李欣華,王登杰,雷仲仁,王海鴻
單頭飼養(yǎng)和群體飼養(yǎng)的西花薊馬實(shí)驗(yàn)種群生命表比較
李欣華1,王登杰2,雷仲仁1,王海鴻1
1中國(guó)農(nóng)業(yè)科學(xué)院植物保護(hù)研究所植物病蟲害生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100193;2綿陽農(nóng)業(yè)科學(xué)研究院,四川綿陽 621000
【】對(duì)西花薊馬()實(shí)驗(yàn)種群生命表的研究大多采用單頭飼養(yǎng)(individual-rearing,IR)的方式,研究結(jié)果可用于田間自然情況下種群發(fā)生的預(yù)測(cè)。然而西花薊馬在自然情況下常常是群聚發(fā)生,而非單頭發(fā)生。論文旨在比較單頭飼養(yǎng)和群體飼養(yǎng)(group-rearing,GR)兩種方式建立起的西花薊馬實(shí)驗(yàn)種群的生命表參數(shù),探討何種方式建立起的生命表用于預(yù)測(cè)自然條件下西花薊馬的發(fā)生情況可能更為準(zhǔn)確。分別用單頭飼養(yǎng)和群體飼養(yǎng)的方式構(gòu)建西花薊馬實(shí)驗(yàn)種群在菜豆豆莢上的年齡-階段兩性生命表,比較兩種飼養(yǎng)條件下西花薊馬的生活史和種群參數(shù);采用bootstrap方法計(jì)算種群生長(zhǎng)參數(shù)的平均數(shù)和標(biāo)準(zhǔn)誤;應(yīng)用檢驗(yàn)(Mann-Whitney test)(Sigmaplot 12.5)估計(jì)單頭飼養(yǎng)和群體飼養(yǎng)條件下西花薊馬種群參數(shù)、發(fā)育歷期和繁殖力間的差異。單頭飼養(yǎng)和群體飼養(yǎng)對(duì)若蟲期、蛹期、雄蟲壽命、總產(chǎn)卵前期、單雌產(chǎn)卵量、蛹重、成蟲體長(zhǎng)有顯著影響, 對(duì)卵期、成蟲期、成蟲產(chǎn)卵前期、雌蟲壽命、蛹長(zhǎng)、蛹寬、成蟲體寬的影響不顯著。單頭飼養(yǎng)西花薊馬的若蟲期(4.49 d)、蛹期(4.03 d)、雄蟲壽命(22.82 d)、總產(chǎn)卵前期(11.37 d)顯著長(zhǎng)于群體飼養(yǎng)(3.05、3.32、18.64、10.00 d);單頭飼養(yǎng)西花薊馬的蛹重(0.03 mg)、雌成蟲體長(zhǎng)(203.72 μm)、雄成蟲體長(zhǎng)(149.74 μm)、單雌產(chǎn)卵量(48粒)顯著低于群體飼養(yǎng)(0.07 mg、288.81 μm、203.39 μm、133.39粒)。內(nèi)稟增長(zhǎng)率()、周限增長(zhǎng)率()、凈增殖率(0)、總生殖率()和平均世代時(shí)間()在單頭飼養(yǎng)的情況下分別為0.161 d-1、1.175 d-1、20.730、35.699、18.70 d,在群體飼養(yǎng)情況下分別為0.242 d-1、1.274 d-1、60.499、102.342、16.88 d。群體飼養(yǎng)的西花薊馬種群增長(zhǎng)比單頭飼養(yǎng)的快。相對(duì)于單頭飼養(yǎng)的西花薊馬,群體飼養(yǎng)的西花薊馬種群增長(zhǎng)速度更快、單位時(shí)間內(nèi)產(chǎn)生后代數(shù)更多,若使用單頭飼養(yǎng)方式建立生命表對(duì)西花薊馬種群發(fā)生動(dòng)態(tài)進(jìn)行預(yù)測(cè)預(yù)報(bào)可能會(huì)延誤最佳防治時(shí)機(jī),以群體飼養(yǎng)的方式建立的生命表對(duì)田間種群的動(dòng)態(tài)預(yù)測(cè)應(yīng)該更準(zhǔn)確。
西花薊馬;年齡-階段兩性生命表;單頭飼養(yǎng);群體飼養(yǎng)
【研究意義】西花薊馬()是一種世界性發(fā)生的,危害蔬菜、花卉及經(jīng)濟(jì)作物的重要害蟲[1-3],起源于美國(guó)西部洛基山脈,2000年在中國(guó)云南省首次發(fā)現(xiàn)[4],并迅速傳播,已造成了巨大的經(jīng)濟(jì)損失[4-6]。昆蟲生命表是研究昆蟲種群在一定生態(tài)條件下各階段個(gè)體的存活數(shù)、死亡數(shù)和死亡原因的重要手段[7]。到目前為止,對(duì)西花薊馬生命表的研究均采用單頭飼養(yǎng)(individual-rearing,IR)方式,包括寄主[8-12]、溫度[13-15]、殺蟲劑[16]、病原物[17]、生殖方式[18]、種群[19]以及復(fù)合因素[20-21]的影響。但事實(shí)上,在自然條件下西花薊馬常群聚發(fā)生[22]。單頭飼養(yǎng)和群體飼養(yǎng)(group-rearing,GR)的昆蟲生活史之間存在顯著差異。因此,根據(jù)上述兩種飼養(yǎng)方式分別建立生命表,對(duì)比生命表數(shù)據(jù),可為西花薊馬生命表研究探索更可靠的方法,也為西花薊馬預(yù)測(cè)預(yù)報(bào)及防治提供更詳實(shí)的理論依據(jù)?!厩叭搜芯窟M(jìn)展】單頭飼養(yǎng)的雄性太平洋甲蟲蟑螂()要比群體飼養(yǎng)(8—10頭)的發(fā)育歷期更長(zhǎng)、成蟲體型更大[23]。群體飼養(yǎng)(4—35頭每組)與單頭飼養(yǎng)的西南龜瓢蟲()在生長(zhǎng)速度、產(chǎn)卵前期、成蟲體型等方面有差異[24]。4齡松尺蠖()幼蟲群體飼養(yǎng)時(shí)的生長(zhǎng)速度快于單頭飼養(yǎng)[25]。群體飼養(yǎng)的斑點(diǎn)木蝶()比單頭飼養(yǎng)的個(gè)體成蟲體型小[26]、雌蟲產(chǎn)卵量多[27]。因上述飼養(yǎng)方式的不同而產(chǎn)生生活史差異的現(xiàn)象在家蟋蟀()[28]、西方玉米根蟲()[29]、黏蟲()[30]、亞洲玉米螟()[31]、二點(diǎn)委夜蛾()[32]、桃小食心蟲()[33]、玉米蛀莖夜蛾()[34]、梨豆夜蛾()[35]、黃粉蟲()[36]、岡比亞按蚊()[37]、玻里尼西亞斑蚊()[38]、稻縱卷葉螟()[39]、小地老虎()[40]中也有發(fā)現(xiàn)。【本研究切入點(diǎn)】單頭飼養(yǎng)西花薊馬的生命表得到了廣泛的研究,但目前為止,還沒有關(guān)于群體飼養(yǎng)西花薊馬的生命表研究?!緮M解決的關(guān)鍵問題】通過設(shè)置相同飼養(yǎng)環(huán)境,比較單頭飼養(yǎng)和群體飼養(yǎng)兩種方式下的生物學(xué)特性和生命表參數(shù),以期為西花薊馬種群動(dòng)態(tài)監(jiān)測(cè)及其綜合治理決策提供依據(jù)。
試驗(yàn)于2019—2020年在中國(guó)農(nóng)業(yè)科學(xué)院植物保護(hù)研究所植物病蟲害生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室完成。
西花薊馬2018年采自北京昌平區(qū)辣椒()田中。在中國(guó)農(nóng)業(yè)科學(xué)院植物保護(hù)研究所植物病蟲害生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室建立實(shí)驗(yàn)種群。飼養(yǎng)于三洋人工氣候箱內(nèi)(MLR-351H,SANYO Electric Co.,Ltd),環(huán)境溫度(24±1)℃,光周期14 h﹕10 h(L﹕D),相對(duì)濕度(70±10)%。以菜豆()為寄主植物和產(chǎn)卵基質(zhì)。供試全部蟲源為10對(duì)西花薊馬在菜豆上產(chǎn)卵12 h后取得。
試驗(yàn)在三洋人工氣候箱中進(jìn)行(氣候條件設(shè)定同1.1)。將上述含卵寄主轉(zhuǎn)移至雙開口圓柱形玻璃罐(底部直徑×高=10 cm×30 cm,本試驗(yàn)所用玻璃罐均為同一規(guī)格)中,玻璃罐兩端用尼龍紗網(wǎng)(200目)封住保持透氣,內(nèi)部放置一張濾紙吸收罐內(nèi)多余水分。每日在體視顯微鏡(SZX16,OLYMPUS)下觀察卵的孵化情況,將新孵出的1齡若蟲轉(zhuǎn)移至新玻璃罐中并記錄,作為試驗(yàn)蟲源分別進(jìn)行單頭飼養(yǎng)和群體飼養(yǎng)。剩余同批孵化西花薊馬分別以上述兩種飼養(yǎng)方式留作備用蟲源。每日定時(shí)更換新鮮菜豆,觀察記錄單頭飼養(yǎng)和群體飼養(yǎng)西花薊馬羽化前的發(fā)育與存活情況。試驗(yàn)蟲源配對(duì)后,每日定時(shí)取出含卵寄主(菜豆)至新玻璃罐中,卵孵化后,將1齡若蟲的數(shù)量記為產(chǎn)卵量[17]。
1.2.1 單頭飼養(yǎng) 將新孵出的1齡若蟲分裝至玻璃罐中,每罐1頭,共40罐。待羽化后,在體視顯微鏡下鑒定成蟲性別并記錄,然后雌雄配對(duì),若新羽化的試驗(yàn)蟲源雌雄數(shù)量不對(duì)等,則使用備用蟲源配對(duì)補(bǔ)齊。配對(duì)后,繼續(xù)記錄試驗(yàn)蟲源的壽命、產(chǎn)卵量,直至其死亡。若試驗(yàn)蟲源配偶先死亡,則隨機(jī)從備用蟲源中為其另選配偶進(jìn)行配對(duì)。蛹期取40頭備用蟲源,測(cè)量其蛹重、蛹長(zhǎng)、蛹寬,羽化后各取40頭雌雄備用蟲源分別測(cè)量體長(zhǎng)、體寬。
1.2.2 群體飼養(yǎng) 所用方法參考文獻(xiàn)[41-42]并加以改進(jìn),將新挑出的1齡若蟲共40頭[17]裝入玻璃罐中,逐日觀察,羽化后鑒定成蟲性別,記錄其產(chǎn)卵量和壽命。在飼養(yǎng)過程中,若所有雌蟲全部死亡,則隨機(jī)從備用蟲源中選取與存活雄蟲數(shù)量相等的雌性與其進(jìn)行配對(duì),記錄剩余雄性試驗(yàn)蟲源的壽命;若所有雄蟲全部死亡,則隨機(jī)從備用蟲源中選取與存活雌蟲數(shù)量相當(dāng)?shù)男坌赃M(jìn)行配對(duì),記錄剩余雌性試驗(yàn)蟲源的產(chǎn)卵量和壽命。試驗(yàn)蟲源全部死亡后試驗(yàn)停止。其蛹重、蛹長(zhǎng)、蛹寬,雌雄蟲體長(zhǎng)、體寬的測(cè)量方法同1.2.1。
計(jì)算得出上述值后,再根據(jù)下列公式分別計(jì)算,內(nèi)稟增長(zhǎng)率(,intrinsic rate of increase,,初始年齡為0)、周限增長(zhǎng)率(,finite rate of increase,λ=e)、總生殖率(,gross reproductive rate,=∑m)、凈增殖率(0,net reproductive rate,)、平均世代時(shí)間(,mean generation time,=(lnR)/)等參數(shù)。其中代表年齡,代表階段,代表齡期數(shù)。s′代表一個(gè)年齡階段的個(gè)體存活到年齡階段的概率,假設(shè)s=1,計(jì)算方法依據(jù)CHI等[43]。
根據(jù)上述計(jì)算公式,原始數(shù)據(jù)可使用TWOSEX- MSChart[47](http://140.120.197.173/Ecology,Visual BASIC環(huán)境,國(guó)立中興大學(xué))完成相關(guān)運(yùn)算。種群參數(shù)的平均值和標(biāo)準(zhǔn)誤使用bootstrap[48]法進(jìn)行運(yùn)算。采用檢驗(yàn)(Mann-Whitney test)(Sigmaplot12.5,Systat Software Inc.,Chicago,IL)估計(jì)單頭飼養(yǎng)和群體飼養(yǎng)的西花薊馬種群參數(shù)、發(fā)育歷期和繁殖值間的差異。
體長(zhǎng)、體寬、體重等數(shù)據(jù)使用SPSS 23.0計(jì)算平均值及標(biāo)準(zhǔn)誤,采用配對(duì)-test進(jìn)行顯著性分析。
單頭飼養(yǎng)和群體飼養(yǎng)中每階段各指標(biāo)如表1所示。其中若蟲期、單雌平均產(chǎn)卵量(<0.001),總產(chǎn)卵前期、蛹重、雌成蟲體長(zhǎng)、雄成蟲體長(zhǎng)(<0.01),蛹期、雄蟲壽命(<0.05)差異顯著。單頭飼養(yǎng)和群體飼養(yǎng)的卵期、雌成蟲期、雄成蟲期、雌成蟲產(chǎn)卵前期、雌蟲壽命、蛹長(zhǎng)、蛹寬、雌成蟲體寬、雄成蟲體寬均無顯著差異。單頭飼養(yǎng)西花薊馬的若蟲期(4.49 d)、蛹期(4.03 d)、雄蟲壽命(22.82 d)、總產(chǎn)卵前期(11.37 d)顯著長(zhǎng)于群體飼養(yǎng)(3.05、3.32、18.64、10.00 d);單頭飼養(yǎng)西花薊馬的蛹重(0.03 mg)、雌成蟲體長(zhǎng)(203.72 μm)、雄成蟲體長(zhǎng)(149.74 μm)、單雌產(chǎn)卵量(48粒)顯著低于群體飼養(yǎng)(0.07 mg、288.81 μm、203.39 μm、133.39粒)。
表1 單頭飼養(yǎng)和群體飼養(yǎng)的西花薊馬生活史
:該時(shí)期存活的西花薊馬個(gè)數(shù)the number of surviving individuals ofof the specific period。雌成蟲產(chǎn)卵前期代表雌蟲從羽化到產(chǎn)卵第1天;
總產(chǎn)卵前期代表雌蟲從卵期一直到產(chǎn)卵第1天Adult preoviposition period (APOP) is defined as the duration from eclosion to the first day of oviposition.
Total preoviposition period (TPOP) is defined as the duration from eggs to the first day of oviposition
采用SPSS中的成對(duì)-test進(jìn)行差異顯著性分析Significant difference was analyzed by paired-sample-test of SPSS,***:<0.001;**:<0.01;*:<0.05;ns:無顯著差異No significant difference。表2同The same as Table 2
存活率曲線s描述的是個(gè)體存活到年齡階段的可能性,可觀察到重疊現(xiàn)象[49]。如圖1所示,單頭飼養(yǎng)若蟲總歷期(74 d)、蛹總歷期(84 d)長(zhǎng)于群體飼養(yǎng)。第8天時(shí),單頭飼養(yǎng)若蟲已有72.5%化蛹,12.5%的個(gè)體仍為若蟲,且未出現(xiàn)羽化個(gè)體,而群體飼養(yǎng)若蟲已全部化蛹,且有20%的已羽化為成蟲。第9天時(shí),單頭飼養(yǎng)若蟲已全部化蛹,但無羽化個(gè)體,群體飼養(yǎng)37.5%個(gè)體已完成羽化。第10天時(shí),單頭飼養(yǎng)有7.5%的個(gè)體羽化,此時(shí)群體飼養(yǎng)個(gè)體已全部羽化。飼養(yǎng)至第14天時(shí),單頭飼養(yǎng)個(gè)體全部羽化。
雌蟲特定年齡繁殖力(f)、特定年齡存活率(l)、特定年齡繁殖力(m)、特定年齡繁殖值(lm)如圖2所示。f是年齡階段的單日平均產(chǎn)卵量[49],雌成蟲位于生活史的第4階段,故為f。單頭飼養(yǎng)于f出現(xiàn)最大值4.26,群體飼養(yǎng)于f出現(xiàn)最大值為15.56,但f出現(xiàn)次高峰值,與峰值接近,其值為15.44。
l是年齡的存活率;m是年齡時(shí)所有個(gè)體平均生產(chǎn)子代數(shù);lm是l與m的乘積,是年齡時(shí)所有存活個(gè)體的繁殖值[49]。從圖2可以看出單頭飼養(yǎng)的l值一直勻速下降,第35天,大部分薊馬的壽命達(dá)到最大值,曲線開始急劇下降;群體飼養(yǎng)的l曲線在第16天開始急劇下降,此時(shí)試驗(yàn)蟲源雄蟲個(gè)體的數(shù)量開始銳減,在飼養(yǎng)至第23天時(shí),試驗(yàn)蟲源雄蟲全部死亡。
特定年齡生命期望(e)(圖3)是指在年齡階段個(gè)體的剩余存活時(shí)間,生命期望值會(huì)隨著年齡增長(zhǎng)逐漸降低[49],單頭飼養(yǎng)的生命期望(25.721.8 d)高于群體飼養(yǎng)。單頭飼養(yǎng)雄蟲的生命期望從第16天起出現(xiàn)反常并在第24天超過雌蟲,原因?yàn)槠渲袃深^雄蟲的壽命超過了平均壽命(22.82 d),分別為24、30 d,與之配對(duì)的雌蟲均未產(chǎn)卵。
特定年齡-階段繁殖值(v)(圖4)是指在年齡階段的個(gè)體對(duì)以后的種群貢獻(xiàn),初孵若蟲的繁殖值(v)等于周限增長(zhǎng)率()[49]。單頭飼養(yǎng)的v值為1.175,群體飼養(yǎng)的v值為1.274。相對(duì)于單頭飼養(yǎng)(v= 18.36),群體飼養(yǎng)(v=27.70)的繁殖值高峰較高,出現(xiàn)得更早。飼養(yǎng)至23 d時(shí),群體飼養(yǎng)的試驗(yàn)蟲源雄蟲已全部死亡,使用試驗(yàn)蟲源雌蟲以雌雄比1﹕1進(jìn)行配對(duì)后,第25天又出現(xiàn)一次峰值(v=20.52)。
圖1 單頭飼養(yǎng)和群體飼養(yǎng)西花薊馬的特定年齡-階段特定存活率
圖3 單頭飼養(yǎng)和群體飼養(yǎng)西花薊馬的特定年齡-階段生命期望
圖4 單頭飼養(yǎng)和群體飼養(yǎng)西花薊馬的特定年齡-階段繁殖值
單頭飼養(yǎng)的內(nèi)稟增長(zhǎng)率(0.161 d-1)、周限增長(zhǎng)率(1.175 d-1)、凈增殖率(20.730)和總生殖率(35.699)均極顯著低于群體飼養(yǎng)(0.242 d-1、1.274 d-1、60.499、102.342),而平均世代時(shí)間(18.70 d)極顯著高于群體飼養(yǎng)(16.88 d)(表2)。
單頭飼養(yǎng)和群體飼養(yǎng)的西花薊馬在發(fā)育歷期、成蟲體長(zhǎng)、蛹重、單雌平均產(chǎn)卵量、成蟲壽命等方面存在顯著差異。
群體飼養(yǎng)的西花薊馬發(fā)育歷期顯著短于單頭飼養(yǎng)個(gè)體,蛹重和成蟲體長(zhǎng)顯著大于單頭飼養(yǎng)個(gè)體。此種由于飼養(yǎng)密度不同而引起的發(fā)育歷期差異的現(xiàn)象在秀麗線蟲()上也有發(fā)現(xiàn)[50]。群體飼養(yǎng)較單頭飼養(yǎng)昆蟲發(fā)育時(shí)間短的現(xiàn)象在太平洋甲蟲蟑螂[23]、珠腹珀蟋()[51]、西南龜瓢蟲[24]、亞洲玉米螟[31]中也有發(fā)現(xiàn)。
表2 單頭飼養(yǎng)和群體飼養(yǎng)西花薊馬的種群參數(shù)
與單頭飼養(yǎng)相比,群體飼養(yǎng)的昆蟲發(fā)育歷期短、蛹重較重可能與其幼蟲期取食成功率較高有關(guān)[52-54]。例如,覓食中的黑腹果蠅()幼蟲會(huì)通過視覺信號(hào)和化學(xué)信號(hào)(氣味等)追蹤到正在進(jìn)食的同種其他個(gè)體,減少覓食行為所花費(fèi)的精力、時(shí)間[52]。同樣,昆蟲的胰島素信號(hào)通路會(huì)對(duì)其營(yíng)養(yǎng)攝取量進(jìn)行反饋,營(yíng)養(yǎng)攝取量多時(shí)該通路相關(guān)基因表達(dá)量升高,發(fā)育時(shí)間縮短,體尺增大。反之,發(fā)育時(shí)間增長(zhǎng),體尺減小[53]。在七葉樹蝴蝶()中,其類固醇激素和蛻皮激素同樣可起到調(diào)節(jié)發(fā)育速度和體尺的作用[53]。對(duì)于西花薊馬,其發(fā)育歷期、蛹重、體尺與取食成功率、營(yíng)養(yǎng)攝取量的關(guān)系,以及內(nèi)在的分子機(jī)制,仍有待進(jìn)一步研究。
群體飼養(yǎng)西花薊馬的單雌平均產(chǎn)卵量顯著高于單頭飼養(yǎng)。類似的現(xiàn)象在螺旋粉虱()上也有發(fā)現(xiàn)[55]。成蟲體型和體重影響昆蟲繁殖力[56-59]。埃及伊蚊()在產(chǎn)卵最多時(shí)體型大的個(gè)體單雌平均產(chǎn)卵量、產(chǎn)卵次數(shù)顯著高于體型小的個(gè)體[56]。斑點(diǎn)木蝶中體型較大的雌性個(gè)體體內(nèi)擁有較多的成熟卵[57]。地中海實(shí)蠅()的雌體體型大小與最大日產(chǎn)卵量顯著正相關(guān)[58,60]。日本黑蠅()的體型(翅長(zhǎng)、頭寬)與繁殖力成正比[59]。黑腹果蠅成蟲體重低的個(gè)體產(chǎn)卵量少[61]。與單頭飼養(yǎng)相比,群體飼養(yǎng)的西花薊馬產(chǎn)卵量較高,可能與其體型較大,繁殖力較強(qiáng)有關(guān)。
單頭飼養(yǎng)西花薊馬的平均壽命長(zhǎng)于群體飼養(yǎng)西花薊馬,類似的現(xiàn)象在秀麗線蟲上也有發(fā)現(xiàn)[50]。大多數(shù)生物(包括昆蟲在內(nèi))生存能量的分配會(huì)在繁殖和壽命間進(jìn)行權(quán)衡,生殖能力強(qiáng)的個(gè)體壽命短[62]。當(dāng)限制黑腹果蠅交配機(jī)會(huì)(切除雄性的外生殖器)時(shí),雌蟲壽命顯著增長(zhǎng)[63];限制其產(chǎn)卵(移除產(chǎn)卵基質(zhì))時(shí),黑腹果蠅的壽命會(huì)延長(zhǎng)[62,64]。與單頭飼養(yǎng)相比,群體飼養(yǎng)的西花薊馬單雌平均產(chǎn)卵量較高、壽命較短,可能與此有關(guān)。
單頭飼養(yǎng)方式會(huì)造成產(chǎn)卵延遲。單頭隔離飼養(yǎng)的西花薊馬首次產(chǎn)卵時(shí)間比群體飼養(yǎng)平均推遲0.81 d。同樣,在秀麗線蟲中,單頭飼養(yǎng)的群體首次產(chǎn)卵時(shí)間顯著晚于群體飼養(yǎng)[50]。有報(bào)道指出,西花薊馬產(chǎn)卵時(shí)間的延遲會(huì)造成產(chǎn)卵量的下降[65],可能是因?yàn)槁涯讣?xì)胞發(fā)育不良或被吸收。單頭飼養(yǎng)西花薊馬產(chǎn)卵量低于群體飼養(yǎng)可能與其產(chǎn)卵時(shí)間存在延遲有關(guān)。
單頭飼養(yǎng)西花薊馬的內(nèi)稟增長(zhǎng)率、周限增長(zhǎng)率、凈增殖率和總生殖率顯著小于群體飼養(yǎng),平均世代時(shí)間顯著長(zhǎng)于群體飼養(yǎng)。由此可見,群體飼養(yǎng)西花薊馬種群擴(kuò)增要顯著優(yōu)于單頭飼養(yǎng)種群。若用單頭飼養(yǎng)的方式建立生命表,對(duì)西花薊馬種群動(dòng)態(tài)進(jìn)行預(yù)測(cè)預(yù)報(bào),很可能錯(cuò)過最佳防治時(shí)機(jī)。
單頭飼養(yǎng)和群體飼養(yǎng)的西花薊馬生命表參數(shù)存在顯著差異。群體飼養(yǎng)西花薊馬生命表參數(shù)可能更符合田間種群發(fā)生動(dòng)態(tài),建議使用群體飼養(yǎng)的方式建立西花薊馬生命表。
[1] REITZ S R, GAO Y, KIRK W D J, HODDLE M S, LEISS K A, FUNDERBURK J E. Invasion biology, ecology, and management of western flower thrips. Annual review of entomology, 2020, 65: 17-37.
[2] REITZ S R. Biology and ecology of the western flower thrips (Thysanoptera: Thripidae): The making of a pest. Florida Entomologist, 2009, 92(1): 7-13.
[3] CHILDERS C C, LEWIS T. Feeding and oviposition injuries to plants//Thrips As crop pests.Wallingford, UK:CAB International, 1997:505-537.
[4] WU S, TANG L, ZHANG X, XING Z, LEI Z, GAO Y. A decade of a thrips invasion in China: lessons learned. Ecotoxicology, 2018, 27(7): 1032-1038.
[5] GAO Y, LEI Z, REITZ S R. Western flower thrips resistance to insecticides: detection, mechanisms and management strategies. Pest Management Science, 2012, 68(8): 1111-1121.
[6] ZHANG B, QIAN W, QIAO X, XI Y, WAN F. Invasion biology, ecology, and management ofin China. Archives of insect biochemistry and physiology, 2019, 102(3): e21613.
[7] MORRIS R F, MILLER C A. The development of life tables for the spruce budwormCanadian Journal of Zoology, 1954, 32(4): 283-301
[8] ZHANG Z J, WU Q J, LI X F, ZHANG Y J, XU B Y, ZHU G R. Life history of western flower thrips,(Thysan., Thripae), on five different vegetable leaves. Journal of Applied Entomology, 2007, 131(5): 347-354.
[9] SORIA C, MOLLEMA C. Life-history parameters of western flower thrips on susceptible and resistant cucumber genotypes. Entomologia Experimentalis et Applicata, 1995, 74(2): 177-184.
[10] 郅軍銳, 李景柱, 蓋海濤. 西花薊馬取食不同豆科蔬菜的實(shí)驗(yàn)種群生命表. 昆蟲知識(shí), 2010, 47(2): 313-317.
ZHI J R, LI J Z, GAI H T. Life table for experimental population offeeding on leguminous vegetables. Chinese Bulletin of Entomology, 2010, 47(2): 313-317. (in Chinese)
[11] HULSHOF J, KETOJA E, V?NNINEN I. Life history characteristics ofon cucumber leaves with and without supplemental food. Entomologia Experimentalis et Applicata, 2003, 108(1): 19-32.
[12] GAUM W G, GILIOMEE J H, PRINGLE K L. Life history and life tables of western flower thrips,(Thysanoptera: Thripidae), on English cucumbers. Bulletin of Entomological Research, 1994, 84(2): 219-224.
[13] ULLAH M S, LIM U T. Life history characteristics ofand(Thysanoptera: Thripidae) in constant and fluctuating temperatures. Journal of Economic Entomology, 2015, 108(3): 1000-1009.
[14] JIANG S, ZHANG N, WANG S, WANG J, LI J, ZHANG B, ZHENG C. Effects of heat shock on life parameters of(Thysanoptera: Thripidae) F1offspring. Florida Entomologist, 2014, 97(3): 1157-1166.
[15] 王海鴻, 薛瑤, 雷仲仁. 恒溫和波動(dòng)溫度下西花薊馬的實(shí)驗(yàn)種群生命表. 中國(guó)農(nóng)業(yè)科學(xué), 2014, 47(1): 61-68.
WANG H H, XUE Y, LEI Z R. Life tables for experimental populations of(Thysanoptera: Thripidae) under constant and fluctuating temperature. Scientia Agricultura Sinica, 2014, 47(1): 61-68.(in Chinese)
[16] 楊廣明, 郅軍銳, 李順欣, 劉利. 乙基多殺菌素和印楝素對(duì)西花薊馬生長(zhǎng)發(fā)育及繁殖的亞致死效應(yīng). 應(yīng)用生態(tài)學(xué)報(bào), 2016, 27(11): 3698-3704.
YANG G M, ZHI J R, LI S X, LIU L. Sublethal effects of spinetoram and azadirachtin on development and reproduction of(Pergande). Chinese journal of applied ecology, 2016, 27(11): 3698-3704. (in Chinese)
[17] ZHANG T, REITZ S R, WANG H, LEI Z. Sublethal effects of(Ascomycota: Hypocreales) on life table parameters of(Thysanoptera: Thripidae). Journal of Economic Entomology, 2015, 108(3): 975-985.
[18] DING T, CHI H, GOKCE A, GAO Y, ZHANG B. Demographic analysis of arrhenotokous parthenogenesis and bisexual reproduction of(Pergande) (Thysanoptera: Thripidae). Scientific reports, 2018, 8(1): 3346.
[19] NIELSEN M C, TEULON D A J, CHAPMAN R B, BUTLER R C, Drayton G M, PHILIPSEN H. Comparison of life history parameters of two(Thysanoptera: Thripidae) strains in New Zealand. Environmental Entomology, 2010, 39(2): 303-311.
[20] LOWRY V K, SMITH J W, MITCHELL F L. Life-fertility tables for(Hinds) and(Pergande) (Thysanoptera: Thripidae) on peanut. Annals of the Entomological Society of America, 1992, 85: 744-754.
[21] HOLLINGSWORTH R G. Life history observations on(Thysanoptera: Thripidae) infesting gardenia in Hawaii, and a comparison of the humidity requirements forandproceedings of the hawaiian entomological society, 2003, 36: 79-87.
[22] TERRY L I.(Thysanoptera: Thripidae) oviposition in apple buds: Role of bloom state, blossom phenology, and population density.Environmental Entomology, 1991, 20(6):1568-1576.
[23] WOODHEAD A P, PAULSON C R. Larval development ofreared alone and in groups. Journal of Insect Physiology, 1983, 29(9): 665-668.
[24] OMKAR S, PATHAK. Crowding affects the life attributes of an aphidophagous ladybird beetle,. Bulletin of Insectology, 2009, 62(1): 35-40.
[25] ?MITS A. Performance of pine looperlarvae under population build-up conditions. Entomologia Experimentalis et Applicata, 2002, 104(1): 117-124.
[26] GIBBS M, LACE L A, JONES M J, MOORE A J. Intraspecific competition in the speckled wood butterfly: Effect of rearing density and gender on larval life history. Journal of Insect Science, 2004, 4: 16.
[27] GIBBS M, BREUKER C J. Effect of larval-rearing density on adult life history traits and developmental stability of the dorsal eyespot pattern in the speckled wood butterfly,. Entomologia Experimentalis et Applicata, 2005, 118(1): 41-47.
[28] MCFARLANE J E, ALLI I, STEEVES E. Studies on the group effect in(L.) using artificial diets. Journal of Insect Physiology, 1984, 30(2): 103-107.
[29] YU E Y, GASSMANN A J, SAPPINGTON T W. Effects of larval density on dispersal and fecundity of western corn rootworm,LeConte (Coleoptera: Chrysomelidae). PLoS One, 2019,14(3): e0212696.
[30] 蔣善軍, 羅禮智, 胡毅, 張蕾. Cry1Ac毒蛋白對(duì)粘蟲生長(zhǎng)發(fā)育、繁殖及飛行能力的影響. 昆蟲學(xué)報(bào), 2010, 53(12): 1360-1366.
JIANG S J, LUO L Z, HUy, ZHANG L. Effects of Cry1Ac protein on growth and development, reproduction and flight potential of the oriental armyworm,(Lepidoptera: Noctuidae). Acta Entomologica Sinica,2010, 53(12): 1360-1366. (in Chinese)
[31] 喬利, 潘茲亮, 盧兆成, 張麗霞, 仵均祥. 單頭飼養(yǎng)與群體飼養(yǎng)對(duì)亞洲玉米螟生長(zhǎng)發(fā)育與繁殖的影響. 西北農(nóng)業(yè)學(xué)報(bào), 2011, 20(10): 204-206.
QIAO L, PAN Z L, LU Z C, ZHANG L X, WU J X. Growth development and reproduction of the(Guenee) under single raising and group raising. Acta Agriculturae Boreali-occidentalis Sinica, 2011, 20(10): 204-206. (in Chinese)
[32] 李艷, 江幸福, 張蕾, 程云霞, 劉彥群, 羅禮智. 幼蟲密度對(duì)二點(diǎn)委夜蛾生長(zhǎng)發(fā)育及繁殖的影響. 應(yīng)用昆蟲學(xué)報(bào), 2014, 51(3): 623-629.
LI Y, JIANG X F, ZHANG L, CHENG Y X, LIU Y Q, LUO L Z.Effects of larval density on the development and reproduction of. Chinese Journal of Applied Entomology, 2014, 51(3): 623-629. (in Chinese)
[33] LI X, FENG D, XUE Q, MENG T, MA R, DENG A, CHI H, WU Z, ATLIHAN R, MEN L, ZHANG Z. Density-dependent demography and mass-rearing of(Lepidoptera: Carposinidae) incorporating life table variability. Journal of Economic Entomology, 2019,112(1): 255-265.
[34] FANTINOU A A, PERDIKIS D C, STAMOGIANNIS N. Effect of larval crowding on the life history traits of(Lepidoptera: Noctuidae).European Journal of Entomology, 2008, 105(4): 625-630.
[35] FESCEMYER H W, HAMMOND A M. Effect of larval density and plant age on size and biochemical composition of adult migrant moths,Hübner (Lepidoptera: Noctuidae). Environmental Entomology, 1988, 17(2): 213-219.
[36] WEAVER D K, MCFARLANE J E. The effect of larval density on growth and development of. Journal of Insect Physiology, 1990, 36(7): 531-536.
[37] LYIMO E O, TAKKEN W, KOELLA J C. Effect of rearing temperature and larval density on larval survival, age at pupation and adult size of. Entomologia Experimentalis et Applicata, 1992, 63(3): 265-271.
[38] HAPAIRAI L K, MARIE J, SINKINS S P, BOSSIN H C. Effect of temperature and larval density on(Diptera: Culicidae) laboratory rearing productivity and male characteristics. Acta tropica, 2014,132(Suppl.): S108-S115.
[39] YANG F, HU G, SHI J J, ZHAI B P. Effects of larval density and food stress on life-history traits of(Lepidoptera: Pyralidae). Journal of Applied Entomology, 2015, 139(5): 370-380.
[40] SAPPINGTON T W, SHOWERS W B. Lack of translation of density-induced morphological polyphenism to long-duration flight behavior of black cutworm (Lepidoptera: Noctuidae). Annals of the Entomological Society of America, 1992, 85(2): 188-194.
[41] CHI H, YOU M S, ATL?HAN R, SMITH C L, KAVOUSI A, ?ZG?K?E M S, GüNCAN A, TUAN S J, FU J W, XU Y Y,. Age-stage, two-sex life table: An introduction to theory, data analysis, and application. Entomologia Generalis,2020, 40(2): 103-124.
[42] NING S, ZHANG W, SUN Y, FENG J. Development of insect life tables: comparison of two demographic methods of(Diptera: Anthomyiidae) on different hosts. Scientific reports, 2017, 7(1): 4821.
[43] CHI H, LIU H. Two new methods for the study of insect population ecology.Bulletin of the Institute of Zoology, Academia Sinica, 1985, 24(2): 225-240.
[44] CHANG C, HUANG CY, DAI SM, ATLIHAN R, CHI H. Genetically engineered ricin suppresses(Diptera: Tephritidae) based on demographic analysis of group-reared life table. Journal of Economic Entomology, 2016, 109(3): 987-992.
[45] CHI H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology, 1988,17(1): 26-34.
[46] CHI H, SU H Y. Age-stage, two-sex life tables of(Ashmead) (Hymenoptera: Braconidae) and its host(Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environmental Entomology, 2006, 35(1): 10-21.
[47] CHI H. TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. 2009, http://140.120.197.173/Ecology/.
[48] EFRON B, TIBSHIRANI R J. An introduction to the bootstrapMonographs on Statistics and Applied Probability,1993, 57: 436.
[49] CHI H, YANG T C. Two-sex life table and predation rate ofThunberg (Coleoptera: Coccinellidae) fed on(Sulzer) (Homoptera: Aphididae). Environmental Entomology, 2003, 32(2): 327-333.
[50] LUDEWIG A H, GIMOND C, JUDKINS J C, THORNTON S, PULIDO D C, MICIKAS R J, DORING F, ANTEBI A, BRAENDLE C, SCHROEDER F C. Larval crowding acceleratesdevelopment and reduces lifespan. PLoS genetics, 2017,13(4): e1006717.
[51] DAKSHAYANI K, MATHAD S B. A comparative study of growth, development and survival of the cricketwalker reared singly and in groups. Experientia, 1973, 29(8): 978-979.
[52] DURISKO Z, KEMP R, MUBASHER R, DUKAS R. Dynamics of social behavior in fruit fly larvae. PloS one, 2014, 9(4): e95495.
[53] NIJHOUT H F. The control of body size in insects. Developmental Biology, 2003, 261(1): 1-9.
[54] KOYAMA T, MIRTH C K. Unravelling the diversity of mechanisms through which nutrition regulates body size in insects. Current Opinion of Insect Science, 2018, 25: 1-8.
[55] TARAVATI S, MANNION C. Effect of aggregation and cage setting on some life-history parameters of(Hemiptera: Aleyrodidae). Journal of Economic Entomology, 2016,109(1): 249-254.
[56] TSUNODA T, FUKUCHI A, NANBARA S, TAKAGI M. Effect of body size and sugar meals on oviposition of the yellow fever mosquito,(Diptera: Culicidae). Journal of Vector Ecology, 2010, 35(1): 56-60.
[57] BERGER D, WALTERS R, GOTTHARD K. What limits insect fecundity? Body size- and temperature-dependent egg maturation and oviposition in a butterfly. Functional Ecology, 2008, 22(3): 523-529.
[58] BLAY S, YUVAL B. Oviposition and fertility in the Mediterranean fruit fly (Diptera: Tephritidae): Effects of male and female body size and the availability of sperm. Annals of the Entomological Society of America,1999, 92(2):278-284.
[59] BABA M. Oviposition habits of(Diptera: Simuliidae), with reference to seasonal changes in body size and fecundity. Journal of Medical Entomology,1992, 29(4):603-610.
[60] EdwardsA W. The genetical theory of natural selection. Genetics, 2000, 154(4): 1419-1426.
[61] MIN K, FLATT T, KULAOTS I, TATAR M. Counting calories indiet restriction. Experimental Gerontology, 2007,42(3): 247-251.
[62] FLATT T. Survival costs of reproduction in.Experimental Gerontology, 2011, 46(5):369-375.
[63] FOWLER K, PARTRIDGE L. A cost of mating in female fruitflies. Nature, 1989, 338: 760-761.
[64] PARTRIDGE L, GREEN A, FOWLER K. Effects of egg-production and of exposure to males on female survival in.Journal of Insect Physiology, 1987, 33(10): 745-749.
[65] 楊廣明, 郅軍銳, 李順欣, 張宇羽. 延遲交配對(duì)西花薊馬成蟲壽命及繁殖力的影響. 山地農(nóng)業(yè)生物學(xué)報(bào), 2015, 34(4): 31-34.
YANG GM, ZHI JR, LI SX, ZHANG YY. Effect of delayed mating on adult longevity and reproduction of. Journal of Mountain Agriculture and Biology, 2015, 34(4): 31-34. (in Chinese)
Comparison of Life Tables for Experimental Populations of Individual-rearing and Group-rearing
Li Xinhua1, Wang Dengjie2, Lei Zhongren1, Wang Haihong1
1State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193;2Mianyang Academy of Agricultural Sciences, Mianyang 621000, Sichuan
】The method of individual-rearing (IR) was often used to study the life table of western flower thrip (), and the results can be used to predict the population occurrence under natural conditions in the field.However,often occur in groups rather than single head under natural conditions. The objective of this study to compare the life table parameters of individual-rearing and group-rearing (GR), and to explore the accuracy of population occurrence dynamics under natural conditions based on the data from individual-rearing and group-rearing.【】The age-stage, two-sex life table of the experimental population ofreared on bean pod was constructed by individual-rearing and group-rearing, respectively, and the life history and population parameters ofwere compared under the two conditions. The means and standard errors of population growth parameters were calculated using the bootstrap method. The Mann-Whitney test (test) was used to evaluate the differences in the population parameter, development period, and fecundity of individual-rearing and group-rearing.【】individual-rearing and group-rearing had significant effects on nymph stage, pupal stage, male longevity, total preoviposition period, per female oviposition, pupal weigh and adult body length, but not on egg stage, adult stage, adult preoviposition period, female longevity, pupal length, pupal width, adult width. The nymph stage (4.49 d), pupal stage (4.03 d), male longevity (22.82 d), total preoviposition period (11.37 d) of individual-rearingwere significantly longer than group-rearing ones (3.05, 3.32, 18.64 and 10.00 d, respectively). The pupal weigh (0.03 mg) of individual-rearingwas significantly lower than that of group-rearing(0.07 mg). The adult body lengths of individual-rearing(female: 203.72 μm, male: 149.74 μm) were significantly lower than those of group-rearing(female: 288.81 μm, male: 203.39 μm). The per female oviposition of individual-rearing(48) was significantly lower than that of group-rearing(133.39). The intrinsic rate of increase (), finite rate of increase (), net reproductive rate (0), gross reproductive rate () and mean generation time () of individual-rearingwere 0.161 d-1, 1.175 d-1, 20.730, 35.699, 18.70 d, respectively, while those of group-rearingwere 0.242 d-1, 1.274 d-1, 60.499, 102.342, 16.88 d, respectively. The population growth of individual-rearingwas slower than that of group-rearing.【】Compared with the individual-rearing, the population of group-rearinggrew faster and produced more offspring per unit time. Using the individual-rearing feeding method to establish a life table to predict the population dynamics ofmay delay the best control time. The life table established by the group-rearing method should predict the population dynamics more accurately.
; age-stage two-sex life table; individual-rearing; group-rearing
10.3864/j.issn.0578-1752.2021.05.008
2020-05-19;
2020-06-28
國(guó)家重點(diǎn)研發(fā)計(jì)劃(2017YFD0201205)、國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系專項(xiàng)資金(CARS-25-B-07)
李欣華,E-mail:15733275161@163.com。通信作者王海鴻,Tel:010-62815930;E-mail:wanghaihong2020@sina.com
(責(zé)任編輯 岳梅)