCHNEIDER K, WEYAND E H. Bioavailability and risk assessment of orally ingested polycyclic aromatic hydrocarbons. International Journal of Toxicology, 2004, 23(5): 301-333.
[3] POURSAFA P, MOOSAZADEH M, ABEDINI E, HAJIZADEH Y, MANSOURIAN M, POURZAMANI H, AMIN M M. A systematic review on the effects of polycyclic aromatic hydrocarbons on cardiometabolic impairment. International Journal of Preventive Medicine, 2017, 8(1): 19-24.
[4] WU Y L, DAI L P, CHENG J, GUO F, LI J K. Application of DLLME based on the solidification of floating organic droplets for the determination of dinitrobenzenes in aqueous samples. Chromatographia, 2010, 72(7/8): 695-699.
[5] DURANT J L, BUSBY W F, LAFLEUR A L, PENMAN B W, CRESPI C L. Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols. Mutation Research/Genetic Toxicology, 1996, 371(3/4): 123-157.
[6] CHEN Y C, SHEN G F, SU S, SHEN H Z, HUANG Y, LI T C, LI W, ZHANG Y Y, LU Y, CHEN H, YANG C L, LIN N, ZHU Y, FU X F, LIU W X, WANG X L, TAO S. Contamination and distribution of parent, nitrated, and oxygenated polycyclic aromatic hydrocarbons in smoked meat. Environmental Science and Pollution Research International, 2014, 21(19): 11521-11530.
[7] WANG L, LI C M, JIAO B N, LI Q W, SU H, WANG J, JIN F. Halogenated and parent polycyclic aromatic hydrocarbons in vegetables: Levels, dietary intakes, and health risk assessments. Science of the Total Environment, 2018, 616/617: 288-295.
[8] DA SILVA S A, DA SILVA TORRES E A F, DE ALMEIDA A P, SAMPAIO G R. Polycyclic aromatic hydrocarbons content and fatty acids profile in coconut, safflower, evening primrose and linseed oils. Food Chemistry, 2018, 245: 798-805.
[9] HONG W J, JIA H L, LI Y F, SUN Y Q, LIU X J, WANG L. Polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs in the coastal seawater, surface sediment and oyster from Dalian, Northeast China. Ecotoxicology and Environmental Safety, 2016, 128: 11-20.
[10] SINGH L, VARSHNEY J G, AGARWAL T. Polycyclic aromatic hydrocarbons' formation and occurrence in processed food. Food Chemistry, 2016, 199: 768-781.
[11] BERTINETTI I A, FERREIRA C D, MONKS J L F, FILHO P J S, ELIAS M C. Accumulation of polycyclic aromatic hydrocarbons (PAHs) in rice subjected to drying with different fuels plus temperature, industrial processes and cooking. Journal of Food Composition and Analysis, 2018, 66: 109-115.
[12] LIOY P L, WALDMAN J M, GREENBERG A, HARKOV R, PIETARINEN C. The Total Human Environmental Exposure Study (THEES) to benzo (a) pyrene: Comparison of the inhalation and food pathways. Archives of Environmental Health, 1988, 43(4): 304-312.
[13] PHILLIPS D H. Polycyclic aromatic hydrocarbons in the diet. Mutation Research, 1999, 443(1/2): 139-147.
[14] PARIS A, LEDAUPHIN J, POINOT P, GAILLARD J L. Polycyclic aromatic hydrocarbons in fruits and vegetables: Origin, analysis, and occurrence. Environmental Pollution, 2018, 234: 96-106.
[15] MARTORELL I, PERELLó G, MARTí-CID R, CASTELL V, LIOBET J M, DOMINGO J L. Polycyclic aromatic hydrocarbons (PAH) in foods and estimated PAH intake by the population of Catalonia, Spain: Temporal trend. Environment International, 2010, 36(5): 424-432.
[16] LEE J G, KIM S Y, MOON J S, KIM S H, KANG D H, YOON H J. Effects of grilling procedures on levels of polycyclic aromatic hydrocarbons in grilled meats. Food Chemistry, 2016, 199: 632-638.
[17] 趙冰, 任琳, 李家鵬, 陳文華, 趙燕. 傳統(tǒng)肉制品中多環(huán)芳烴來源和檢測方法研究進展. 肉類研究, 2012, 26(6): 50-53.
ZHAO B, REN L, LI J P, CHEN W H, ZHAO Y. Research progress in sources and determination methods for polycyclic aromatic hydrocarbons in traditional meat products. Meat Research, 2012, 26(6): 50-53. (in Chinese)
[18] SUN Y Q, WU S M, GONG G Y. Trends of research on polycyclic aromatic hydrocarbons in food: A 20-year perspective from 1997 to 2017. Trends in Food Science and Technology, 2019, 83: 86-98.
[19] 聶文, 屠澤慧, 占劍峰, 蔡克周, 姜紹通, 陳從貴. 食品加工過程中多環(huán)芳烴生成機理的研究進展. 食品科學, 2018, 39(15): 269-274.
NIE W, TU Z H, ZHAN J F, CAI K Z, JIANG S T, CHEN C G. Mechanism of polycyclic aromatic hydrocarbon formation in food processing: A review. Food Science, 2018, 39(15): 269-274. (in Chinese)
[20] MIN S, PATRA J K, SHIN H S. Factors influencing inhibition of eight polycyclic aromatic hydrocarbons in heated meat model system. Food Chemistry, 2018, 239: 993-1000.
[21] PITTS J N. Nitration of gaseous polycyclic aromatic hydrocarbons in simulated and ambient urban atmospheres: A source of mutagenic nitroarenes. Atmospheric Environment, 1987, 21(12): 2531-2547.
[22] HAYAKAWA K. Environmental behaviors and toxicities of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons. Chemical and Pharmaceutical Bulletin, 2016, 64(2): 83-94.
[23] DENNIS M J, MASSEY R C, MCWEENY D J, KNOWLES M E. Estimation of nitropolycyclic aromatic hydrocarbons in foods. Food Additives and Contaminants, 1984, 1(1): 29-37.
[24] SCHLEMITZ S, PFANNHAUSER W. Monitoring of nitropolycyclic aromatic hydrocarbons in food using gas chromatography. Zeitschrift für Lebensmittel-Untersuchung und Forschung, 1996, 203(1): 61-64.
[25] DENG K L, WONG T Y, WANG Y N, LEUNG E M K, CHAN W. Combination of precolumn nitro-reduction and ultraperformance liquid chromatography with fluorescence detection for the sensitive quantification of 1-nitronaphthalene, 2-nitrofluorene, and 1-nitropyrene in meat products. Journal of Agricultural and Food Chemistry, 2015, 63(12): 3161-3167.
[26] SCHLEMITZ S, PFANNHAUSER W. Analysis of nitro-PAHs in food matrices by on-line reduction and high performance liquid chromatography. Food Additives and Contaminants, 1996, 13(8): 969-977.
[27] SCHAUER C, NIESSNER R, P?SCHL U. Analysis of nitrated polycyclic aromatic hydrocarbons by liquid chromatography with fluorescence and mass spectrometry detection: Air particulate matter, soot, and reaction product studies. Analytical and Bioanalytical Chemistry, 2004, 378(3): 725-736.
[28] 郭青, 林文強, 牟定榮, 毛多斌. 超聲波萃取技術(shù)在煙草成分分離中的應(yīng)用研究綜述. 鄭州輕工業(yè)學院學報(自然科學版), 2011, 26(5): 96-99.
GUO Q, LIN W Q, MOU D R, MAO D B. Research review of the application of ultrasonic extraction in tobacco component separation. Journal of Zhengzhou University of Light Industry (Natural Science Edition), 2011, 26(5): 96-99. (in Chinese)
[29] ONYANGO A A, LALAH J O, WANDIGA S O. The effect of local cooking methods on polycyclic aromatic hydrocarbons (PAHs) contents in beef, goat meat, and pork as potential sources of human exposure in Kisumu city, Kenya. Polycyclic Aromatic Compounds, 2012, 32(5): 656-668.
[30] SINGH L, VARSHNEY J G, AGARWAL T. Polycyclic aromatic hydrocarbons' formation and occurrence in processed food. Food Chemistry, 2016, 199: 768-781.
[31] 馮云, 彭增起, 崔國梅. 烘烤對肉制品中多環(huán)芳烴和雜環(huán)胺含量的影響. 肉類工業(yè), 2009(8): 27-30.
FENG Y, PENG Z Q, CUI G M. Influences of grilling on content of polycyclic aromatic hydrocarbons and heterocyclic amine in meat product. Meat Industry, 2009(8): 27-30. (in Chinese)
[32] 屠澤慧, 聶文, 王尚英, 蔡克周, 姜紹通, 陳從貴. 燒烤及煙熏肉制品中多環(huán)芳烴的遷移、轉(zhuǎn)化與控制研究進展. 肉類研究, 2017, 31(8): 49-54.
TU Z H, NIE W, WANG S Y, CAI K Z, JIANG S T, CHEN C G. Migration, transformation and control of polycyclic aromatic hydrocarbons in grilled and smoked meat products: A review. Meat Research, 2017, 31(8): 49-54. (in Chinese)
Determination of 5 Nitropolycyclic Aromatic Hydrocarbons in Roasted Meat Products by High Performance Liquid Chromatography-Fluorescence Detection
1School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an 710021;2Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193
【】 This study was aimed to establish an approach to determine the content of five NPAHs (including 1-nitronaphthalene, 2-nitrofluorene, 3-nitrofluoranthene, 1-nitropyrene and 6-nitrobenzo[]pyrene) in roasted meat based on solid-phase extraction (SPE) column and high performance liquid chromatography with fluorescence detection (HPLC-FLD).【】 1 g vacuum freeze-dried roasted meat sample was extracted by dichloromethane for ultrasonic extraction, and the filtrate was collected. Both the extraction and filtration processes were repeated three times. Then, the filtrate was dried by nitrogen and dissolved in 3 mL n-hexane. After that, the extract was loaded onto PAHs SPE column which was previously activated by dichloromethane and n-hexane. After loading, the sample tube was rinsed by n-hexane and loaded as well. The SPE column was washed by n-hexane and eluted by dichloromethane. The eluent was dried by nitrogen, and the residue was dissolved in acetonitrile to obtain NPAHs solution. Acidified methanol and iron powder were added to the NPAHs solution and heated in water bath with magnetic stirring for 40 min. After centrifugation and filtration, 20 μL sample was tested by HPLC-FLD at 40℃ by using Agilent ZORBAX Eclipse PAH analysis column. In the gradient elution system, water and acetonitrile were used as the mobile phases.【】 The result showed that five NPAHs were linear with correlation coefficients greater than 0.9940. Specifically, the detection limits (LOD) were within 0.12-2.17 μg?kg-1, and the quantification limits (LOQ) were within 0.38-7.23 μg?kg-1. The average recoveries and the precision were within 53.16%-129.64% and 1.91%-30.73%, respectively. Furthermore, five kinds of typical Chinese roasted meat products were tested by this method, and the content of five NPAHs in all roasted meat samples were between 50.19-82.36 μg?kg-1. Among them, the content of 6-nitrobenzo[]pyrene was the highest, about 31.01-35.89 μg?kg-1, followed by 3-nitrofluoranthene, and the content was within the range of 9.99-23.06 μg?kg-1. 【】 SPE column combined with HPLC-FLD was a suitable method to analyze NPAHs in roasted meat products; and NPAHs were widely contained in Chinese roasted meat products.
nitropolycyclic aromatic hydrocarbon; roasted meat products; high performance liquid chromatography-fluorescence detection; solid-phase extraction
10.3864/j.issn.0578-1752.2021.05.016
2020-06-29;
2020-09-15
國家重點研發(fā)計劃(2019YFC1606200)、國家自然科學基金青年基金(31801480,31901718)
白雪,E-mail:xuebai0527@163.com。通信作者曹云剛,E-mail:caoyungang@sust.edu.cn。通信作者張德權(quán),E-mail:dequan_zhang0118@126.com
(責任編輯 趙伶俐)