馬 娟 張法麗 錢忠明
復(fù)旦大學(xué)藥學(xué)院,上海,201203,中國(guó)
鐵調(diào)素(hepcidin)是2000年發(fā)現(xiàn)的,主要由肝臟分泌產(chǎn)生的一種肽類激素[1-3]。 現(xiàn)今,已經(jīng)證實(shí)鐵調(diào)素多肽除了在宿主防御和炎癥中起著重要作用外,還是系統(tǒng)鐵穩(wěn)態(tài)的主要調(diào)節(jié)激素。鐵調(diào)素表達(dá)異常是幾種常見鐵代謝紊亂疾病的原因之一,包括遺傳性血色病、鐵過(guò)載性貧血癥、缺鐵性貧血、自身免疫系統(tǒng)疾病、癌癥和慢性腎臟疾病等[4-5]。鐵調(diào)素通過(guò)結(jié)合膜鐵轉(zhuǎn)運(yùn)蛋白1(ferroportin 1,F(xiàn)pn1)并將其內(nèi)化降解,進(jìn)而控制小腸鐵吸收、肝臟鐵儲(chǔ)存和巨噬細(xì)胞對(duì)鐵的再循環(huán)過(guò)程,以維持機(jī)體鐵穩(wěn)態(tài)[6-7]。
神經(jīng)退行性疾病包括帕金森病(Parkinson’s disease,PD)、阿爾茨海默癥(Alzheimer’s disease,AD)和亨廷頓?。℉untington’s disease,HD)等是一類進(jìn)行性發(fā)展的神經(jīng)退行性疾病,嚴(yán)重威脅著人類的身體健康和生活質(zhì)量。到目前為止,還沒(méi)有治愈這類疾病的方法。然而許多研究證實(shí)某些神經(jīng)退行性疾病包括PD、AD和HD患者病變腦區(qū)鐵異常升高[8-10]。因此,降低腦鐵可能成為治療這些疾病的一個(gè)新策略。
因此,鐵調(diào)素作為治療這類鐵代謝疾病的新靶點(diǎn),與之相關(guān)的多種試劑,包括鐵調(diào)素抗體、激動(dòng)劑或拮抗劑、細(xì)胞因子受體的抗體和調(diào)節(jié)鐵調(diào)素表達(dá)的小分子等目前正在研發(fā)中[11]。最近,已有大量綜述介紹了鐵調(diào)素靶向治療研究的最新進(jìn)展[7,12-16]和鐵調(diào)素在鐵穩(wěn)態(tài)系統(tǒng)中的關(guān)鍵作用的最新認(rèn)識(shí)[6,17-25]。本綜述將重點(diǎn)討論鐵調(diào)素在腦中的表達(dá)情況、調(diào)控作用及其在神經(jīng)退行性疾病中潛在的治療前景。
Zechel等[26]證實(shí)了鐵調(diào)素mRNA在不同的腦區(qū)域廣泛表達(dá),包括成年C57/BL6小鼠中樞或周圍神經(jīng)系統(tǒng)的嗅球、皮層、海馬、杏仁核、丘腦、下丘腦、中腦、小腦、腦橋、脊髓、背根神經(jīng)節(jié)的神經(jīng)元以及GFAP陽(yáng)性神經(jīng)膠質(zhì)細(xì)胞。此后,在雄性Sprague-Dawley(SD)大鼠[27-28]和九周齡BALB/c小鼠的腦中也已經(jīng)證實(shí)了鐵調(diào)素 mRNA 的廣泛分布[29]。Raha-Chowdhury 等[30]通過(guò)免疫組織化學(xué)也證實(shí)了鐵調(diào)素蛋白主要存在在血管內(nèi)皮和正常大鼠腦內(nèi)的脈絡(luò)叢和周皮細(xì)胞中。在小鼠[29]和 SD 大鼠[28]的大腦皮層、海馬和紋狀體中,發(fā)現(xiàn)鐵調(diào)素mRNA水平隨著年齡增加而增加。
在人腦中,2006年 Clardy等人[31]在不寧腿綜合征研究中,首先證實(shí)黑質(zhì)和殼核中有鐵調(diào)素的表達(dá)。H?nninen等[32]報(bào)道,鐵調(diào)素 mRNA 在大腦很多區(qū)域中均有表達(dá),包括皮質(zhì)、海馬、丘腦、小腦以及延髓等,在皮質(zhì)和丘腦中表達(dá)量最高。Raha等[33]通過(guò)免疫組織化學(xué)證明鐵調(diào)素廣泛分布在正常人腦中,并且與神經(jīng)元和星形膠質(zhì)細(xì)胞中Fpn1共定位。還發(fā)現(xiàn),AD大腦的海馬裂解物中,鐵調(diào)素和Fpn1的蛋白質(zhì)表達(dá)水平顯著降低。以上這些結(jié)果明確提示大腦存在鐵調(diào)素。然而,目前尚不清楚腦中所含鐵調(diào)素蛋白是以原位產(chǎn)生,還是以經(jīng)典激素作用方式—在循環(huán)過(guò)程中轉(zhuǎn)運(yùn)至腦組織?;阼F調(diào)素基因轉(zhuǎn)錄水平與鐵調(diào)素蛋白含量之間的差異,已有資料顯示腦中所含鐵調(diào)素不一定都是原位轉(zhuǎn)錄表達(dá)產(chǎn)生的,可能部分鐵調(diào)素來(lái)源于外周系統(tǒng)[30]。鐵調(diào)素的陽(yáng)離子肽激素特性可能利于其從外周至中樞的循環(huán)過(guò)程,但目前尚無(wú)證據(jù)表明鐵調(diào)素能夠穿過(guò)血腦屏障(blood brain barrier,BBB)。
鐵調(diào)素作為一種抗菌多肽,損傷、感染和炎癥刺激均可上調(diào)該基因的表達(dá)[34-36]。貧血和缺氧則可顯著抑制鐵調(diào)素mRNA的表達(dá)[35,37]。鐵調(diào)素在外周系統(tǒng)主要由肝細(xì)胞產(chǎn)生,在腦內(nèi)幾乎所有類型的細(xì)胞似乎都能表達(dá)這種肽。在肝組織中,已經(jīng)有充分的證據(jù)表明鐵調(diào)素基因表達(dá)受炎癥調(diào)控,主要通過(guò)激活白細(xì)胞介素-6/信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子3(interleukin-6 /signal transduction and transcription activator 3,IL-6 /STAT3)途徑上調(diào)鐵調(diào)素的表達(dá)。此外,其表達(dá)也受控于轉(zhuǎn)鐵蛋白受體2/人類血色素沉著蛋白(transferrin receptor 2/ hemochromatosis,TfR2/HFE)和骨形態(tài)發(fā)生蛋白/鐵調(diào)素調(diào)節(jié)蛋白/一種母系的生物皮膚的生長(zhǎng)因子蛋白(bone morphogenetic protein / hemojuvelin/ a small mothers of decapentaplegic protein,BMP/HJV/SMAD),并 可 被 erythroferrone(ERFE)下 調(diào)[6,18,38-39]。最近的研究還表明,兩種類固醇激素孕酮和米非司酮可以通過(guò)細(xì)胞表面蛋白孕酮受體膜組分1(progesterone receptor membrane component 1,PGRMC1)上調(diào)鐵調(diào)素表達(dá)[40]。而神經(jīng)元、星形膠質(zhì)細(xì)胞、小膠質(zhì)細(xì)胞、內(nèi)皮和周細(xì)胞中即使均檢測(cè)到鐵調(diào)素蛋白的存在,但腦中鐵調(diào)素表達(dá)的調(diào)控機(jī)制仍鮮有報(bào)道。那腦內(nèi)鐵調(diào)素是如何表達(dá)調(diào)控的呢?
正如外周系統(tǒng)調(diào)控鐵調(diào)素的方式一樣,脂多糖(lipopolysaccharide,LPS)、大腸桿菌感染及腦缺血損傷等均可以誘導(dǎo)中樞神經(jīng)系統(tǒng)中鐵調(diào)素mRNA和蛋白質(zhì)表達(dá)增加[27,41-45]。2008 年,Wang 等[27]的研究表明LPS刺激可以誘導(dǎo)SD大鼠皮層和黑質(zhì)中鐵調(diào)素表達(dá)增加。接著,Marques 等[41]研究表明炎癥會(huì)引起雄性Wistar大鼠腦組織的脈絡(luò)叢鐵調(diào)素表達(dá)增加。Urrutia等[42]在2013年用LSP或松節(jié)油處理原代大鼠星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞也觀察到鐵調(diào)素mRNA和蛋白表達(dá)量增加。最近的一項(xiàng)研究表明[46],腦室內(nèi)注射LPS可以上調(diào)鐵調(diào)素的表達(dá),也可下調(diào)大鼠皮層和黑質(zhì)中的Fpn1水平。在細(xì)胞水平,只有當(dāng)LPS與BV-2小膠質(zhì)細(xì)胞共培養(yǎng)時(shí),LPS才能增加神經(jīng)元中的鐵調(diào)素表達(dá)。此外,發(fā)現(xiàn)IL-6而不是IL-1α,IL-1β或腫瘤壞死因子 -α(tumor necrosis factor α,TNF-α)增加皮質(zhì)神經(jīng)元和多巴胺能神經(jīng)元中的鐵調(diào)素表達(dá)和STAT3磷酸化,并且這些作用可被STAT3抑制劑阻斷。這些發(fā)現(xiàn)表明,LPS刺激神經(jīng)元中鐵調(diào)素表達(dá)的上調(diào)是通過(guò)IL-6 / STAT3信號(hào)通路以及小膠質(zhì)神經(jīng)細(xì)胞介導(dǎo)的過(guò)程。正常老齡大鼠脈絡(luò)叢中鐵調(diào)素的表達(dá)也與IL-6 /STAT3信號(hào)通路相關(guān)[47]。這表明腦內(nèi)鐵調(diào)素基因表達(dá)也能被炎癥激活。
目前尚不清楚TfR2 / HFE,BMP / HJV / SMAD通路,ERFE和類固醇激素是否在腦中的鐵調(diào)素表達(dá)中起作用。關(guān)于人大腦中鐵相關(guān)基因表達(dá)的研究表明,除了HJV外的所有基因包括HFE,再生蛋白1(neogenin 1,NEO1)和 TfR2 都在腦中表達(dá)[32]。而在大鼠腦中能夠檢測(cè)到HJV、以及十二指腸細(xì)胞色素B(duodenal cytochrome B,DcytB),鐵調(diào)節(jié)蛋白 1(iron regulatory protein 1,IRP1) 和 鐵 調(diào) 節(jié) 蛋 白 2(iron regulatory protein 2,IRP2)基因 RNA 的表達(dá)[44],這表明參與外周系統(tǒng)鐵調(diào)素表達(dá)的所有關(guān)鍵蛋白質(zhì)或分子很可能也在腦中表達(dá),但這仍需要進(jìn)一步研究來(lái)證明。這些蛋白質(zhì)在腦內(nèi)可能與在外周組織中發(fā)揮相同作用,在控制鐵調(diào)素表達(dá)的同時(shí)也具有其他功能。最近用TfR2敲除小鼠模型進(jìn)行的研究支持這一觀點(diǎn),研究表明TfR2敲除引起神經(jīng)組織中不伴腦鐵調(diào)素反應(yīng)的特定區(qū)域產(chǎn)生鐵積聚現(xiàn)象[24]。小鼠和SD大鼠腦中鐵調(diào)素mRNA水平隨著年齡升高[28-29]。這一發(fā)現(xiàn)意味著鐵調(diào)素在腦中的表達(dá)隨增長(zhǎng)而增加,但確切的原因和相關(guān)機(jī)制目前還未知。此外,鐵調(diào)素的表達(dá)還受機(jī)體鐵水平的影響。當(dāng)體內(nèi)鐵水平升高時(shí),肝生成鐵調(diào)素增多,鐵調(diào)素與小腸細(xì)胞膜上的Fpn1結(jié)合,使其內(nèi)化并降解,最終使腸上皮細(xì)胞中的鐵向血漿轉(zhuǎn)運(yùn)減少;反之,當(dāng)體內(nèi)鐵儲(chǔ)存減少時(shí),鐵調(diào)素合成受到抑制,腸上皮細(xì)胞內(nèi)鐵轉(zhuǎn)運(yùn)入血漿增多。基于鐵在鐵調(diào)素表達(dá)中的作用,我們假設(shè)鐵調(diào)素表達(dá)增加可能是由于年齡引起腦鐵積聚導(dǎo)致的。雖然鐵調(diào)素表達(dá)增加了,但是腦中鐵的水平仍較高。這可能表明鐵調(diào)素的作用在老年大鼠中已經(jīng)受損,也有可能是鐵調(diào)素表達(dá)量的增加不足以使老年鼠腦中鐵含量恢復(fù)正常狀態(tài)[28]。顯然需要進(jìn)一步的工作來(lái)證實(shí)這些可能性。
鐵調(diào)素通過(guò)控制腸鐵吸收、巨噬細(xì)胞鐵回收、肝儲(chǔ)存鐵移動(dòng)以及外周骨髓細(xì)胞鐵利用來(lái)調(diào)節(jié)血漿鐵濃度,是組織鐵分布的中心參與者[4-7]。且人們普遍認(rèn)為,鐵調(diào)素也是腦鐵穩(wěn)態(tài)的核心參與者,并且在鐵穿越BBB中起著關(guān)鍵調(diào)控作用。生理情況下,腦細(xì)胞可能并不攝取進(jìn)入大腦的所有鐵,因?yàn)槟X細(xì)胞攝取的鐵含量是由膜上鐵攝取蛋白表達(dá)量控制的。換句話說(shuō),大腦內(nèi)可能有兩種鐵轉(zhuǎn)運(yùn)途徑:“細(xì)胞攝取途徑”(“主要途徑”)和“非細(xì)胞攝取途徑”(“旁路途徑”)。在生理?xiàng)l件下,“旁路途徑”中鐵的攝取量非常小。當(dāng)腦細(xì)胞攝取鐵增加時(shí),鐵調(diào)素表達(dá)會(huì)增加,進(jìn)而保持腦鐵穩(wěn)態(tài)。鐵調(diào)素表達(dá)增加可使神經(jīng)元和星形膠質(zhì)細(xì)胞鐵攝取減少。此外,鐵調(diào)素還可以抑制外周鐵穿過(guò)BBB,進(jìn)而降低腦鐵含量。然而,對(duì)大腦如何感測(cè)鐵水平、如何通過(guò)控制BBB中鐵轉(zhuǎn)運(yùn)蛋白表達(dá)來(lái)調(diào)節(jié)鐵從體循環(huán)轉(zhuǎn)入大腦,鐵調(diào)素在大腦的哪個(gè)部位釋放及腦細(xì)胞間如何通過(guò)不同細(xì)胞間的相互作用和調(diào)控途徑來(lái)調(diào)節(jié)腦鐵含量等問(wèn)題知之甚少。而闡明這些問(wèn)題是至關(guān)重要的。
研究發(fā)現(xiàn)鐵調(diào)素肽能夠抑制Fpn1、TfR1和二價(jià)金屬離子轉(zhuǎn)運(yùn)蛋白 1(divalent metal transporter 1,DMT1)的表達(dá),從而減少培養(yǎng)的神經(jīng)元和星形膠質(zhì)細(xì)胞中鐵的吸收和釋放[48-49]。除鐵釋放蛋白Fpn1外,還發(fā)現(xiàn)鐵調(diào)素顯著抑制培養(yǎng)的微血管內(nèi)皮細(xì)胞、神經(jīng)元和星形膠質(zhì)細(xì)胞中鐵攝取蛋白TfR1和DMT1的表達(dá)[48-49]。鐵調(diào)素對(duì)鐵攝取蛋白的抑制作用也在鐵耗竭的星形膠質(zhì)細(xì)胞中得到證實(shí)[48],這表明鐵調(diào)素對(duì)鐵攝取蛋白的抑制作用是直接的,而不是通過(guò)其誘導(dǎo)Fpn1減少使細(xì)胞鐵增加。此外,發(fā)現(xiàn)鐵調(diào)素通過(guò)cAMP-蛋白激酶A途徑抑制TfR1的表達(dá)。通常,肽激素的受體位于靶細(xì)胞膜表面,靶細(xì)胞對(duì)肽激素的反應(yīng)由第二信使如cAMP介導(dǎo)[50]。因此,這些發(fā)現(xiàn)可能意味著星形膠質(zhì)細(xì)胞膜上存在鐵調(diào)素的新型受體,鐵調(diào)素對(duì)TfR1的直接抑制作用可能是由這種未知的受體介導(dǎo)的。鐵調(diào)素對(duì)神經(jīng)元和星形膠質(zhì)細(xì)胞中鐵攝取的抑制作用,提示腦中存在“鐵調(diào)素介導(dǎo)的細(xì)胞自我保護(hù)(或防御)機(jī)制”。當(dāng)腦鐵增加時(shí),鐵調(diào)素的表達(dá)將增加,增加的鐵調(diào)素通過(guò)關(guān)閉鐵的進(jìn)出使腦細(xì)胞和外界隔絕,然后保持相對(duì)穩(wěn)定的內(nèi)部環(huán)境使細(xì)胞存活。這種鐵調(diào)素受體和“鐵調(diào)素介導(dǎo)的細(xì)胞自我保護(hù)機(jī)制”的假說(shuō)有待進(jìn)一步研究證明。
最近研究表明AD患者大腦海馬裂解物中鐵調(diào)素和Fpn1蛋白表達(dá)水平顯著降低[33]。目前尚不清楚為什么AD患者大腦鐵調(diào)素表達(dá)降低,以及為什么在AD患者腦中鐵調(diào)素表達(dá)降低的情況下,F(xiàn)pn1蛋白水平也較低。理論上,鐵調(diào)素表達(dá)下降可能導(dǎo)致腦鐵的增加。這意味著某些AD患者中發(fā)現(xiàn)的腦鐵積聚可能是由于鐵調(diào)素含量降低導(dǎo)致。研究還表明,大腦腫瘤樣本(包括少突膠質(zhì)細(xì)胞瘤、低分子膠質(zhì)細(xì)胞瘤和星形細(xì)胞膠質(zhì)瘤)與正常腦皮層相比,鐵調(diào)素表達(dá)較低,表明鐵調(diào)素在腦瘤中的表達(dá)可能失調(diào)[32]。已經(jīng)發(fā)現(xiàn)TfR1在腫瘤細(xì)胞中顯著增加[51-52],因此已經(jīng)被作為將治療劑遞送到腫瘤細(xì)胞的靶向載體[53-55]。然而,目前尚不清楚腫瘤細(xì)胞中增加的TfR1表達(dá)是否與鐵調(diào)素表達(dá)失調(diào)(降低)相關(guān),因?yàn)樵谛切文z質(zhì)細(xì)胞的研究中表明鐵調(diào)素可通過(guò)環(huán)AMP-蛋白激酶A途徑直接抑制TfR1表達(dá)[48]。最近Yorka等的一項(xiàng)研究表明,PD患者腦內(nèi)也有鐵積聚現(xiàn)象,且這與IRP1的激活有關(guān)。IRP1激活導(dǎo)致鐵在腦中積聚,引起氧化應(yīng)激,最終導(dǎo)致線粒體損傷[56]。推測(cè)腦鐵積聚也可能是由腦內(nèi)鐵調(diào)素表達(dá)下降所導(dǎo)致的。這些研究均表明鐵調(diào)素在腦內(nèi)鐵穩(wěn)態(tài)的調(diào)節(jié)中發(fā)揮著重要的作用,需要通過(guò)進(jìn)一步的研究來(lái)闡明這些問(wèn)題。因此,需要準(zhǔn)確地研究以下問(wèn)題:①是否所有類型的腦細(xì)胞都能合成鐵調(diào)素?②腦內(nèi)是否存在一類細(xì)胞是表達(dá)鐵調(diào)素的主要細(xì)胞,其功能上類似于腦外肝細(xì)胞?③在一種類型腦細(xì)胞中檢測(cè)到的鐵調(diào)素是否是其他類型腦細(xì)胞合成并分泌的,而不是由其本身合成?于是在全面了解鐵調(diào)素在腦鐵穩(wěn)態(tài)中的作用之前,我們需要解析所有這些可能性。
腦中病理性鐵積聚在某些神經(jīng)退行性疾病發(fā)生發(fā)展中的作用[57-58],表明鐵調(diào)素是干預(yù)這類疾病的新靶點(diǎn)。除了通過(guò)化學(xué)或生物螯合劑從某些腦區(qū)螯合掉多余的鐵之外[59-62],還可以通過(guò)內(nèi)源性分子調(diào)節(jié)鐵代謝蛋白表達(dá)將腦鐵水平恢復(fù)至正常水平。這也許是所有鐵相關(guān)神經(jīng)退行性疾病另一種有希望的治療策略。相關(guān)研究可能為預(yù)防或治療這些疾病開辟新途徑。
已經(jīng)證明,機(jī)體鐵負(fù)荷會(huì)誘導(dǎo)皮層、海馬紋狀體和黑質(zhì)中鐵含量顯著增加[63-64],而用重組腺病毒的鐵調(diào)素(Ad-hepcidin)轉(zhuǎn)染腦組織,會(huì)誘導(dǎo)鐵調(diào)素含量顯著增加,降低大鼠四個(gè)腦區(qū)的鐵含量[49,65]。通過(guò)注射鐵葡聚糖可誘導(dǎo)四個(gè)腦區(qū)中鐵、二氯熒光素和8-異前列烷水平(活性氧水平檢測(cè)的標(biāo)志物)增加,而這種現(xiàn)象可通過(guò)用Ad-hepcidin預(yù)處理大鼠來(lái)有效地預(yù)防[65],這些發(fā)現(xiàn)提供了鐵調(diào)素可以預(yù)防大鼠腦鐵增加和減少鐵過(guò)載大鼠腦內(nèi)產(chǎn)生活性氧的證據(jù)。另外,發(fā)現(xiàn)用Adhepcidin治療能夠抑制放射性標(biāo)記的鐵(Tf-Fe55)從左頸動(dòng)脈向腦的轉(zhuǎn)運(yùn)通過(guò)BBB,表明Ad-hepcidin具有減少鐵從外周組織轉(zhuǎn)運(yùn)至大腦的重要作用。對(duì)所涉及的機(jī)制進(jìn)一步研究,發(fā)現(xiàn)Ad-hepcidin和鐵調(diào)素肽均能顯著抑制細(xì)胞鐵釋放蛋白Fpn1的表達(dá),抑制細(xì)胞鐵攝取蛋白TfR1和DMT1的表達(dá),從而降低微血管內(nèi)皮細(xì)胞中轉(zhuǎn)鐵蛋白依賴方式、非轉(zhuǎn)鐵蛋白依賴方式鐵的攝取和鐵的釋放。但用鐵調(diào)素siRNA逆轉(zhuǎn)錄病毒下調(diào)鐵調(diào)素的表達(dá)可以逆轉(zhuǎn)這些現(xiàn)象[49]。研究結(jié)果表明,鐵調(diào)素通過(guò)抑制BBB內(nèi)皮細(xì)胞中鐵攝取和釋放蛋白的表達(dá),從而減少鐵通過(guò)BBB轉(zhuǎn)運(yùn)至腦內(nèi)。
上述表明鐵調(diào)素對(duì)所有鐵相關(guān)神經(jīng)退行性疾病具有可能的治療潛力,特別是腦內(nèi)鐵調(diào)素含量顯著下降的疾?。?3]。研究結(jié)果還表明鐵調(diào)素具有預(yù)防與年齡有關(guān)的神經(jīng)退行性疾病的作用,減緩了腦鐵含量隨年齡增加而增長(zhǎng)的速度,因而延緩神經(jīng)退行性疾病發(fā)展的進(jìn)程。近年來(lái),已經(jīng)開展了相當(dāng)多的研究工作來(lái)克服鐵調(diào)素臨床應(yīng)用的兩個(gè)關(guān)鍵問(wèn)題,即生物利用度差和合成成本高[66-71],相信這兩個(gè)問(wèn)題在不久的將來(lái)會(huì)得到解決。
鑒于過(guò)去幾年在生理和病理?xiàng)l件下對(duì)鐵調(diào)素在腦中的表達(dá)和功能研究的迅速進(jìn)展,這種天然存在的、可生物降解的、無(wú)毒的和非免疫的多肽,具有很大的潛力被發(fā)展成為一種新穎的、非常有效的預(yù)防和治療鐵相關(guān)神經(jīng)退行性疾病的藥物。提高生物利用度,降低合成成本是目前需要進(jìn)一步研究的關(guān)鍵課題。此外,對(duì)腦在生理?xiàng)l件下如何保持鐵穩(wěn)態(tài)以及何種病理生理學(xué)條件下腦部某些區(qū)域鐵含量異常升高這兩個(gè)基本問(wèn)題進(jìn)行深入研究仍然是必需的。這些努力和調(diào)查將有效縮短從實(shí)驗(yàn)室向臨床轉(zhuǎn)化的時(shí)間,從而有效地將鐵調(diào)素的基礎(chǔ)研究成果轉(zhuǎn)化為臨床應(yīng)用。
[1] Alexander Krause,Susanne Neitz,Hans-Jurgen Magert,et al. LEAP-1,a novel highly disulfide-bonded human peptide,exhibits antimicrobial activity[J]. FEBS Lett,2000,480(2-3):147-150.
[2] Christina H Park,Erika V Valore,Alan J Waring,et al.Hepcidin,a urinary antimicrobial peptide synthesized in the liver[J]. J Biol Chem,2001,276(11):7806-7810.
[3] Christelle Pigeon,Gennady Ilyin,Brice Courselaud,et al. A new mouse liver-specific gene,encoding a protein homologous to human antimicrobial peptide hepcidin,is overexpressed during iron overload[J]. J Biol Chem,2001,276(11):7811-7819.
[4] Eileen Fung,Elizabeta Nemeth. Manipulation of the hepcidin pathway for therapeutic purposes[J]. Haematologica,2013,98(11):1667-1676.
[5] Pitotr Ruchala,Elizabeta Nemeth. The pathophysiology and pharmacology of hepcidin[J]. Trends Pharmacol Sci,2014,35(3):155-161.
[6] Tomas Ganz. Systemic iron homeostasis[J]. Physiol Rev,2013,93(4):1721-1741.
[7] Maura Poli,Michela Asperti,Paola Ruzzenenti,et al.Hepcidin antagonists for potential treatments of disorders with hepcidin excess[J]. Front Pharmacol,2014,5:86.
[8] Dominic J Hare,Barbara Rita Cardoso,Erika P Raven,et al. Excessive early-life dietary exposure: a potential source of elevated brain iron and a risk factor for Parkinson’s disease[J]. NPJ Parkinson’s Disease,2017,3:1.
[9] Mark A Smith,Peggy L R Harris,Lawrence M Sayre,et al.Iron accumulation in Alzheimer disease is a source of redoxgenerated free radicals[J]. Proceedings of the National Academy of Sciences of the United States of America,1997,94(18):9866-9868.
[10] Kiersten L Berggren,Chen Jian-fang,Julia Fox,et al.Neonatal iron supplementation potentiates oxidative stress,energetic dysfunction and neurodegeneration in the R6/2 mouse model of Huntington’s disease[J]. Redox Biology,2015,4:363-374.
[11] Antonello Pietrangelo. Hepcidin in human iron disorders:therapeutic implications[J]. J Hepatol,2011,54(1):173-181.
[12] Arezes J,Nemeth E. Hepcidin and iron disorders: new biology and clinical approaches[J]. Int J Lab Hematol,2015,37(Suppl 1):92-98.
[13] Lisa Lombardi,Giuseppantonio Maisetta,Giovanna Batoni,et al. Insights into the antimicrobial properties of hepcidins: advantages and drawbacks as potential therapeutic agents[J]. Molecules,2015,20(4):6319-6341.
[14] Luc Rochette,Aurelie Gudjoncik,Charles Guenancia,et al.The iron-regulatory hormone hepcidin: a possible therapeutic target?[J]. Pharmacol Ther,2015,146:35-52.
[15] Liu Jing,Sun Bing-bing,Yin Hui-jun,et al. Hepcidin: a promising therapeutic target for iron disorders: a systematic review[J]. Medicine (Baltimore),2016,95(14):e3150.
[16] Nicole L Blanchette,David H Manz,F(xiàn)rank M Torti,et al.Modulation of hepcidin to treat iron deregulation: potential clinical applications[J]. Expert Rev Hematol,2016,9(2):169-186.
[17] Karin E Finberg. Regulation of systemic iron homeostasis [J].Curr Opin Hematol,2013,20(3):208-214.
[18] Alfons Lawen,Darius Lane. Mammalian iron homeostasis in health and disease: uptake,storage,transport,and molecular mechanisms of action[J]. Antioxid Redox Signal,2013,18(18):2473-2507.
[19] Delphine Meynard,Jodie L Babitt,Herbert Y Lin. The liver: conductor of systemic iron balance[J]. Blood,2014,123(2):168-176.
[20] Hal Drakesmith,Elizabeta Nemeth,Tomas Ganz. Ironing out Ferroportin[J]. Cell Metab,2015,22(5):777-787.
[21] Bruno Silva,Paula Faustino. An overview of molecular basis of iron metabolism regulation and the associated pathologies[J]. Biochim Biophys Acta,2015,1852(7):1347-1359.
[22] Pierre Brissot,Olivier Loreal. Iron metabolism and related genetic diseases: A cleared land,keeping mysteries[J]. J Hepatol,2016,64(2):505-515.
[23] Raffaella Gozzelino,Paolo Arosio. Iron homeostasis in health and disease[J]. Int J Mol Sci,2016,17(1):130.
[24] Pietrangelo A. Iron and the liver[J]. Liver Int,2016,36(Suppl 1):116-123.
[25] Rosa Maria Pellegrino,Enrica Boda,F(xiàn)rancesca Montarolo,et al. Transferrin receptor 2 dependent alterations of brain iron metabolism affect anxiety circuits in the mouse[J]. Sci Rep,2016,6:30725.
[26] Zechel S,Huber-Wittmer K,von Bohlen und Halbach O.Distribution of the iron-regulating protein hepcidin in the murine central nervous system[J]. J Neurosci Res,2006,84(4):790-800.
[27] Wang Qin,Du Fang,Qian Zhong-ming,et al.Lipopolysaccharide induces a significant increase in expression of iron regulatory hormone hepcidin in the cortex and substantia nigra in rat brain[J]. Endocrinology,2008,149(8):3920-3925.
[28] Lu L N,Qian Z M,Wu K C,et al. Expression of iron transporters and pathological hallmarks of parkinson’s and alzheimer’s diseases in the brain of young,adult,and aged rats[J]. Mol Neurobiol,2017,54(7):5213-5224.
[29] Wang S M,F(xiàn)u L J,Duan X L,et al. Role of hepcidin in murine brain iron metabolism[J]. Cell Mol Life Sci,2010,67(1):123-133.
[30] Ruma Raha-Chowdhury,Animesh Alexander Raha,Serhiy Forostyak,et al. Expression and cellular localization of hepcidin mRNA and protein in normal rat brain[J]. BMC Neurosci,2015,16:24.
[31] Stacey L Clardy,Wang Xin-sheng,Philip J Boyer,et al. Is ferroportin-hepcidin signaling altered in restless legs syndrome?[J]. J Neurol Sci,2006,247(2):173-179.
[32] Milla M Hanninen,Joonas Haapasalo,Hannu Haapasalo,et al. Expression of iron-related genes in human brain and brain tumors[J]. BMC Neurosci,2009,10:36.
[33] Animesh Alexander Raha,Radhika Anand Vaishnav,Robert Paul Friedland,et al. The systemic iron-regulatory proteins hepcidin and ferroportin are reduced in the brain in Alzheimer’s disease[J]. Acta Neuropathol Commun,2013,1:55.
[34] Elizabeta Nemeth,Erika V Valore,Mary Territo,et al.Hepcidin,a putative mediator of anemia of in flammation,is a type II acute-phase protein[J]. Blood,2003,101(7):2461-2463.
[35] Gael Nicolas,Caroline Chauvet,Lydie Viatte,et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia,hypoxia,and inflammation[J]. J Clin Invest,2002,110(7):1037-1044.
[36] Hiroko Shike,Xavier Lauth,Mark E Westerman,et al. Bass hepcidin is a novel antimicrobial peptide induced by bacterial challenge[J]. Eur J Biochem,2002,269(8):2232-2237.
[37] David A Weinstein,Cindy N Roy,Mark D Fleming,et al.Inappropriate expression of hepcidin is associated with iron refractory anemia: implications for the anemia of chronic disease[J]. Blood,2002,100(10):3776-3781.
[38] Nermi L Parrow,Robert E Fleming. Bone morphogenetic proteins as regulators of iron metabolism[J]. Annu Rev Nutr,2014,34:77-94.
[39] Paul J Schmidt. Regulation of iron metabolism by hepcidin under conditions of in flammation[J]. J Biol Chem,2015,290(31):18975-18983.
[40] Li Xiang,David K Rhee,Rajeev Malhotra,et al.Progesterone receptor membrane component-1 regulates hepcidin biosynthesis[J]. J Clin Invest,2016,126(1):389-401.
[41] Marques F,F(xiàn)alcao A M,Sousa J C,et al. Altered iron metabolism is part of the choroid plexus response to peripheral inflammation[J]. Endocrinology,2009,150(6):2822-2828.
[42] Pamela Urrutia,Pabla Aguirre,Andres Esparza,et al.Inflammation alters the expression of DMT1,F(xiàn)PN1 and hepcidin,and it causes iron accumulation in central nervous system cells[J]. J Neurochem,2013,126(4):541-549.
[43] Jacqueline C Lieblein-Boff,Daniel B McKim,Daniel T Shea,et al. Neonatal E. coli infection causes neuro-behavioral deficits associated with hypomyelination and neuronal sequestration of iron[J]. J Neurosci,2013,33(41):16334-16345.
[44] Ihtzaz Ahmed Malik,Naila Naz,Nadeem Sheikh,et al.Comparison of changes in gene expression of transferrin receptor-1 and other iron-regulatory proteins in rat liver and brain during acute-phase response[J]. Cell Tissue Res,2011,344(2):299-312.
[45] Ding Hui,Yan Cai-zhen,Shi Hong-lian,et al. Hepcidin is involved in iron regulation in the ischemic brain[J]. PLoS One,2011,6(9):e25324.
[46] Qian Zhong-ming,He Xuan,Liang Tuo,et al.Lipopolysaccharides upregulate hepcidin in neuron via microglia and the IL-6/STAT3 signaling pathway[J]. Mol Neurobiol,2014,50(3):811-820.
[47] Liu Chong-bin,Wang Rui,Dong Miao-wu,et al. Expression of hepcidin at the choroid plexus in normal aging rats is associated with IL-6/Stat3 signaling pathway[J]. Sheng Li Xue Bao,2014,66(6):639-646.
[48] Du Fang,Chrisopher Qian,Qian Zhong-ming,et al.Hepcidin directly inhibits transferrin receptor 1 expression in astrocytes via a cyclic AMP-protein kinase A pathway[J].Glia,2011,59(6):936-945.
[49] Du Fang,Qian Zhong-ming,Luo Qian-qian,et al. Hepcidin suppresses brain iron accumulation by downregulating iron transport proteins in iron-overloaded rats[J]. Mol Neurobiol,2015,52(1):101-114.
[50] Silverthorn DU. Introduction to the endocrine system [M].Human physiology,4rd ed. San Francisco: Benjamin Cummings,2009,chapter 7.
[51] W Page Faulk,Bae-Li Hsi,P J Stevens. Transferrin and transferrin receptors in carcinoma of the breast[J]. Lancet,1980,2(8191):390-392.
[52] Trowbridge I S,Omary M B. Human cell surface glycoprotein related to cell proliferation is the receptor for transferrin[J]. Proc Natl Acad Sci USA,1981,78(5):3039-3043.
[53] Li Hong-yan,Sun Hong-zhe,Qian Zhong-ming. The role of the transferrin-transferrin-receptor system in drug delivery and targeting[J]. Trends Pharmacol Sci,2002,23(5):206-209.
[54] Li Hong-yan,Qian Zhong-ming. Transferrin/transferrin receptor-mediated drug delivery[J]. Med Res Rev,2002,22(3):225-250.
[55] Tracy R Daniels,Tracie Delgado,Gustavo Helguera,et al.The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells[J]. Clin Immunol,2006,121(2):159-176.
[56] Yorka Munoz,Carlos Mauricio Carrasco,Joaquin D Campos,et al. Parkinson’s disease: the mitochondria-iron link[J]. Parkinsons Dis,2016,2016:7049108.
[57] Ke Ya,Qian Zhong-ming. Iron misregulation in the brain:a primary cause of neurodegenerative disorders[J]. Lancet Neurol,2003,2(4):246-253.
[58] Ke Ya,Qian Zhong-ming. Brain iron metabolism:neurobiology and neurochemistry[J]. Prog Neurobiol,2007,83(3):149-173.
[59] Orly Weinreb,Silvia Mandel,Moussa B H Youdim,et al. Targeting dysregulation of brain iron homeostasis in Parkinson’s disease by iron chelators[J]. Free Radic Biol Med,2013,62:52-64.
[60] Guillaume Grolez,Caroline Moreau,Bernard Sablonniere,et al. Ceruloplasmin activity and iron chelation treatment of patients with Parkinson’s disease[J]. BMC Neurol,2015,15:74.
[61] Adbel Ali Belaidi,Ashley I Bush. Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: targets for therapeutics[J]. J Neurochem,2016,139(Suppl 1):179-197.
[62] Petr Dusek,Susanne A Schneider,Jan Aaseth. Iron chelation in the treatment of neurodegenerative diseases[J]. J Trace Elem Med Biol,2016,38:81-92.
[63] Chang Yan-zhong,Qian Zhong-ming,Wang Kui,et al.Effects of development and iron status on ceruloplasmin expression in rat brain[J]. J Cell Physiol,2005,204(2):623-631.
[64] Ke Ya,Chang Yan-zhong,Duan Xiang-lin,et al. Agedependent and iron-independent expression of two mRNA isoforms of divalent metal transporter 1 in rat brain[J].Neurobiol Aging,2005,26(5):739-748.
[65] Gong Jing,Du Fang,Qian Zhong-ming,et al. Pre-treatment of rats with ad-hepcidin prevents iron-induced oxidative stress in the brain[J]. Free Radic Biol Med,2016,90:126-132.
[66] Seth Rivera,Liu Lide,Elizabeta Nemeth,et al. Hepcidin excess induces the sequestration of iron and exacerbates tumorassociated anemia[J]. Blood,2005,105(4):1797-1802.
[67] Christopher D Fjell,Jan A Hiss,Robert E W Hancock,et al. Designing antimicrobial peptides: form follows function[J]. Nat Rev Drug Discov,2011,11(1):37-51.
[68] Gloria Cuevas Preza,Pitor Ruchala,Rogelio Pinon,et al. Minihepcidins are rationally designed small peptides that mimic hepcidin activity in mice and may be useful for the treatment of iron overload[J]. J Clin Invest,2011,121(12):4880-4888.
[69] Luo Xiao,Jiang Qian,Song Ge,et al. Efficient oxidative folding and site-specific labeling of human hepcidin to study its interaction with receptor ferroportin[J]. Febs J,2012,279(17):3166-3175.
[70] Song Ge,Jiang Qian,Xu Ting,et al. A convenient luminescence assay of ferroportin internalization to study its interaction with hepcidin[J]. Febs J,2013,280(8):1773-1781.
[71] Lisa K Ryan,Katie B Freeman,Jorge A Masso-Silva,et al.Activity of potent and selective host defense peptide mimetics in mouse models of oral candidiasis[J]. Antimicrob Agents Chemother,2014,58(7):3820-3827.