張翠萍
摘 要:應(yīng)用題是農(nóng)村小學(xué)數(shù)學(xué)教學(xué)的重難點(diǎn),對(duì)學(xué)生的問(wèn)題分析與求解能力、邏輯思維能力等具有較高要求,尤其是綜合性比較大的應(yīng)用題常常成為學(xué)生學(xué)習(xí)數(shù)學(xué)路上的攔路虎,加強(qiáng)應(yīng)用題解題教學(xué)與指導(dǎo)顯得尤為重要。故立足于農(nóng)村小學(xué)高年級(jí)數(shù)學(xué)教學(xué)現(xiàn)狀,對(duì)應(yīng)用題教學(xué)對(duì)策進(jìn)行了重點(diǎn)研究。
關(guān)鍵詞:農(nóng)村;小學(xué)數(shù)學(xué);高年級(jí);應(yīng)用題;教學(xué)策略
隨著基礎(chǔ)教育改革的深入,培養(yǎng)小學(xué)生的數(shù)學(xué)綜合能力,提高他們運(yùn)用所學(xué)數(shù)學(xué)知識(shí)求解實(shí)際問(wèn)題的能力是當(dāng)前小學(xué)數(shù)學(xué)教學(xué)的重要目標(biāo)。其中應(yīng)用題求解過(guò)程可以從側(cè)面反映出小學(xué)生本身的問(wèn)題分析與求解能力、邏輯思維能力等學(xué)科關(guān)鍵能力發(fā)展情況。然而,小學(xué)高年級(jí)數(shù)學(xué)應(yīng)用題本身具有比較強(qiáng)的枯燥性與繁雜性。因此,如何才能使農(nóng)村小學(xué)高年級(jí)學(xué)生突破應(yīng)用題求解難關(guān)是當(dāng)前值得深入探討的重要話題之一。
一、農(nóng)村小學(xué)高年級(jí)數(shù)學(xué)應(yīng)用題的教學(xué)意義
應(yīng)用題是基于現(xiàn)實(shí)生活中的事件為素材,采用通俗易懂語(yǔ)言加以表述,需要借助數(shù)學(xué)運(yùn)算來(lái)求解相應(yīng)實(shí)際問(wèn)題的一類數(shù)學(xué)題型。在對(duì)數(shù)學(xué)應(yīng)用題進(jìn)行求解期間,需要首先結(jié)合題目中包含的背景知識(shí)歸納和總結(jié)出數(shù)學(xué)模型,之后調(diào)用相關(guān)的數(shù)學(xué)知識(shí)進(jìn)行求解。通過(guò)開(kāi)展農(nóng)村小學(xué)數(shù)學(xué)應(yīng)用題教學(xué),指導(dǎo)學(xué)生強(qiáng)化實(shí)際生活問(wèn)題和所學(xué)數(shù)學(xué)知識(shí)的聯(lián)系,在讓他們構(gòu)建求解實(shí)際問(wèn)題的數(shù)學(xué)模型過(guò)程中,可以將實(shí)際問(wèn)題進(jìn)行數(shù)學(xué)化處理,這個(gè)過(guò)程可以有效地鍛煉他們的思維能力、問(wèn)題分析與求解能力。特別是在新課程下,小學(xué)數(shù)學(xué)新課程標(biāo)準(zhǔn)對(duì)數(shù)學(xué)應(yīng)用題提出了全新要求,要求培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)的眼光去對(duì)問(wèn)題進(jìn)行分析,發(fā)展他們的數(shù)學(xué)思維,同時(shí)如果學(xué)生強(qiáng)化數(shù)學(xué)應(yīng)用題求解,可以為后續(xù)初中、高中乃至其他學(xué)科的知識(shí)學(xué)習(xí)夯實(shí)基礎(chǔ),這樣可以為他們終身學(xué)習(xí)做好鋪墊。此外,數(shù)學(xué)學(xué)科本身是其他工科課程學(xué)習(xí)的重要基礎(chǔ),其學(xué)習(xí)成效直接關(guān)乎未來(lái)科學(xué)技術(shù)發(fā)展,如計(jì)算機(jī)技術(shù)、信息技術(shù)等的發(fā)展都離不開(kāi)數(shù)學(xué)學(xué)科知識(shí)。通過(guò)強(qiáng)化農(nóng)村小學(xué)高年級(jí)數(shù)學(xué)應(yīng)用題教學(xué),可以有效提升學(xué)生求解實(shí)際問(wèn)題的能力,這是符合國(guó)家發(fā)展趨勢(shì)的必然選擇和要求。
二、農(nóng)村小學(xué)高年級(jí)數(shù)學(xué)應(yīng)用題的教學(xué)對(duì)策
(一)創(chuàng)設(shè)良好問(wèn)題情境,激發(fā)學(xué)生解題興趣
相較于一般的數(shù)學(xué)題,數(shù)學(xué)應(yīng)用題本身的繁雜性與綜合性特點(diǎn)更加顯著,本身對(duì)學(xué)生的問(wèn)題分析與求解能力具有較高要求,使得許多學(xué)生本身不愿意參與到應(yīng)用題求解實(shí)踐當(dāng)中。對(duì)任何一類數(shù)學(xué)應(yīng)用題的求解,一般都需要經(jīng)歷“抽象概括數(shù)學(xué)應(yīng)用題→歸納得到數(shù)學(xué)模型→代入數(shù)學(xué)公式與已知數(shù)據(jù)→求解問(wèn)題”的過(guò)程。但是為了指導(dǎo)學(xué)生逐步進(jìn)入到該應(yīng)用題求解過(guò)程,需要保證他們對(duì)求解數(shù)學(xué)問(wèn)題過(guò)程本身伴有強(qiáng)烈的求知欲,避免他們因?yàn)橛X(jué)得數(shù)學(xué)問(wèn)題求解過(guò)程枯燥、煩瑣而失去了學(xué)習(xí)的興趣??紤]到數(shù)學(xué)應(yīng)用題一般都以現(xiàn)實(shí)生活中的事件為素材,所以實(shí)際求解過(guò)程中可以聯(lián)系學(xué)生的生活實(shí)際,為他們創(chuàng)設(shè)一些能夠激發(fā)他們解題興趣的良好問(wèn)題情境。在良好教學(xué)情境下學(xué)生會(huì)積極開(kāi)展自主思考,并且可以有效調(diào)用自己的生活經(jīng)驗(yàn)與學(xué)習(xí)經(jīng)驗(yàn)去快速簡(jiǎn)化問(wèn)題求解過(guò)程,這樣可以為后續(xù)的問(wèn)題分析及求解教學(xué)做好鋪墊。
情境教學(xué)法是適合小學(xué)生身心特征的一種現(xiàn)代化教學(xué)方法,本身可以把學(xué)生帶入一個(gè)形象直觀的學(xué)習(xí)情境當(dāng)中,引發(fā)學(xué)生的探索求知欲望。問(wèn)題情境是以問(wèn)題為依托進(jìn)行教學(xué)情境的創(chuàng)設(shè),在這一過(guò)程當(dāng)中,能夠以問(wèn)題為中心,把學(xué)生帶入到解決問(wèn)題的場(chǎng)景當(dāng)中鼓勵(lì)學(xué)生自主自覺(jué)思考。為了消除學(xué)生在問(wèn)題求解當(dāng)中的厭倦心理,增強(qiáng)學(xué)生求解問(wèn)題的興趣,教師就可以聯(lián)系當(dāng)前的生活實(shí)際營(yíng)造問(wèn)題情境,也就是積極收集和生活相關(guān)的案例,然后用富有生活氣息的問(wèn)題表達(dá)方式把問(wèn)題呈現(xiàn)出來(lái),讓學(xué)生在閱讀問(wèn)題的過(guò)程中,想象相應(yīng)的生活畫(huà)面,調(diào)動(dòng)相關(guān)生活經(jīng)驗(yàn),從而順利找到解題思路。和學(xué)生生活密切貼近的問(wèn)題,更容易吸引學(xué)生的注意力,激發(fā)學(xué)生的求知欲,最終可以讓學(xué)生在求解問(wèn)題過(guò)程中深化對(duì)數(shù)學(xué)知識(shí)的理解和應(yīng)用。
(二)傳授學(xué)生解題方法,提高學(xué)生自學(xué)能力
雖然當(dāng)前小學(xué)高年級(jí)學(xué)生面臨的數(shù)學(xué)應(yīng)用題種類比較多,但是它們的求解思路與方法都大同小異,只需要可以靈活地掌握和使用恰當(dāng)?shù)膽?yīng)用題求解方法與思路,那么可以快速求解這些數(shù)學(xué)應(yīng)用題。因此,在學(xué)生逐步對(duì)所學(xué)的數(shù)學(xué)應(yīng)用題產(chǎn)生學(xué)習(xí)興趣的基礎(chǔ)上,為了引導(dǎo)他們開(kāi)展有效思考,提高他們分析和求解數(shù)學(xué)應(yīng)用題的能力和自主學(xué)習(xí)能力,還要注意傳授給他們一些關(guān)鍵的應(yīng)用題求解思路、技巧與方法,保證可以切實(shí)提升他們自身的整體問(wèn)題求解能力。具體的數(shù)學(xué)應(yīng)用題解題思路及要點(diǎn)如下。
1.認(rèn)真進(jìn)行審題,搞清問(wèn)題題意。求解數(shù)學(xué)應(yīng)用題的第一步就是要認(rèn)真審題,搞清問(wèn)題的題意。任何一道數(shù)學(xué)應(yīng)用題本身包含有固有的條件以及內(nèi)在的邏輯性,數(shù)學(xué)應(yīng)用題求解中的審題環(huán)節(jié)就是要挖掘這些關(guān)鍵的解題信息。如果農(nóng)村小學(xué)高年級(jí)學(xué)生從一開(kāi)始就不理解這些數(shù)學(xué)應(yīng)用題中的相關(guān)文字釋義等一些內(nèi)部條件,那么在求解過(guò)程中也會(huì)出現(xiàn)思維混亂情況,容易使新舊數(shù)學(xué)知識(shí)存在斷層情況,進(jìn)而會(huì)影響后續(xù)求解實(shí)際的數(shù)學(xué)問(wèn)題。只有讀懂?dāng)?shù)學(xué)問(wèn)題的題意,明確問(wèn)題的求解思路,才能夠更加精準(zhǔn)地梳理數(shù)學(xué)應(yīng)用題求解的思路。
小學(xué)生的審題能力是比較有限的,主要是因?yàn)閷W(xué)生的思維還沒(méi)有發(fā)展到成熟階段,對(duì)問(wèn)題的分析往往停留在表面層次。再加上小學(xué)生的注意力很容易被其他事物轉(zhuǎn)移,所以要讓學(xué)生認(rèn)真踏實(shí)完成審題任務(wù)較為困難,也在一定程度上增加了應(yīng)用題教學(xué)的難度。針對(duì)這樣的情況,教師需要在審題方面給予學(xué)生必要的幫助,指導(dǎo)學(xué)生掌握正確的審題方法。教師可以先在審題指導(dǎo)當(dāng)中進(jìn)行示范,也就是在列出數(shù)學(xué)題之后,教師就對(duì)審題的步驟和過(guò)程進(jìn)行恰當(dāng)安排,然后依照一定的程序完成審題,在每一步的實(shí)際操作當(dāng)中都進(jìn)行一定程度的講解,使得學(xué)生能夠在教師的帶領(lǐng)之下順利掌握審題的方法。教師要指導(dǎo)學(xué)生掌握關(guān)鍵信息的尋找方法,找到影響問(wèn)題解決、可以突出數(shù)量關(guān)系以及解題重點(diǎn)的字詞,同時(shí)還要及時(shí)剔除其他無(wú)關(guān)解題的信息,通過(guò)抓重點(diǎn)挖掘其中包含的隱含數(shù)量關(guān)系,從而迅速找到解題突破口,提高解題質(zhì)量和效率,彌補(bǔ)學(xué)生應(yīng)用題解答當(dāng)中的缺陷。
2.理清內(nèi)在結(jié)構(gòu),梳理解題思路。在學(xué)生搞清楚數(shù)學(xué)應(yīng)用題題意的基礎(chǔ)上,為了幫助他們進(jìn)一步深入理解與掌握所學(xué)的核心數(shù)學(xué)知識(shí),還要指導(dǎo)他們對(duì)所涉及數(shù)學(xué)應(yīng)用題當(dāng)中的內(nèi)在結(jié)構(gòu)進(jìn)行有效梳理,幫助他們可以構(gòu)建明晰、準(zhǔn)確的數(shù)量關(guān)系,同時(shí)還要指導(dǎo)學(xué)生可以準(zhǔn)確地將應(yīng)用題結(jié)構(gòu)進(jìn)行準(zhǔn)確拆解,確保應(yīng)用題求解步驟的準(zhǔn)確性。在這一數(shù)學(xué)應(yīng)用題求解過(guò)程中,會(huì)涉及等價(jià)條件這一求解難題。因?yàn)闊o(wú)論何種數(shù)學(xué)應(yīng)用題中都包含著一定等價(jià)關(guān)系,只有對(duì)它們進(jìn)行深入分析,才能夠更好地確定解題方法的準(zhǔn)確性。比如,參照不變、總量不變和等價(jià)替代等都屬于等價(jià)條件范疇,其間還可以采取作圖法、方程法和直接求解法等方法求解數(shù)學(xué)應(yīng)用題。
學(xué)生解決應(yīng)用題的過(guò)程應(yīng)該是循序漸進(jìn)、持續(xù)深入的過(guò)程,整個(gè)過(guò)程在不斷朝著順利解決應(yīng)用題方面前進(jìn)。所以教師在教學(xué)指導(dǎo)當(dāng)中,要堅(jiān)持層層落實(shí)和循序漸進(jìn)的原則,指導(dǎo)學(xué)生掌握正確的解題思路和方法,并了解不同求解方法的應(yīng)用情境。作圖法是應(yīng)用題解答當(dāng)中應(yīng)用廣泛的方法,主要是借助了數(shù)形結(jié)合思想,通過(guò)畫(huà)圖的方式呈現(xiàn)應(yīng)用題當(dāng)中的數(shù)量關(guān)系,然后通過(guò)觀察圖像的方式順利找到解題突破口。這種方法可以極大程度上訓(xùn)練學(xué)生的數(shù)學(xué)思維,降低學(xué)生的思考難度,讓學(xué)生在解決抽象問(wèn)題時(shí)事半功倍。方程法主要是利用列方程的方式呈現(xiàn)數(shù)量關(guān)系,跟隨著教學(xué)思路順利列出方程,然后進(jìn)行方程求解,得到未知數(shù)。方程在數(shù)學(xué)應(yīng)用題解答當(dāng)中的應(yīng)用價(jià)值非常突出,也是小學(xué)生必須掌握的一種求解策略。直接求解法主要是面對(duì)解題難度相對(duì)較小的問(wèn)題,在梳理了數(shù)量關(guān)系之后,就可以運(yùn)用直接求解的方式完成問(wèn)題的解答。
3.運(yùn)用數(shù)量關(guān)系,構(gòu)建數(shù)學(xué)模型。伴隨課改的深入,數(shù)學(xué)應(yīng)用題的求解同科學(xué)和生活實(shí)際的聯(lián)系越發(fā)緊密,數(shù)學(xué)應(yīng)用題的求解不再單獨(dú)重視數(shù)量關(guān)系的挖掘,也越來(lái)越多地側(cè)重學(xué)生問(wèn)題分析和求解能力的發(fā)展。因此,在求解相應(yīng)數(shù)學(xué)問(wèn)題的過(guò)程中除了要考慮數(shù)量關(guān)系的挖掘之外,也要靈活地應(yīng)用畫(huà)圖、動(dòng)手操作等一些體驗(yàn)操作來(lái)幫助學(xué)生逐步體會(huì)其中包含的數(shù)量關(guān)系,提高他們的數(shù)學(xué)模型構(gòu)建能力。數(shù)學(xué)模型是關(guān)于部分現(xiàn)實(shí)世界和為一種特殊目的而做的抽象性與簡(jiǎn)化性結(jié)構(gòu)。具體來(lái)說(shuō)就是為了達(dá)成某種目標(biāo),借助字母、數(shù)字等不同數(shù)學(xué)符號(hào)構(gòu)建的等式或不等式和圖像、圖表等描繪客觀事物特點(diǎn)與內(nèi)在關(guān)聯(lián)的數(shù)學(xué)結(jié)構(gòu)表達(dá)式。通過(guò)構(gòu)建數(shù)學(xué)模型的方式,可以為實(shí)際問(wèn)題和數(shù)學(xué)工具建立橋梁和紐帶,使得學(xué)生可以通過(guò)數(shù)學(xué)模型建構(gòu)的方式解決多元化的實(shí)際問(wèn)題,切實(shí)解決應(yīng)用題解答當(dāng)中的困難。
教師在指導(dǎo)學(xué)生建構(gòu)數(shù)學(xué)模型、降低應(yīng)用題解答難度時(shí),要讓學(xué)生明確數(shù)學(xué)建模要滿足以下要求:一是真實(shí)可靠。教師引導(dǎo)學(xué)生建立的數(shù)學(xué)模型必須是真實(shí)完整的,可以直觀反饋客觀現(xiàn)象,當(dāng)然也要具備代表性和外推性,能夠借助數(shù)學(xué)模型解決實(shí)際問(wèn)題,達(dá)成相應(yīng)的解決目標(biāo)。二是簡(jiǎn)單實(shí)用。在數(shù)學(xué)建模當(dāng)中需要注意確保模型簡(jiǎn)單和可操作,提高學(xué)生的數(shù)學(xué)模型駕馭能力。三是適應(yīng)變化。數(shù)學(xué)模型應(yīng)該適應(yīng)一定的變化,通過(guò)有關(guān)變量與參數(shù)的調(diào)整適應(yīng)解決不同的新情況,讓?xiě)?yīng)用題解答更加靈活。
總之,數(shù)學(xué)應(yīng)用題的求解思路與方法傳授是農(nóng)村小學(xué)高年級(jí)數(shù)學(xué)教學(xué)的一個(gè)重要內(nèi)容,其關(guān)系到學(xué)生應(yīng)用題求解能力發(fā)展。在農(nóng)村小學(xué)高年級(jí)數(shù)學(xué)應(yīng)用題求解過(guò)程中,可以從創(chuàng)設(shè)良好問(wèn)題情境、激發(fā)學(xué)生解題興趣出發(fā),注重傳授學(xué)生解題方法,保證可以不斷提高學(xué)生的自學(xué)能力。
參考文獻(xiàn):
[1]楊新梅.小學(xué)高年級(jí)數(shù)學(xué)應(yīng)用題的教學(xué)分析[J].讀與寫(xiě),2020(20).
[2]王小林.探究小學(xué)高年級(jí)數(shù)學(xué)應(yīng)用題解答能力的培養(yǎng)措施[J].數(shù)碼設(shè)計(jì),2020(3).
[3]韓可可.淺談小學(xué)高年級(jí)數(shù)學(xué)應(yīng)用題教學(xué)策略[J].新課程導(dǎo)學(xué),2020(21).