顧洪 廖毅 向小兵 曾凡才
[摘要]目的 利用生物信息學(xué)方法從基因?qū)用婧Y選金黃色葡萄球菌(金葡菌)藥靶基因。方法 應(yīng)用Zcurve、Prodigal等軟件重新注釋金葡菌基因組并預(yù)測到61個(gè)漏注釋基因,其次列出金葡菌的必需基因170個(gè)、高表達(dá)基因185個(gè)(20~205個(gè))及基因組島基因32個(gè),通過同源比對排除人類及有益腸道菌群基因,最后在DrugBank上檢索核查目標(biāo)藥靶。結(jié)果 通過反復(fù)篩選并排除腸道有益菌群后最終得到SAZ172_0418、SAZ172_0420、SAZ172_1976、SAZ172_1978、SAZ172_1980、SACOL1524、SA2981_1507、SA2981_2326、SA2981_2521、SA2981_1955共10個(gè)可作為藥靶的基因。結(jié)論 篩選出的10個(gè)基因可對金葡菌耐藥菌株的廣譜抗菌藥物研制提供理論幫助。
[關(guān)鍵詞] 金黃色葡萄球菌;抗藥性,細(xì)菌;基因組島
[中圖分類號] Q93-33[文獻(xiàn)標(biāo)志碼] A[文章編號] 2096-5532(2020)04-0437-07
doi:10.11712/jms.2096-5532.2020.56.126
[網(wǎng)絡(luò)出版] https://kns.cnki.net/kcms/detail/37.1517.R.20200617.0946.001.html;2020-06-17 13:10
PREDICTION OF DRUG TARGET GENES OF STAPHYLOCOCCUS AUREUS
GU Hong, LIAO Yi, XIANG Xiaobing, ZENG Fancai
(Plastic and Burn Department, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China)
[ABSTRACT]Objective To screen out the drug target genes of Staphylococcus aureus (S.aureus) using bioinformatics methods.Methods Zcurve, Prodigal, and other software were used to re-annotate S.aureus genome and 61 missed annotated genes were predicted. A total of 170 essential genes, 185(20-205) highly expressed genes, and 32 genomic island genes of S.aureus genome were listed. The genes of human and beneficial intestinal flora were excluded by homology comparison, and finally, the drug targets were searched and verified on DrugBank.Results After repeated screening and elimination of beneficial intestinal flora, 10 genes were finally obtained as the drug target genes, i.e., SAZ172_0418, SAZ172_0420, SAZ172_1976, SAZ172_1978, SAZ172_1980, SACOL1524, SA2981_1507, SA2981_2326, SA2981_2521, and SA2981_1955.Conclusion The 10 genes screened out can provide a theoretical basis for the research and development of broad-spectrum antimicrobial agents for drug-resistant strains of S.aureus.
[KEY WORDS] Staphylococcus aureus; drug resistance, bacterial; genome island
金黃色葡萄球菌(金葡菌)可引起人體多部位多類型感染[1-2]。金葡菌也容易出現(xiàn)耐藥菌株導(dǎo)致病人死亡率升高和住院時(shí)間延長,對人類健康威脅重大[3]。近年來金葡菌的耐藥性成為全球醫(yī)學(xué)關(guān)注的焦點(diǎn)[4]。生物信息學(xué)可利用數(shù)據(jù)庫處理、選擇、識別、驗(yàn)證和更新潛在藥靶基因[5]。高表達(dá)、必需的、基因組島基因和物種特有的基因更有可能成為有效藥靶[6-7]。藥靶基因有保守性與必需性,同時(shí)應(yīng)與人類正常腸道菌群基因有差異[8-10]。本文將上述原則應(yīng)用于金葡菌菌株,以求優(yōu)化、分析篩選其藥靶基因?,F(xiàn)將結(jié)果報(bào)告如下。
1 材料與方法
1.1 數(shù)據(jù)收集
從NCBI數(shù)據(jù)庫(https://www.ncbi.nlm.nih.gov/genome/) 中下載金葡菌(S.aureus)49種菌株的基因組及其注釋信息。研究采用了2 767個(gè)細(xì)菌基因組進(jìn)行重注釋,這些基因組的注釋信息與裝配序列于2017年從Genbank上下載,它們的假定蛋白和非編碼蛋白通過同源性搜索和Zcurve方法來重新注釋。
1.2 重注釋金葡菌基因組
應(yīng)用Zcurve1.0[11]、Glimmer[12]和Prodigal[13]軟件,使用聯(lián)合預(yù)測的方法重新預(yù)測金葡菌的49種菌株基因組,識別了新的開放閱讀框(ORFs),通過同源比對被注釋為新基因,其中E值<1e-20,覆蓋范圍>80%,一致性>70%。
1.3 篩選高表達(dá)基因
從paxdb下載金葡菌的49種菌株蛋白表達(dá)數(shù)據(jù)。取最高表達(dá)的10%作為潛在的高表達(dá)基因[14]。高表達(dá)基因20~205個(gè),平均值為185個(gè)。
1.4 挑選必需基因
從必需基因庫DEG數(shù)據(jù)庫下載(http://www.essentialgene.org/)后挑選出49種金葡菌的菌株必需基因[15]。任取金葡菌菌株N315與金葡菌菌株NCTC交集得到必需基因1(176個(gè))。再推廣到金葡菌49種菌株得到共同必需基因170個(gè)。由此得到整個(gè)金葡菌群的共同必需基因。
1.5 確定基因組島基因
從IslandViewer的網(wǎng)站(http://www.patho-genomics.sfu.ca/islandviewer/query.php)獲取已經(jīng)測序的基因組島。從中挑選出金葡菌的基因組島序列,結(jié)合NCBI的同源Blast比對來確定其基因組島基因32個(gè)。
1.6 尋找新的藥靶基因
同時(shí)存在于必需基因與高表達(dá)基因的基因能夠決定細(xì)菌的生存能力,加上基因組島及預(yù)測到的新基因,再排除與人類及腸道菌群相似度高的基因,可以得到最終的藥靶基因。最后利用DrugBank數(shù)據(jù)庫(https://www.drugbank.ca/)的序列檢索核查藥靶基因的同源臨床藥物。
2 結(jié)果
2.1 新基因
根據(jù)本文方法應(yīng)用Zcurve1.0、Glimmer等軟件從2 767個(gè)基因中預(yù)測到新基因61個(gè)。見表1。金葡菌新基因分別列出了61個(gè)新基因產(chǎn)物的功能。其中1562911-1563921、2671852-2672676、517534-517677的注釋分別為GLPG、BL02347、RPMG2。GLPG為必需基因庫DEG (http://www.essential-gene.org/)收錄的必需基因,是原基因注釋文件中所缺失的。提示新基因注釋能彌補(bǔ)原信息的不足。
2.2 基因組島基因
用本文方法尋找到的基因組島有6個(gè),其中包含基因32個(gè)。見表2、3。將所有的基因組島基因與新基因組合后結(jié)合NCBI的同源Blast確定基因名及COG編號、GI編號,得到基因52個(gè)。
2.3 高表達(dá)基因、必需基因
應(yīng)用本文的方法結(jié)合DEG數(shù)據(jù)庫尋找到的必需基因有170個(gè)。見表4。再與從paxdb下載并挑選到的前10%作為高表達(dá)基因,取高表達(dá)基因與必需基因交集。選擇49種菌株交集結(jié)果中的重復(fù)在29(60%)株以上的基因共73個(gè)基因作為備選基因。見表5。取最高表達(dá)的10%作為潛在高表達(dá)基因以保持其密碼子偏倚差異性。
2.4 同源性篩查后得到的基因
經(jīng)過前面的步驟,最終得到125個(gè)基因,通過同源篩查出與人類、嗜酸乳酸桿菌、啤酒酵母菌、枯草芽孢桿菌均不同源的基因,以保證藥物對人類和人體有益腸道菌群無傷害作用,最后得到10個(gè)基因,其名稱、序列及其蛋白功能見表6。
2.5 金葡菌潛在藥靶基因的同源靶點(diǎn)及臨床可能靶向藥物
利用DrugBank(https://www.drugbank.ca/)數(shù)據(jù)庫首頁的序列檢索,以FASTA格式輸入上述10個(gè)基因?qū)?yīng)的蛋白序列,設(shè)置參數(shù)E值<20,過濾器中藥物類型選擇“已批準(zhǔn)”,蛋白類型選擇“靶向蛋白”,搜索。得到的結(jié)果有231種藥物,本研究只探討10個(gè)基因?qū)鹌暇目咕饔眉皺z測藥靶基因預(yù)測的正確性,故只列出了8種臨床較為常用的藥物。見表7。
3 討論
目前,抗生素靶向作用于金葡菌的蛋白質(zhì)有潘頓-瓦倫丁殺白細(xì)胞毒素(PVL)、中毒性休克葡萄球菌毒素1(TSST-1)、α-溶血素、蛋白A(Protein A)、跨膜青霉素結(jié)合蛋白(pbps)、細(xì)胞壁應(yīng)急刺激相關(guān)蛋白(CWSS)、酚溶性調(diào)節(jié)蛋白(PSM)、纖連蛋白結(jié)合蛋白和凝血酶、腸毒素等[16]。其中PVL由lukF-PV及l(fā)ukS-PV基因編碼,是一種具有細(xì)胞溶解特性并有助于葡萄球菌致病的成孔毒素。產(chǎn)生PVL的金葡菌菌株涉及原發(fā)性皮膚和軟組織感染、高死亡率壞死性肺炎和復(fù)發(fā)性復(fù)雜性骨髓炎等疾病[17]。CWSS的代表基因包括murA、murZ、pbp2和tca等[18-19],而纖連蛋白結(jié)合蛋白[20]和凝血酶的編碼基因gyrA[21]以及腸毒素的編碼基因sec[22]均為金葡菌的必需基因,其中sec同時(shí)為金葡菌的高表達(dá)基因[16]。本文研究結(jié)果顯示,rpoB、rpoC基因?qū)儆诟弑磉_(dá)和必需基因,rpoB編碼RNA聚合酶位于有催化活性的β亞基上,rpoB基因突變可能會影響整個(gè)RNA聚合酶的轉(zhuǎn)錄活性。基因交換的研究證實(shí),RpoB-H481Y突變是導(dǎo)致萬古霉素中介敏感金葡菌(VISA)表型出現(xiàn)的原因[23]。在VISA分離物中也發(fā)現(xiàn)了RNA聚合酶其他亞基的突變,如rpoD或本文中同屬于高表達(dá)及必需基因的rpoC[24]。故本文高表達(dá)、必需基因結(jié)果對金葡菌的抗菌藥物研究有一定意義。
基因組島是通過水平基因轉(zhuǎn)移的進(jìn)化過程從同種族或異種族的生物中獲得功能相關(guān)基因簇,具有抗生素抗性、細(xì)菌毒力相關(guān)的基因[25]。這種基因水平轉(zhuǎn)移的進(jìn)化如耐萬古霉素金葡菌(VRSA,MIC>16 mg/L)[26]在分離接合過程中從耐萬古霉素腸球菌上獲取質(zhì)粒,從VRE轉(zhuǎn)座子Tn1546上編碼的vanA操縱子上獲得耐藥性[27],vanA編碼產(chǎn)物使VRSA能夠用d-Ala-d-Lac二肽取代d-Ala-d-Ala末端二肽,從而改變?nèi)f古霉素的結(jié)合靶點(diǎn),常常介導(dǎo)對萬古霉素的高水平耐藥[28]。
本研究通過重注釋金葡菌基因組,篩選49種金葡菌菌株的高表達(dá)基因,重注釋了金葡菌基因組獲得新基因,篩選了基因組島、必需基因,排除了與人類及腸道有益菌群同源基因得到10個(gè)潛在耐藥藥靶基因。本文在同源篩選中的E值為10~20,一致性<50%,覆蓋范圍<60%[29]。篩查后結(jié)果顯示,SAZ172_0418基因來源于S.aureus subsp. aureus Z172菌株,蛋白質(zhì)產(chǎn)物是ATP依賴性DNA解旋酶UvrD/PcrA,其分子功能有ATP結(jié)合、DNA結(jié)合、DNA解旋酶活性。同樣是該菌株的另一基因SAZ172_0420被篩選出來,它編碼Mutator家族轉(zhuǎn)座酶,有轉(zhuǎn)座酶活性,在DNA重組、換位中發(fā)揮作用,目前暫未命名。S14_ClpP_1基因產(chǎn)物ATP依賴性Clp蛋白酶蛋白水解亞基屬于肽酶S14家族,酪蛋白溶解蛋白酶(ClpP)是ATP依賴性、高度保守的絲氨酸蛋白酶,該亞基有絲氨酸型內(nèi)肽酶活性。HU等[28]研究顯示,ClpP突變和功能喪失上調(diào)轉(zhuǎn)錄因子和細(xì)胞壁合成蛋白,如PBP2、FemA和FemB,可能會導(dǎo)致VISA、耐甲氧西林金黃色葡萄球菌(MRSA)菌株產(chǎn)生,與本文篩選結(jié)果相一致。YmfN基因產(chǎn)物是多物種的多肽終止酶大亞基,含有N末端HTH結(jié)構(gòu)域。McrA編碼含有HNHc結(jié)構(gòu)域的蛋白質(zhì)(5-甲基胞嘧啶特異性限制性內(nèi)切核酸酶McrA),有內(nèi)切核酸酶活性及核酸結(jié)合的功能,是多細(xì)菌物種的HNH內(nèi)切核酸酶。
YpbB基因在金葡菌COL中被篩選到,編碼含有HTH_40結(jié)構(gòu)域的蛋白質(zhì)YpbB,含有C末端HTH域,目前功能未知。TPR repeat在金葡菌04-02981中,其編碼菱形家族膜內(nèi)絲氨酸蛋白酶,是蛋白酶、水解酶,是假定膜蛋白,含有TPR重復(fù)結(jié)構(gòu)域。本文同種菌株中KilAC被篩選出來,在多物種中該基因編碼氧化還原酶,其推定功能為噬菌體抗抑制蛋白或噬菌體抗抑郁蛋白YoqD、KilAC域。YjaZ目前推定的蛋白產(chǎn)物為金屬鈦酶,預(yù)測為鋅依賴性蛋白酶YjaZ,DUF2268家族。FeoB在多物種的蛋白產(chǎn)物為亞鐵轉(zhuǎn)運(yùn)蛋白B,功能為參與無機(jī)離子運(yùn)輸和新陳代謝。上述基因雖然部分功能未知,但其對金葡菌生長生存至關(guān)重要。
目前,臨床上耐藥金葡菌根據(jù)臨床經(jīng)驗(yàn)或藥敏試驗(yàn)選用抗生素治療失敗后容易出現(xiàn)3種耐藥結(jié)局:MRSA、VISA及VRSA,其中MRSA可通過藥敏試驗(yàn)選用抗生素或最終應(yīng)用萬古霉素治療;VISA及VRSA則無特效藥。ZHANG等[30]研究認(rèn)為,近年來萬古霉素異質(zhì)性耐藥金葡菌(hVISA)/VISA的患病率有所增加,且亞洲國家比歐美國家更普遍。蛋白組學(xué)研究結(jié)果顯示,許多蛋白質(zhì),包括參與金葡菌細(xì)胞壁合成、水解和轉(zhuǎn)錄調(diào)控的蛋白質(zhì)是CLPC或CLPP的底物[31-32],ClpP的缺失則會影響agr、sigB、sarT和walKR等幾個(gè)重要調(diào)控基因的表達(dá),從而降低金葡菌對萬古霉素的敏感性[33]。推測本文篩選出的SAZ172_1976基因可能通過Clp蛋白酶作用于細(xì)胞壁影響金葡菌對萬古霉素、青霉素及甲氧西林等抗生素敏感性。已有研究結(jié)果顯示,ATP依賴性ClpP蛋白酶在真細(xì)菌和真核細(xì)胞的葉綠體和線粒體中高度保守,Clp相關(guān)蛋白和蛋白酶為金葡菌應(yīng)激存活、毒力和抗生素抗性的核心[34]。本文研究結(jié)果與其一致。
本研究在DrugBank(https://www.drugbank.ca/)數(shù)據(jù)庫檢索了金葡菌潛在藥靶基因的同源靶點(diǎn)及可能靶向藥物,列舉了8種臨床相關(guān)藥物。盡管有研究顯示多種細(xì)菌對三氯生耐藥,但其對金葡菌表現(xiàn)出色的活性,可用于控制耐甲氧西林的金葡菌在醫(yī)院中的傳播[35]。DrugBank顯示,磺酰胺通過與對氨基苯甲酸競爭結(jié)合四氫葉酸的中間體——二氫葉酸合成酶來抑制蝶啶和對氨基苯甲酸酶促轉(zhuǎn)化為二氫蝶呤酸。嘌呤和dTMP的合成需要四氫葉酸,抑制其合成會抑制細(xì)菌的生長,磺酰胺的抗菌作用不受膿液中的對氨基苯甲酸影響。目前,臨床燒傷科仍需將SAZ172_0420基因的靶向藥物磺胺嘧啶和銀離子的結(jié)合劑磺胺嘧啶銀作為保痂抗菌一線用藥。DrugBank(https://www.drugbank.ca/)數(shù)據(jù)庫檢索結(jié)果顯示,檸檬酸鉍鉀是靶向作用于幽門螺桿菌的ATP依賴性Clp蛋白酶ATP結(jié)合亞基ClpX。有趣的是,巴西FERRAZ等團(tuán)隊(duì)報(bào)道鉍的化合物對金葡菌有抗菌活性[36],而鉍化合物是否靶向作用于Clp蛋白酶ATP結(jié)合亞基ClpX或其他蛋白有待進(jìn)一步探究。
綜上所述,本文的研究方法可作為多種微生物抗菌藥物研制或更新的方法之一,本文篩選出的10個(gè)基因可對金葡菌耐藥菌株的廣譜抗菌藥物研制提供理論幫助。
[參考文獻(xiàn)]
[1]TONG S Y C, DAVIS J S, EICHENBERGER E, et al. Stap-hylococcus aureus nfections:epidemiology, pathophysiology,clinical manifestations, and management[J]. ?Clin Microbiol Rev, 2015,28(3):603-661.
[2]BUSH K, LEAL J, FATHIMA S, et al. The molecular epidemiology of incident methicillin-resistant Staphylococcus aureus cases among hospitalized patients in Alberta, Canada: a retrospective cohort study[J].? Antimicrob Resist Infect Control, 2015,4:35.
[3]DE KRAKER M E A, DAVEY P G, GRUNDMANN H. Mortality and hospital stay associated with resistant Staphylococcus aureus and Escherichia coli bacteremia: estimating the burden of antibiotic resistance in Europe[J].? PLoS Med, 2011,8(10):e1001104.
[4]CHAMBERS H F, DELEO F R. Waves of resistance:Staphylococcus aureus in the antibiotic era[J].? Nat Rev Microbiol, 2009,7(9):629-641.
[5]PERLMAN L, GOTTLIEB A, ATIAS N, et al. Combining drug and gene similarity measures for drug-target elucidation[J].? Journal of Computational Biology, 2011,18(2):133-145.
[6]AGUERO F, AL-LAZIKANI B, ASLETT M, et al. Geno-mic-scale prioritization of drug targets: the TDR Targets database[J].? Nature Reviews Drug Discovery, 2008,7(11):900-907.
[7]BUTT A M, NASRULLAH I, TAHIR S, et al. Comparative genomics analysis of Mycobacterium ulcerans for the identification of putative essential genes and therapeutic candidates[J].? PLoS One, 2012,7(8):e43080.
[8]READ T D, GILL S R, TETTELIN H, et al. Finding drug targets in microbial genomes[J].? Drug Discov Today, 2001,6(17):887-892.
[9]SAMAL H B, PRAVA J, SUAR M, et al. Comparative genomics study of Salmonella Typhimurium LT2 for the identification of putative therapeutic candidates[J].? Journal of Theoretical Biology, 2015,369:67-79.
[10]MEHLA K, RAMANA J. Novel drug targets for food-borne pathogen Campylobacter jejuni: an integrated subtractive genomics and comparative metabolic pathway study[J].? Omics: a Journal of Integrative Biology, 2015,19(7):393-406.
[11]GUO F B, OU H Y, ZHANG C T. ZCURVE: a new system for recognizing protein-coding genes in bacterial and archaeal genomes[J].? Nucleic Acids Res, 2003,31(6):1780-1789.
[12]KELLEY D R, LIU B, DELCHER A L, et al. Gene prediction with Glimmer for metagenomic sequences augmented by classification and clustering[J].? Nucleic Acids Res, 2012,40(1):e9.
[13]HYATT D, CHEN G L, LOCASCIO P F, et al. Prodigal: prokaryotic gene recognition and translation initiation site identification[J].? BMC Bioinform, 2010,11:119.
[14]SHARP P M, LI W H. The Codon adaptation index-a measure of directional synonymous Codon usage bias,and its potential applications[J].? Nucleic Acids Research, 1987,15(3):1281-1295.
[15]LUO H, LIN Y, GAO F, et al. DEG 10, an update of the da-tabase of essential genes that includes both protein-codinggenes and noncoding genomic elements[J].? Nucleic Acids Res, 2014,42(Database issue):D574-D580.
[16]HODILLE E, ROSE W, DIEP B A, et al. The role of anti-biotics in modulating virulence in Staphylococcus aureus[J].? Clin Microbiol Rev, 2017,30(4):887-917.
[17]OKOLIE C E, COCKAYNE A, PENFOLD C, et al. Engineering of the LukS-PV and LukF-PV subunits of Staphylococcus aureus Panton-Valentine leukocidin for diagnostic and the-rapeutic applications[J].? BMC Biotechnology, 2013,13:103.
[18]MCALEESE F, WU S W, SIERADZKI K, et al. Overexpression of genes of the cell wall stimulon in clinical isolates of Staphylococcus aureus exhibiting vancomycin-intermediate-S.aureus genome-type resistance to vancomycin[J].? Journal of Bacteriology, 2006,188(3):1120-1133.
[19]RAHMAN M M, HUNTER H N, PROVA S, et al. The Staphylococcus aureus methicillin resistance factor FmtA is a D-amino esterase that Acts on teichoic acids[J].? mBio, 2016,7(1):e02015-e02070.
[20]ARCIOLA C R, CAMPOCCIA D, GAMBERINI S, et al. Prevalence ofcna, fnbA and fnbB adhesin genes among Staphylococcus aureusisolates from orthopedic infections associated to different types of implant[J].? FEMS Microbiology Letters, 2005,246(1):81-86.
[21]GOOTZ T D, ZANIEWSKI R P, HASKELL S L, et al. Activities of trovafloxacin compared with those of other fluoroquinolones against purified topoisomerases and gyra and grla mutants of Staphylococcus aureus[J].? Antimicrobial Agents and Chemotherapy, 1999,43(8):1845-1855.
[22]JO A, AHN J. Phenotypic and genotypic characterisation of multiple antibiotic-resistant Staphylococcus aureus exposed to subinhibitory levels of oxacillin and levofloxacin[J].? BMC Microbiol, 2016,16(1):170.
[23]MATSUO M, HISHINUMA T, KATAYAMA Y, et al. Mutation of RNA polymerase beta subunit (rpoB) promotes hVISA-to-VISA phenotypic conversion of strain Mu3[J].? Antimicrobial Agents and Chemotherapy, 2011,55(9):4188-4195.
[24]MATSUO M, CUI L Z, KIM J, et al. Comprehensive identification of mutations responsible for heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA)-to-VISA conversion in laboratory-generated VISA strains derived from hVISA clinical strain Mu3[J].? Antimicrobial Agents and Chemotherapy, 2013,57(12):5843-5853.
[25]HIRAMATSU K, ITO T, TSUBAKISHITA S, et al. Genomic basis for methicillin resistance in Staphylococcus aureus[J].? Infect Chemother, 2013,45(2):117-136.
[26]WEIGEL L M, CLEWELL D B, GILL S R, et al. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus[J].? Sci N Y N Y, 2003,302(5650):1569-1571.
[27]ARTHUR M, MOLINAS C, DEPARDIEU F, et al. Characterization of Tn1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147[J].? J Bacteriol, 1993,175(1):117-127.
[28]HU Q W, PENG H G, RAO X C. Molecular events for promotion of vancomycin resistance in vancomycin intermediate Staphylococcus aureus[J].? Front Microbiol, 2016,7:1601.
[29]GUO F B, XIONG L F, TENG J L L, et al. Re-annotation of protein-coding genes in 10 complete genomes of Neisseriaceae family by combining similarity-based and composition-based methods[J].? DNA Res: Int J Rapid Publ Rep Genes Genomes, 2013,20(3):273-286.
[30]ZHANG S S, SUN X X, CHANG W J, et al. Systematic review and meta-analysis of the epidemiology of vancomycin-intermediate and heterogeneous vancomycin-intermediate Sta-phylococcus aureus isolates[J].? PLoS One, 2015,10(8):e0136082.
[31]FENG J, MICHALIK S, VARMING A N, et al. Trapping and proteomic identification of cellular substrates of the CLPP protease in Staphylococcus aureus[J].? J Proteome Res, 2013,12(2):547-558.
[32]GRAHAM J W, LEI M G, LEE C Y. Trapping and identification of cellular substrates of the Staphylococcus aureus CLPC chaperone[J].? J Bacteriol, 2013,195(19):4506-4516.
[33]SHOJI M, CUI L Z, IIZUKA R, et al. WalK and CLPP mutations confer reduced vancomycin susceptibility in Staphylococcus aureus[J]. Antimicrob Agents Chemother, 2011,55(8):3870-3881.
[34]FREES D, GERTH U, INGMER H. Clp chaperones and proteases are central in stress survival, virulence and antibiotic resistance of Staphylococcus aureus[J].? International Journal of Medical Microbiology, 2014,304(2):142-149.
[35]FAN F, YAN K, WALLIS N G, et al. Defining and combating the mechanisms of triclosan resistance in clinical isolates of Staphylococcus aureus[J].? Antimicrob Agents Chemother, 2002,46(11):3343-3347.
[36]FERRAZ K S O, SILVA N F, DA SILVA J G, et al. Investigation on the pharmacological profile of 2,6-diacetylpyridine bis (benzoylhydrazone) derivatives and their antimony (Ⅲ) and bismuth (Ⅲ) complexes[J]. Eur J Med Chem, 2012,53:98-106.
(本文編輯 黃建鄉(xiāng))
[收稿日期]2019-11-18; [修訂日期]2020-05-18
[基金項(xiàng)目]四川省科技廳自然科學(xué)研究計(jì)劃項(xiàng)目(No.2013-SZZ001);國家級大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃項(xiàng)目(01/01120354)
[第一作者]顧洪(1993-),男,碩士研究生。
[通信作者]曾凡才(1974-),男,博士,教授,碩士生導(dǎo)師。E-mail:zfcai@swmu.edu.cn。