国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

原位聚合三維陶瓷骨架增強(qiáng)全固態(tài)鋰電池電解質(zhì)

2021-01-06 05:53顏一垣鞠江偉于美燕陳守剛崔光磊
關(guān)鍵詞:歐姆全固態(tài)半圓

顏一垣, 鞠江偉, 于美燕, 陳守剛, 崔光磊

原位聚合三維陶瓷骨架增強(qiáng)全固態(tài)鋰電池電解質(zhì)

顏一垣1, 鞠江偉2, 于美燕1, 陳守剛1, 崔光磊2

(1. 中國(guó)海洋大學(xué) 材料科學(xué)與工程學(xué)院, 青島 266100; 2. 中國(guó)科學(xué)院 青島生物能源與過(guò)程研究所, 青島 266101)

有機(jī)/無(wú)機(jī)復(fù)合電解質(zhì)被認(rèn)為是全固態(tài)鋰電池中最具潛力的固態(tài)電解質(zhì)之一, 但由于無(wú)機(jī)填料易團(tuán)聚, 通過(guò)提高無(wú)機(jī)填料含量來(lái)改善復(fù)合電解質(zhì)的電導(dǎo)率難有成效。此外, 在全固態(tài)鋰電池中, 電解質(zhì)和電極之間松散的固–固接觸造成過(guò)大的界面阻抗, 限制了全固態(tài)鋰電池的性能。本研究采用固相法合成具有Li+連續(xù)傳輸通道的自支撐三維多孔Li6.4Al0.1La3Zr1.7Ta0.3O12骨架, 并利用原位聚合的方法構(gòu)筑一體化電解質(zhì)/電極固–固界面。此策略指導(dǎo)合成的復(fù)合電解質(zhì)的室溫電導(dǎo)率可達(dá)1.9×10?4S·cm?1。同時(shí), 一體化的界面使得Li-Li對(duì)稱電池的界面阻抗從1540 Ω·cm2降低至449 Ω·cm2, 因此4.3 V(. Li+/Li)的LiCoO2|Li全固態(tài)鋰電池展現(xiàn)出良好的電化學(xué)性能。

固態(tài)復(fù)合電解質(zhì); 原位聚合; 多孔骨架; 全固態(tài)電池

為彌補(bǔ)單一固態(tài)電解質(zhì)的缺陷, 結(jié)合二者的優(yōu)勢(shì), 將SIE與SPE進(jìn)行復(fù)合是一種行之有效的方法。SPE中引入零維SIE顆粒或者一維SIE纖維能夠降低SPE基體的結(jié)晶度或玻璃化轉(zhuǎn)變溫度[13-14], 一般可將SPE的電導(dǎo)率提升一個(gè)數(shù)量級(jí)[15]。但是零維或一維SIE填料的含量過(guò)高會(huì)產(chǎn)生團(tuán)聚, 導(dǎo)致電導(dǎo)率降低[16-17]。并且, 高電導(dǎo)率的SIE填料或是被SPE相孤立或是被有機(jī)/無(wú)機(jī)界面相孤立, 阻礙了Li+在高電導(dǎo)率SIE相中的快速傳導(dǎo)。不同于將SIE填料分散于SPE中, 相反, 將SPE澆注于多孔SIE骨架中, 即三維SIE填料中, 可得到具有連續(xù)SIE相的有機(jī)/無(wú)機(jī)復(fù)合電解質(zhì)[17-18]。這種結(jié)構(gòu)不僅能有效避免SIE填料的團(tuán)聚, 還能為L(zhǎng)i+的快速傳輸提供連續(xù)通道, 大幅提升電導(dǎo)率[19]。

圖1 (a)非原位聚合策略和(b)原位聚合策略制備的ASLB內(nèi)部結(jié)構(gòu)示意圖

1 實(shí)驗(yàn)方法

固相反應(yīng)法合成LLZTO粉末: 將Al2O3、ZrO2、LiOH、Ta2O5及La2O3按照Li6.4Al0.1La3Zr1.7Ta0.3O12的化學(xué)計(jì)量比稱量后倒入球磨罐中。以異丙醇為球磨介質(zhì), 并于350 r/min的速率球磨10 h。之后, 將球磨所得漿料置于60 ℃烘箱中干燥, 并于1000 ℃的空氣氛圍中燒結(jié)5 h, 再將燒結(jié)所得塊體進(jìn)行研磨即可得到LLZTO粉末。

將上述所得LLZTO粉末與造孔劑石墨粉以質(zhì)量比3.5 : 1.5均勻混合后, 在12 MPa的壓力下壓制成片。再將其置于氧化鎂瓷舟中, 并用LLZTO粉末包覆, 在1150 ℃的空氣氛圍中燒結(jié)5 h, 得到p-LLZTO。直接將上述所得LLZTO粉末于12 MPa壓力下壓成片, 置于氧化鎂瓷舟中, 并用LLZTO粉末包裹, 于1150 ℃的空氣氛圍中燒結(jié)5 h, 可得致密LLZTO樣品。

為證明原位聚合對(duì)ASLB的積極作用, 本工作對(duì)原位聚合及非原位聚合的LiCoO2|Li ASLB性能進(jìn)行對(duì)比。原位聚合LiCoO2|Li ASLB的制備: 將p-LLZTO或纖維素隔膜置于鋰片上, 滴加100 μL的PEGMEA前驅(qū)體溶液, 放置正極片, 在手套箱中完成電池的組裝后, 移入60 ℃烘箱中, 加熱完成原位聚合。非原位聚合LiCoO2|Li ASLB的制備: 先將p-LLZTO置于聚四氟乙烯板上, 然后滴加100 μL PEGMEA前驅(qū)體溶液, 在60 ℃加熱使PEGMEA完成聚合。將3D composite從聚四氟乙烯板上取下并置于鋰片和正極片之間, 完成非原位電池組裝。

2 結(jié)果與討論

2.1 p-LLZTO的表征

2.2 3D composite的表征

首先使用傅里葉紅外光譜(Fourier transform infrared spectrometer, FT-IR)分析PEGMEA的聚合程度。在60 ℃加熱24 h后, 如圖3(a)所示, 位于1620 cm?1附近的C=C峰完全消失, 而其它官能團(tuán), 如C=O或者C?O?C的峰則仍保留, 證明在該條件下PEGMEA能夠完全聚合, 轉(zhuǎn)化為P(PEGMEA)。而3D composite中的P(PEGMEA)與純P(PEGMEA)的紅外光譜幾乎相同, 說(shuō)明LLZTO不影響PEGMEA的聚合且不與PEGMEA反應(yīng)。為進(jìn)一步分析P(PEGMEA)的分子結(jié)構(gòu), 又對(duì)PEGMEA及P(PEGMEA)進(jìn)行核磁共振測(cè)試(Nuclear magnetic resonance, NMR)測(cè)試。在PEGMEA的氫譜(圖3(b))中, 與C=C相連氫原子的峰分別位于6.4、6.2和6.0。在60 ℃加熱24 h后, 這些峰完全消失, 同時(shí)在2.5~1.5的位置上出現(xiàn)了若干峰。這歸結(jié)于C=C雙鍵被打開(kāi), 同樣證明PEGMEA完成了聚合。

圖2 (a)標(biāo)準(zhǔn)LLZO及本實(shí)驗(yàn)制備的LLZTO粉末和p-LLZTO的XRD圖譜; (b) p-LLZTO的截面SEM照片; (c)p-LLZTO的孔徑分布曲線; (d)致密LLZTO和p-LLZTO的室溫阻抗圖譜(插圖: 局部放大的致密LLZTO阻抗譜)

圖3 (a)PEGMEA、P(PEGMEA)和3D composite中P(PEGMEA)的紅外圖譜; (b)PEGMEA和3D composite中P(PEGMEA)的核磁共振氫譜及相關(guān)結(jié)構(gòu)式(溶劑為氘代N,N-二甲基甲酰胺); (c)60 ℃條件下steel|3D composite|steel電池歐姆阻抗與加熱時(shí)間關(guān)系曲線, 插圖為有/無(wú)p-LLZTOP的PEGMEA在小瓶中60 ℃加熱24 h后的照片; (d)P(PEGMEA)和3D composite的電導(dǎo)率與溫度的關(guān)系曲線; (e)3D composite的截面SEM照片及元素分布圖

表1 不同固態(tài)電解質(zhì)的室溫電導(dǎo)率

a: ethylene oxide(–CH2–CH2–O–); b: lithium bis(trifluoromethanesulfonyl)imide); c: Li1.4Al0.4Ti1.6(PO4)3; d: Li0.35La0.55TiO3

2.3 3D composite與Li的相容性

對(duì)3D composite與Li的相容性進(jìn)行測(cè)試以確定其能否應(yīng)用于ASLB[12]。本實(shí)驗(yàn)對(duì)Li|3D composite|Li進(jìn)行EIS和恒流極化測(cè)試, 并以Li|P(PEGMEA)|Li和Li|LLZTO|Li作為對(duì)照。圖4(a~f)為基于不同電解質(zhì)的電池在熱處理前后的EIS圖譜。加熱前Li|PEGMEA|Li的EIS圖譜由一個(gè)半圓和一條斜線組成, 半圓與實(shí)軸的交點(diǎn)為歐姆阻抗, 而半圓的跨度為界面阻抗[29-30]。Li|3D composite|Li的EIS圖譜中存在兩個(gè)半圓, 這可能是固態(tài)p-LLZTO所致。在60 ℃加熱24 h后, Li|P(PEGMEA)|Li電池的EIS圖譜同樣出現(xiàn)兩個(gè)半圓, 高頻區(qū)半圓的跨度為歐姆阻抗, 而中頻區(qū)半圓的跨度為界面阻抗[31]。

根據(jù)阻抗圖譜的擬合結(jié)果, 上述電池?zé)崽幚砬昂髿W姆阻抗及界面阻抗的變化總結(jié)于圖4(g, h)中。加熱前, Li|3D composite|Li的歐姆阻抗為2736 Ω·cm, 僅為L(zhǎng)i|PEGMEA|Li歐姆阻抗8550 Ω·cm的三分之一。加熱后, Li|3D composite|Li的歐姆阻抗增至5996 Ω·cm,而Li|P(PEGMEA)|Li的歐姆阻抗陡增至216743 Ω·cm。同時(shí), 加熱后Li|3D composite|Li的界面阻抗從 115 Ω·cm2增加至449 Ω·cm2, 不到Li|P(PEGMEA)|Li界面阻抗956 Ω·cm2的二分之一。3D composite與P(PEGMEA)歐姆阻抗和界面阻抗的明顯差異, 說(shuō)明p-LLZTO在提升電導(dǎo)率上的巨大作用。圖4(b, e)為L(zhǎng)i|LLZTO|Li熱處理前后的EIS圖譜, 其歐姆阻抗和界面阻抗幾乎沒(méi)有變化, 分別約為8360 Ω·cm和1540 Ω·cm2, 表明LLZTO對(duì)鋰金屬穩(wěn)定, 無(wú)化學(xué)反應(yīng)發(fā)生, 與文獻(xiàn)[3]報(bào)道相符。而3D composite的界面阻抗僅為L(zhǎng)LZTO的三分之一說(shuō)明原位聚合策略能夠有效降低界面阻抗。

圖4 熱處理(a~c)前(d~f)后基于(a, d)PEGMEA、(b, e)LLZTO和(c, f)3D composite的Li-Li對(duì)稱電池的EIS圖譜; 基于不同電解質(zhì)的Li-Li電池處理前后(g)歐姆阻抗和(h)界面阻抗對(duì)比; (i)P(PEGMEA)和3D composite的Li-Li電池室溫下的直流恒流循環(huán)曲線(上插圖為L(zhǎng)LZTO的Li-Li電池室溫下的直流恒流循環(huán)曲線, 下插圖為3D composite的Li-Li電池的局部放大極化曲線, 電流密度為0.1 mA·cm?2)

P(PEGMEA)、LLZTO和3D composite與鋰金屬的相容性通過(guò)室溫下的直流極化進(jìn)行測(cè)試。圖4(i)中, 電流密度為0.1 mA·cm?2時(shí), Li|3D composite|Li的極化電壓僅為0.12 V且能夠穩(wěn)定循環(huán)超過(guò)200 h, 說(shuō)明3D composite與鋰金屬具有良好的相容性。作為對(duì)比的P(PEGMEA)在0.1 mA·cm?2的電流密度下, 不到90 h其極化電壓從0.33 V增至0.95 V。這應(yīng)當(dāng)歸因于P(PEGMEA)低的室溫電導(dǎo)率(3.6×10?6S·cm?1)。而致密LLZTO在電流密度為0.1 mA·cm?2時(shí), 其電池循環(huán)不到20 h就出現(xiàn)短路, 與文獻(xiàn)[32]報(bào)道相符。這是由于LLZTO與金屬鋰接觸不緊密, 局部產(chǎn)生較大的電流密度, 造成鋰的不均勻沉積并使鋰枝晶沿LLZTO中的晶界生長(zhǎng), 最終導(dǎo)致電池短路。相較之下, 利用原位聚合得到的3D composite與金屬鋰之間接觸緊密, 電場(chǎng)分布均勻, 因此3D composite能夠有效抑制鋰枝晶的生長(zhǎng)[33-34]。上述測(cè)試結(jié)果說(shuō)明3D composite與鋰金屬有很好的相容性, 能夠應(yīng)用于ASLB。

2.4 3D composite在ASLB中的應(yīng)用

以LiCoO2|Li ASLB對(duì)3D composite的性能進(jìn)行測(cè)試。為探究原位聚合策略對(duì)ASLB的積極作用, 即圖1中利用原位聚合形成一體化界面, 本工作對(duì)原位聚合及非原位聚合的LiCoO2|Li ASLBs性能進(jìn)行對(duì)比。LiCoO2|Li ASLB工作電壓范圍為3.0~4.3 V (Li+/Li), 工作溫度60 ℃。原位聚合LiCoO2|3D composite|Li ASLB在0.1(1=140 mAh·g?1)電流密度下, 首圈放電比容量為144 mAh·g?1, 首圈庫(kù)侖效率為94%(圖5(a, b))。電流密度為0.1、0.3、0.5時(shí), 其放電比容量分別為144、138和129 mAh·g?1。在0.1循環(huán)90圈后, 其容量保持率為88%。對(duì)于原位聚合LiCoO2|P(PEGMEA)|Li ASLB, 即使在60 ℃下, 首圈放電比容量也僅為123 mAh·g?1, 且在40圈以內(nèi)迅速衰減至10 mAh·g?1。而非原位聚合的LiCoO2|3D composite|Li ASLB的性能則更差, 首圈放電比容量?jī)H為62 mAh·g?1, 在15圈左右便失效。

圖5 (a)原位聚合LiCoO2|3D composite|Li、原位聚合LiCoO2|P(PEGMEA)|Li和非原位聚合LiCoO2|3D composite|Li ASLBs的循環(huán)性能; (b)原位聚合LiCoO2|3D composite|Li、原位聚合LiCoO2|P(PEGMEA)|Li和非原位聚合LiCoO2|3D composite|Li ASLBs的充放電曲線; (c)原位聚合和(d)非原位聚合LiCoO2|3D composite|Li ASLBs拆解后的LiCoO2/3D composite界面的截面SEM照片

分析上述ASLBs的失效機(jī)理, 首先, 低的離子電導(dǎo)率是造成原位聚合LiCoO2|P(PEGMEA)|Li ASLB性能不佳的主要原因, 即使在60 ℃下, P(PEGMEA)的電導(dǎo)率也僅為1.85×10?5S·cm?1, 這嚴(yán)重限制了Li+的快速輸運(yùn)。對(duì)于非原位聚合LiCoO2|3D composite |Li ASLB, 雖然3D composite具有較高的電導(dǎo)率, 但電極與電解質(zhì)之間存在約30 μm的間隙, 不連續(xù)的界面接觸嚴(yán)重阻礙了Li+在電解質(zhì)–電極之間的傳輸, 造成電池性能的快速衰減。如圖5(c, d)所示, 通過(guò)原位聚合制備的LiCoO2|3D composite|Li具有一體化的電解質(zhì)/電極界面, 確保Li+在界面處順利地傳輸。上述三種ASLBs的性能對(duì)比證明了高的電導(dǎo)率和一體化的電解質(zhì)–電極界面是獲得高性能ASLB的必要條件, 而本工作中通過(guò)原位聚合的策略成功實(shí)現(xiàn)了高電導(dǎo)率3D composite與電極之間的一體化界面的構(gòu)建。

3 結(jié)論

綜上, 本工作以石墨粉為造孔劑通過(guò)高溫?zé)Y(jié)成功制備自支撐三維多孔Li6.4Al0.1La3Zr1.7Ta0.3O12骨架。將聚乙二醇甲基醚丙烯酸酯澆注于多孔Li6.4Al0.1La3Zr1.7Ta0.3O12中, 聚合后得到三維有機(jī)無(wú)機(jī)復(fù)合電解質(zhì)。連續(xù)的Li6.4Al0.1La3Zr1.7Ta0.3O12相能夠?yàn)長(zhǎng)i+的快速傳輸提供通道, 并將聚合后的聚乙二醇甲基醚丙烯酸酯的室溫電導(dǎo)率提升53倍, 達(dá)到1.9×10?4S·cm?1。更重要的是, 原位聚合的聚乙二醇甲基醚丙烯酸酯能夠在接觸不良的三維有機(jī)無(wú)機(jī)復(fù)合電解質(zhì)和電極之間形成一體化界面, 有效地將電池界面阻抗從1542 Ω·cm2降低至449 Ω·cm2。最后, 原位聚合三維有機(jī)無(wú)機(jī)復(fù)合電解質(zhì)被成功應(yīng)用于LiCoO2|Li全固態(tài)鋰電池。本工作為制備與高電壓正極、鋰負(fù)極有良好化學(xué)機(jī)械相容性的高電導(dǎo)率有機(jī)/無(wú)機(jī)復(fù)合電解質(zhì)提供了有價(jià)值的參考。

補(bǔ)充材料

本文相關(guān)補(bǔ)充材料可登陸https://doi.org/ 10.15541/ jim20200152查看。

[1] GAO Z, SUN H, FU L,. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries.,2018, 30(17): e1705702.

[2] BACHMAN J C, MUY S, GRIMAUD A,. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction.,2016, 116(1): 140–162.

[3] ZHENG F, KOTOBUKI M, SONG S,. Review on solid electrolytes for all-solid-state lithium-ion batteries.,2018, 389: 198–213.

[4] ZHANG B, TAN R, YANG L,. Mechanisms and properties of ion-transport in inorganic solid electrolytes.,2018, 10: 139–159.

[5] CHEN R, QU W, GUO X,. The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons.,2016, 3(6): 487–516.

[6] FAN L, WEI S, LI S,. Recent progress of the solid-state electrolytes for high-energy metal-based batteries.,2018, 8 (11): 1702657.

[7] YUE L, MA J, ZHANG J,. All solid-state polymer electrolytes for high-performance lithium ion batteries.,2016, 5: 139–164.

[8] MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes.,2017, 2(4): 16103

[9] GAO Y, WANG D, LI Y C,. Salt-based organic-inorganic nanocomposites: towards a stable lithium metal/Li10GeP2S12solid elec-trolyte interface.,2018, 57(41): 13608–13612.

[10] BUANNIC L, ORAYECH B. Dual substitution strategy to enhance Li+ionic conductivity in Li7La3Zr2O12solid electrolyte., 2017, 29(4): 1769–1778.

[11] ZHANG Z, SHAO Y, LOTSCH B,. New horizons for inorganic solid state ion conductors.,2018, 11(8): 1945–1976.

[12] CHENG X B, ZHAO C Z, YAO Y X,. Recent advances in energy chemistry between solid-state electrolyte and safe lithium- metal anodes.,2019, 5(1): 74–96.

[13] ZHA W, CHEN F, YANG D,. High-performance Li6.4La3Zr1.4Ta0.6O12/poly(ethylene oxide)/succinonitrile composite electrolyte for solid-state lithium batteries.,2018, 397: 87–94.

[14] ZHU P, YAN C, DIRICAN M,. Li0.33La0.557TiO3ceramic nanofiber- enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries.,2018, 6(10): 4279–4285.

[15] WAN Z, LEI D, YANG W,. Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder.,2019, 29(1): 1805301.

[16] CHEN L, LI Y, LI S P,. PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer- in-ceramic”.,2018, 46: 176–184.

[17] XIE H, YANG C, FU K K,. Flexible, scalable, and highly conductive garnet-polymer solid electrolyte templated by bacterial cellulose.,2018, 8(18): 1703474.

[18] BAE J, LI Y, ZHANG J,. A 3D nanostructured hydrogel- framework-derived high-performance composite polymer lithium-ion electrolyte.,2018, 57(8): 2096–2100.

[19] BAE J, LI Y, ZHAO F,. Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries.,2018, 15: 46–52.

[20] LIU Y, SUN Q, ZHAO Y,. Stabilizing the interface of NASICON solid electrolyte against Li metal with atomic layer deposition., 2018, 10(37): 31240–31248.

[21] JU J, WANG Y, CHEN B,. Integrated interface strategy toward room temperature solid-state lithium batteries., 2018, 10(16): 13588–13597.

[22] ZHAO Q, LIU X, STALIN S,. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries., 2019, 4(5): 365–373.

[23] DUAN H, YIN Y X, SHI Y,. Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers., 2018, 140(1): 82–85.

[24] PARANJAPE N, MANDADAPU P C, WU G,. Highly- branched cross-linked poly(ethylene oxide) with enhanced ionic conductivity., 2017, 111: 1–8.

[25] BAN X, ZHANG W, CHEN N,. A high-performance and durable poly(ethylene oxide)-based composite solid electrolyte for all solid-state lithium battery., 2018, 122(18): 9852–9858.

[26] GONG Y, FU K, XU S,. Lithium-ion conductive ceramic textile: a new architecture for flexible solid-state lithium metal batteries., 2018, 21(6): 594–601.

[27] LI D, CHEN L, WANG T,. 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries., 2018, 10(8): 7069–7078.

[28] LI Z, HUANG H M, ZHU J K,. Ionic conduction in composite polymer electrolytes: case of PEO:Ga-LLZO composites., 2019, 11(1): 784–791.

[29] WANG Q, WEN Z, JIN J,. A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries., 2016, 52(8): 1637–1640.

[30] HAN X, GONG Y, FU K K,. Negating interfacial impedance in garnet-based solid-state Li metal batteries., 2017, 16(5): 572–579.

[31] JU J, CHEN F, XIA C. Ionic conductivity of impregnated samaria doped ceria for solid oxide fuel cells., 2014, 136: 422–429.

[32] WU B, WANG S, LOCHALA J,. The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries., 2018, 11(7): 1803–1810.

[33] HU J L, TIAN J, Li C L. Nanostructured carbon nitride polymer- reinforced electrolyte to enable dendrite-suppressed lithium metal batteries., 2017, 9: 11615–11625.

[34] HU J L, YAO Z G, CHEN K Y,High-conductivity open framework fluorinated electrolyte bonded by solidified ionic liquid wires for solid-state Li metal batteries., 2020, 28: 37–46.

Polymerization Integrating 3D Ceramic Framework in All Solid-state Lithium Battery

YAN Yiyuan1, JU Jiangwei2, YU Meiyan1, CHEN Shougang1, CUI Guanglei2

(1. School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China; 2. Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China)

Organic/inorganic composites have been considered as promising electrolyte candidates in all solid-state lithium batteries. Aiming at improving the conductivity significantly by increasing the frequently-used 0D or 1D ceramic nano-fillers to high content is unsuccessful due to the particle tendency to agglomeration. What's worse, the loose contact between the solid electrolyte and solid electrodes is much of a serious barrier to the performance and thus to the application of all solid-state lithium batteries. Herein, self-supported 3D porous Li6.4Al0.1La3Zr1.7Ta0.3O12frameworks are employed to provide percolated fast Li+conductive pathway whilepolymerization of poly(ethylene glycol) methyl ether acrylate can integrate the loose solid-solid interface and reduce the interfacial resistance efficiently. Inspiringly, the Li+conductivity of the composite exhibits 1.9×10?4S·cm?1at room temperature. The interfacial resistance in Li-Li batteries decreases significantly from 1540 to 449 Ω·cm2, rendering good capacity and cyclability of the 4.3 V (. Li+/Li) LiCoO2|Li all solid-state lithium battery.

solid composite electrolyte;polymerization; porous framework; all solid-state battery

TQ174

A

1000-324X(2020)12-1357-08

10.15541/jim20200152

2020-03-23;

2020-05-11

國(guó)家自然科學(xué)基金(51902325) National Natural Science Foundation of China(51902325)

顏一垣(1994–), 男, 碩士研究生. E-mail: yanyiyuan94@163.com

YAN Yiyuan(1994–), male, Master candidate. E-mail: yanyiyuan94@163.com

陳守剛, 教授. E-mail: sgchen@ouc.edu.cn; 崔光磊, 研究員. E-mail: cuigl@qibebt.ac.cn

CHEN Shougang, professor. E-mail: sgchen@ouc.edu.cn; CUI Guanglei, professor. E-mail: cuigl@qibebt.ac.cn

猜你喜歡
歐姆全固態(tài)半圓
怎樣畫(huà)長(zhǎng)方形里的最大半圓
全固態(tài)中波發(fā)射機(jī)常見(jiàn)故障及處理措施
電視轉(zhuǎn)播臺(tái)全固態(tài)電視發(fā)射機(jī)的維護(hù)探討
深度認(rèn)識(shí)多用電表歐姆擋及其倍率轉(zhuǎn)換原理
會(huì)變形的神奇半圓
歐姆:發(fā)現(xiàn)電阻的奧秘
談1kW全固態(tài)中波發(fā)射機(jī)故障及檢修
半圓周長(zhǎng)和圓周長(zhǎng)的一半
有關(guān)半圓的幾個(gè)結(jié)論及應(yīng)用
驚喜源自飽滿平衡的音色 TARALABS(超時(shí)空)Apollo Digital 75歐姆同軸數(shù)碼線
金乡县| 长岛县| 余干县| 肥东县| 永宁县| 泸水县| 饶平县| 英超| 和龙市| 大悟县| 潜江市| 衡阳县| 孝感市| 巴东县| 浦城县| 涟水县| 江源县| 银川市| 兰考县| 长治县| 平塘县| 安阳县| 禄劝| 德阳市| 泸溪县| 陵川县| 武宁县| 麦盖提县| 黔西县| 阜宁县| 达州市| 津南区| 林口县| 比如县| 斗六市| 灵寿县| 广西| 河西区| 武安市| 班戈县| 宁安市|