雷宇 曾清 程緯民
[摘要] 目的 分析血清鐵調(diào)素、轉(zhuǎn)化生長因子(GDF15)以及血清鐵蛋白(SF)在β中間型地中海貧血(β-TI)患者體內(nèi)相關(guān)性。 方法 采用分層抽樣辦法,選取2016年9月—2019年3月廣西中醫(yī)藥大學(xué)第一附屬醫(yī)院(以下簡稱“我院”)血液科門診經(jīng)酶聯(lián)免疫吸附測定(ELISA)方法和聚合酶鏈反應(yīng)(PCR)技術(shù)確診基因為β-TI患者56例作為β-TI組及2018年11月—2019年3月來我院體檢科體檢者68名作為健康對照組,對兩組血清鐵調(diào)素及SF和GDF15水平進行分析。 結(jié)果 健康對照組中女性血紅蛋白(Hb)、鐵調(diào)素以及SF均低于男性,差異均有統(tǒng)計學(xué)意義(均P < 0.05)。男性和女性GDF15比較,差異無統(tǒng)計學(xué)意義(P > 0.05)。在β-TI組中,男性和女性Hb、鐵調(diào)素、GDF15、SF比較,差異無統(tǒng)計學(xué)意義(P > 0.05)。β-TI組Hb、鐵調(diào)素均低于健康對照組,而GDF15以及SF均高于健康對照組,差異均有統(tǒng)計學(xué)意義(均P < 0.05)。β-TI組鐵調(diào)素和GDF15呈負相關(guān)(r = -0.25),GDF15和Hb呈負相關(guān)(r = -0.24),GDF15和SF呈負相關(guān)(r = -0.28),SF和年齡呈正相關(guān)(r = 0.36);健康對照組中GDF15和鐵調(diào)素呈正相關(guān)(r = 0.26),SF和鐵調(diào)素呈正相關(guān)(r = 0.34),GDF15和SF呈正相關(guān)(r = 0.36),相關(guān)性均有統(tǒng)計學(xué)意義(均P < 0.05)。 結(jié)論 β-TI患者血清鐵調(diào)素水平明顯下降,而GDF15和SF顯著升高,GDF15可能是β-TI患者鐵調(diào)素重要調(diào)節(jié)因素。
[關(guān)鍵詞] 鐵代謝;鐵調(diào)素;地中海貧血;轉(zhuǎn)化生長因子15
[中圖分類號] R556.61? ? ? ? ? [文獻標識碼] A? ? ? ? ? [文章編號] 1673-7210(2020)09(a)-0100-04
[Abstract] Objective To analyze the correlation of serum hepcidin, growth differentiation factor 15 (GDF15) and serum ferritin (SF) in β-thalassemia intermedia (β-TI) patients. Methods Using stratified sampling method, a total of 56 patients with β-TI confirmed by enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) from September 2016 to March 2019 in the Department of Hematology, the First Affiliated Hospital of Guangxi University of Chinese Medicine (hereinafter referred to as “our hospital”) were selected as the β-TI group and a total of 68 patients who came to the Physical Examination Department of our hospital from November 2018 to March 2019 were selected as the healthy control group. Serum hepcidin and SF and GDF15 levels were analyzed in the two groups. Results In the healthy control group, hemoglobin (Hb), hepcidin and SF were all lower in females than in males, and the differences were statistically significant (all P < 0.05). There was no significant difference in GDF15 between male and female (P > 0.05). In β-TI group, there were no significant differences in Hb, hepcidin, GDF15 and SF between male and female (P > 0.05). In β-TI group, Hb and hepcidin were lower than those in the healthy control group, while GDF15 and SF were higher than those in the healthy control group, and the differences were statistically significant (all P < 0.05). In β-TI group, hepcidin was negatively correlated with GDF15 (r = -0.25), GDF15 was negatively correlated with Hb (r = -0.24), GDF15 was negatively correlated with SF (r = -0.28), and SF was positively correlated with age (r = 0.36); In the healthy control group, GDF15 was positively correlated with hepcidin (r = 0.26), SF was positively correlated with hepcidin (r = 0.34), GDF15 was positively correlated with SF (r = 0.36), and the correlation was statistically significant (all P < 0.05). Conclusion In β-TI patients, serum hepcidin levels are significantly decreased, while GDF15 and SF are significantly increased. GDF15 may be an important regulatory factor of hepcidin in β-TI patients.
鐵調(diào)素在巨噬細胞、心肝腎、小腸等多種細胞有表達,其可以通過磷酸化降解細胞膜表面的膜鐵轉(zhuǎn)運蛋白減少鐵釋放和抑制鐵吸收達到減少血清鐵濃度的作用[7-9]。炎癥刺激、鐵過量可以促進鐵調(diào)素表達,而缺鐵、缺氧以及無效紅細胞生成過程的各種因子可下調(diào)鐵調(diào)素表達[10-15]。
本研究提示鐵調(diào)素和SF在健康人群存在性別差異,女性鐵調(diào)素和SF均低于男性,而GDF15濃度在健康男性和女性之間差異無統(tǒng)計學(xué)意義(P > 0.05)。從關(guān)聯(lián)性分析看出,健康人體內(nèi)鐵調(diào)素和SF呈正相關(guān)(r = 0.34)。盡管女性月經(jīng)會丟失鐵,但是紅細胞會代償避免貧血,而GDF15未見明顯升高可以理解為生理范圍內(nèi)的代償。健康人群SF和GDF15呈正相關(guān)(r = 0.36),這也側(cè)面說明了紅系生成數(shù)量對鐵的需求和SF的關(guān)聯(lián)性。這似乎暗示著在鐵穩(wěn)態(tài)的情況下,健康人體內(nèi)調(diào)控鐵調(diào)素的主要調(diào)節(jié)途徑還是在存儲鐵這一方。
本研究關(guān)聯(lián)性分析顯示在β-TI患者體內(nèi)SF和年齡呈正相關(guān)(r = 0.36),這也提示在未祛鐵時隨著時間的推移這類患者不可避免發(fā)生自發(fā)性鐵過載。β-TI組GDF15和Hb呈負相關(guān)(r = -0.24),從臨床分析Hb偏高的患者骨髓紅系祖細胞分化壓力相對偏低,因此釋放GDF15蛋白偏低,高Hb常常伴隨著GDF15的低表達,反之紅細胞前體對鐵的需求下降,腸道吸收鐵減少,因此GDF15和SF呈負相關(guān)(r = -0.28)。
β-TI患者本身就不太需要輸血,大多數(shù)患者Hb基本能穩(wěn)定維持在90 g/L左右,這類患者鐵調(diào)素本身低于健康人群,鐵調(diào)素不足又加重腸道吸收鐵,因此β-TI患者體內(nèi)處于“鐵失衡加速”狀態(tài)。不同于健康人群,在鐵穩(wěn)態(tài)嚴重破壞的β地貧患者體內(nèi),鐵調(diào)素調(diào)控受到貧血、缺氧、紅系生成和鐵過載等多種調(diào)控因素的影響[16-17]。
本研究提示β-TI組鐵調(diào)素要顯著低于健康對照組,相反的是GDF15要顯著高于健康對照,而且β-TI組鐵調(diào)素和GDF15負相關(guān)(r = -0.25),這個數(shù)據(jù)也印證了Tanno等[18]的研究:地貧患者血清高表達GDF15蛋白顯著抑制鐵調(diào)素的表達,而當(dāng)通過免疫共沉淀祛除GDF15時,鐵調(diào)素抑制解除而顯著升高。和國外Origa等[19]報道一致發(fā)現(xiàn):β-TI組高表達GDF15同時伴隨著鐵調(diào)素顯著降低。這個現(xiàn)象筆者認為和骨髓內(nèi)大量無效紅細胞生成過程中釋放出紅系因子如促紅細胞生成素、GDF15等抑制鐵調(diào)素有密切關(guān)系。
β-TI地貧患者體內(nèi)存在著大量的無效紅細胞生成,大量的原幼紅細胞在髓內(nèi)凋亡后大量的鐵再次釋放,機體貧血和缺氧再次誘導(dǎo)骨髓分化大量原始紅細胞,進而形成機體貧血缺氧-原幼紅分化后髓內(nèi)凋亡-機體貧血缺氧循環(huán)。而在這個過程中大量的紅細胞生成需要大量的鐵,腸道鐵吸收比正常人群顯著升高[10-11]。
β-TI患者體內(nèi)一方面存在的無效紅細胞生成,腸道吸收鐵增加同時另一方面低鐵調(diào)素狀態(tài)下對腸道鐵吸收的抑制遠不及正常人,在雙重作用下患者即使不輸血也容易隨著年齡的增長從而出現(xiàn)鐵過載。對于這類患者要加強對患者機體鐵負荷的檢測,以便及早發(fā)現(xiàn)鐵過載及時進行祛鐵治療。另外目前通過鐵調(diào)素的相關(guān)通道和組織途徑抑制研究發(fā)現(xiàn),給予鐵調(diào)素促進劑可以促進體內(nèi)鐵調(diào)素的表達,從而減輕機體鐵過載,相關(guān)的研究已經(jīng)在動物模型中得到驗證[12]。
本研究提示,β-TI患者體內(nèi)鐵調(diào)素和Hb無關(guān),與機體紅系生成GDF15有關(guān)。GDF15可能是通過某些途徑參與抑制鐵調(diào)素的調(diào)控鐵代謝的因子,目前已有相關(guān)臨床實驗發(fā)現(xiàn)糾正無效造血可以減少鐵調(diào)素的抑制[20],體外補充鐵調(diào)素或者相關(guān)通路的調(diào)控抑制劑已經(jīng)進入臨床實驗,希望將來能成為治療各種鐵過載疾病一種重要手段。
[參考文獻]
[1]? Weatherall DJ. The definition and epidemiology of non-transfusion-dependent thalassemia [J]. Blood Rev,2012, 26 Suppl 1:S3-S6.
[2]? 劉容容.鐵過載對地中海貧血患者造血功能的損傷和機制研究[J].廣西醫(yī)科大學(xué)學(xué)報,2019,36(6):1018-1021.
[3]? Sagar CS,Kumar R,Sharma DC,et al. DNA damage:beta zero versus beta plus thalassemia [J]. Ann Hum Biol,2015, 42(6):585-588. doi:10.3109/03014460.2014.990921.
[4]? Huang Y,Liu R,Wei X,et al. Erythropoiesis and Iron Homeostasis in Non-Transfusion-Dependent Thalassemia Patients with Extramedullary Hematopoiesis [J]. Biomed Res Int,2019,2019:4504302. doi:10.1155/2019/4504302.
[5]? Stockwell BR,F(xiàn)riedmann Angeli JP,Bayir H,et al. Ferroptosis:A Regulated Cell Death Nexus Linking Metabolism,Redox Biology,and Disease [J]. Cell,2017,171(2):273-285. doi:10.1016/j.cell.2017.09.021.
[6]? De Franceschi L,Bertoldi M,Matte A,et al. Oxidative stress and β-thalassemic erythroid cells behind the molecular defect [J]. Oxid Med Cell Longev,2013,2013:985210.doi:10.1155/2013/985210.
[7]? Park CH,Valore EV,Waring AJ,et al. Hepcidin,a urinary antimicrobial peptide synthesized in the liver [J]. J Biol Chem,2001,276(11):7806-7810. doi:10.1074/jbc.M008922200.
[8]? Theurl I,Theurl M,Seifert M,et al. Autocrine formation of hepcidin induces iron retention in human monocytes [J]. Blood,2008,111(4):2392-2399. doi:10.1182/blood-2007-05-090019.
[9]? Brookes MJ,Sharma NK,Tselepis C,et al. Serum pro-hepcidin:measuring active hepcidin or a non-functional precursor? [J]. Gut,2005,54(1):169-170. doi:10.1136/gut.2004.047639.
[10]? Viatte L,Vaulont S. Hepcidin,the iron watcher [J]. Biochimie,2009,91(10):1223-1228. doi:10.1016/j.biochi.2009. 06.012.
[11]? 王璐,張倩,韓冰.無效造血與鐵過載[J].基礎(chǔ)醫(yī)學(xué)與臨床,2014,34(1):121-124.
[12]? Ashby DR,Gale DP,Busbridge M,et al. Erythropoietin administration in humans causes a marked and prolonged reduction in circulating hepcidin [J]. Haematologica,2010,95(3):505-508. doi:10.3324/haematol.2009.013136.
[13]? 鄒漢良,陳丕績,黃玉佳,等.珠蛋白生成障礙性貧血基因攜帶者紅細胞生成與鐵調(diào)素的相關(guān)性研究[J].國際檢驗醫(yī)學(xué)雜志,2012,33(9):1037-1039.
[14]? Anderson ER,Taylor M,Xue X,et al. Intestinal HIF2α promotes tissue-iron accumulation in disorders of iron overload with anemia [J]. Proc Natl Acad Sci U S A,2013, 110(50):E4922-E4930. doi:10.1073/pnas.1314197110.
[15]? Li H,Choesang T,Bao W,et al. Decreasing TfR1 expression reverses anemia and hepcidin suppression in β-thalassemic mice [J]. Blood,2017,129(11):1514-1526. doi:10.1182/blood-2016-09-742387.
[16]? Chutvanichkul B,Vattanaviboon P,Mas-Oodi S,et al. Labile iron pool as a parameter to monitor iron overload and oxidative stress status in β-thalassemic erythrocytes [J]. Cytometry B Clin Cytom,2018,94(4):631-636. doi:10. 1002/cyto.b.21633.
[17]? Guimares JS,Cominal JG,Silva-Pinto AC,et al. Altered erythropoiesis and iron metabolism in carriers of thalassemia [J]. Eur J Haematol,2015,94(6):511-518. doi:10.1111/ejh.12464.
[18]? Tanno T,Bhanu NV,Oneal PA,et al. High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin [J]. Nat Med,2007,13(9):1096-1101. doi:10.1038/nm1629.
[19]? Origa R,Cazzola M,Mereu E,et al. Differences in the erythropoiesis-hepcidin-iron store axis between hemoglobin H disease and β-thalassemia intermedia [J]. Haematologica,2015,100(5):e169-e171. doi:10.3324/haematol.2014.115733.
[20]? Dussiot M,Maciel TT,F(xiàn)ricot A,et al. An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia [J]. Nat Med,2014,20(4):398-407. doi:10.1038/nm.3468.
(收稿日期:2019-12-17)