耿安靜 王旭 李秋劍 楊慧 陳巖 劉雯雯 陳永堅 王富華
摘要:近年來的土壤重金屬污染問題依然嚴(yán)重。重金屬作為一種主要的非生物脅迫,不僅嚴(yán)重制約植物的生長發(fā)育、影響農(nóng)產(chǎn)品的品質(zhì)及安全質(zhì)量,還會通過食物鏈進(jìn)入動物和人體內(nèi),最終威脅人體健康。如何緩解植物重金屬毒害一直是國內(nèi)外研究的重點和難點?;ㄇ嗨厥且环N廣泛存在于自然界植物中的水溶性天然色素,參與植株的生長與發(fā)育、生物與非生物脅迫應(yīng)答等。文章歸納總結(jié)文獻(xiàn)報道,闡明重金屬對植物的危害,并以砷為例說明危害機(jī)理,介紹花青素的生物學(xué)功能,以及花青素介導(dǎo)植物抗重金屬脅迫機(jī)制,包括清除自由基、激發(fā)/促進(jìn)內(nèi)源抗氧化系統(tǒng)、螯合重金屬、區(qū)室化隔離和花青素相關(guān)基因表達(dá)。針對目前重金屬修復(fù)及農(nóng)林廢棄物化利用存在的問題,提出今后應(yīng)重點開展花青素介導(dǎo)植物重金屬脅迫和歸趨的機(jī)理與應(yīng)用研究,開發(fā)重金屬植物修復(fù)技術(shù)的新原料,為豐富植物重金屬轉(zhuǎn)運機(jī)制和防控措施、減少植物重金屬污染、綜合利用富含花青素的有色蔬果及制糖原料等農(nóng)林廢棄物提供參考依據(jù)。
關(guān)鍵詞: 花青素;重金屬;脅迫;介導(dǎo)機(jī)理
中圖分類號: S19? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼: A 文章編號:2095-1191(2020)01-0080-11
Abstract:The problem of heavy metals pollution in soil in recent years is still serious. As a major abiotic stress, heavy metals not only seriously restrict the growth and development of plants, affect the quality and safety of agricultural products, but also enter the animals and humans through the biological chain, threatening human health at last. How to alleviate the heavy metals toxicity of plants has always been the focus and difficulty of research at home and abroad. Anthocyanin is one kind of water-soluble natural pigment widely found in plants. It can participate in plant growth and development, biological and abiotic stress responses and so on. The paper illuminated the damage of heavy metals to plants and took arsenic as an example to explain its mechanism. Introduced biological functions of anthocyanin and mechanism by which anthocyanins regulated heavy metal pollution in plants included scavenging free radicals, exciting/promoting endogenous antioxidant systems, chelating heavy metals, compartmentalization and expressing anthocyanin-related genes. Aiming at the problem of heavy metal remediation and utilization of agricultural and forestry waste, this article provided theoretical basis for enriching plant heavy metal transport mechanisms and prevention and control measures, reducing plant heavy metal pollution, comprehensive utilization of anthocyanin-rich agricultural and forestry waste such as colored vegetables and fruits, beets as sugar production raw material. It was suggested to carry out the mechanism and application research of anthocyanins to mediate heavy metal stress and fate of plants, and develop new raw materials for heavy metal phytoremediation technology in the future.
Key words: anthocyanin; heavy metals; stress; mediated mechanism
Foundation item: National Key Research Program(2019YFC1605602);National Natural Science Foundation of China for Young Scholars(41807475;41401367);Entrusted Technology Research Project of Key Laboratory of Edible Agri-cultural Products Regulation Technology of Shenzhen Agricultural Products Quality and Safety Inspection and Testing Center(Shinongjianzicaihetongzi〔2019〕032)
0 引言
隨著冶金、核能、化工等行業(yè)“三廢”排放、礦山開發(fā)、城市垃圾廢棄等人為和地理因素向自然環(huán)境釋放了大量有毒重金屬離子,導(dǎo)致土壤中重金屬污染嚴(yán)重。重金屬通過植物根系及葉面等方式進(jìn)入植物體內(nèi),不僅制約植物的生長發(fā)育,影響植物產(chǎn)品的產(chǎn)量、品質(zhì)及安全,還會通過食物鏈進(jìn)入動物和人體內(nèi),最終危害人體健康。如何防控重金屬污染一直是關(guān)系民生的國內(nèi)外研究熱點和重難點?;ㄇ嗨厥且环N廣泛存在于植物花瓣、果實等部位的天然水溶性色素,具有抗突變(Punvittayagul et al.,2014)、保護(hù)神經(jīng)(Thummayot et al.,2014)、抗炎(Du et al.,2015)、防治心血管疾?。–hen et al.,2016)、抗癌(Munagala et al.,2017)、抗氧化(Parizad et al.,2019)等功能,在食品(Sui et al.,2016)、醫(yī)藥(Lin et al.,2017)、化妝品(Nizio?-?ukaszewska et al.,2017)、飼料(汪文忠,2017)等行業(yè)均具有巨大的應(yīng)用潛力?;ㄇ嗨爻藢游锖腿祟惥哂休^多生理活性外,對植物也具有廣泛的生物學(xué)功能。近年來研究發(fā)現(xiàn),富含花青素的植物較普通植物的抗重金屬脅迫能力強,花青素在一定程度上可緩解植物受重金屬的毒害(Dai et al.,2006,2012;Posmyk et al.,2009;Landi et al.,2014;Geng et al.,2017)。本文對花青素調(diào)控重金屬毒害的機(jī)理進(jìn)行分析,旨在為完善植物重金屬轉(zhuǎn)運機(jī)制和防控措施、減少植物重金屬污染及綜合利用富含花青素的農(nóng)林廢棄物提供理論依據(jù)。
1 重金屬對植物的危害及機(jī)理
許多重金屬元素如鋅(Zn)、銅(Cu)、鐵(Fe)是植物所必需的營養(yǎng)元素,對植物生長發(fā)育起著極其重要的作用。但這些重金屬營養(yǎng)元素的有益作用范圍有限,當(dāng)濃度超過其效應(yīng)濃度(受體可耐受的最大限度)時就會毒害機(jī)體。而更多的重金屬[如鉛(Pb)、鎘(Cd)和汞(Hg)等]和非金屬元素[如砷(As)]并非植物生長所必需的元素,毒性大,即使在低濃度下也被認(rèn)為是非常有害,能夠引起受體內(nèi)生理生化代謝紊亂,生長發(fā)育受抑制,達(dá)到致死濃度時,會導(dǎo)致受體死亡。重金屬進(jìn)入植物體后會產(chǎn)生許多有害影響,包括抑制細(xì)胞生長、葉綠素降解、破壞光合作用和呼吸作用、養(yǎng)分消耗、脂質(zhì)過氧化、膜解體及刺激次生代謝途徑,導(dǎo)致作物生長受損,甚至死亡(Gupta et al.,2013)。
作為植物生長營養(yǎng)元素之一的Zn在高濃度時會毒害植物,主要表現(xiàn)為抑制生長,其特征是根系生長減緩、根系增厚、細(xì)胞分裂/伸長受損、根褐變與腐爛(Chanu and Gupta,2016)。主要機(jī)制是Zn與Fe和鎂(Mg)具有很高的化學(xué)相似性,可在酶的活性位點替代這兩種金屬離子,從而干擾細(xì)胞功能。高濃度Cu不僅會引起小麥、水稻、玉米、向日葵和黃瓜的生長受抑制、氧化損傷和抗氧化反應(yīng),還會改變礦物質(zhì)營養(yǎng)、光合作用、酶活性和葉片葉綠素含量,從而導(dǎo)致產(chǎn)量下降(Adrees et al.,2015)。Cu毒害的主要機(jī)理是Cu能夠催化Haber-Weiss和Fenton反應(yīng),導(dǎo)致活性氧(Reactive oxygen species,ROS)產(chǎn)生,而過量ROS會破壞細(xì)胞成分從而影響細(xì)胞功能(Bona et al.,2007)。高Fe脅迫與植物體內(nèi)氧化應(yīng)激、生長調(diào)控、細(xì)胞壁硬度改變及其合成等有關(guān)(Hopff et al.,2013)。
Cd不僅無生物學(xué)功能,還會通過誘導(dǎo)氧化應(yīng)激對植物生長發(fā)育產(chǎn)生不利影響(Grat?o et al.,2008)。Cd發(fā)揮其毒性作用是通過對蛋白質(zhì)巰基的親和力抑制ROS自由基解毒酶從而導(dǎo)致氧化應(yīng)激。從生物學(xué)上講,Cd在化學(xué)上與Zn、Fe和鈣(Ca)相似,可在許多蛋白質(zhì)的修復(fù)基中取代這些元素,導(dǎo)致植物缺少營養(yǎng)元素而影響其正常的生長發(fā)育(Fagioni et al.,2009)。Pb沒有已知的生物學(xué)作用,其與植物的相互作用導(dǎo)致ROS產(chǎn)生。Pb和/或ROS會抑制正常的細(xì)胞功能、生理反應(yīng)和植物的整體性能,主要機(jī)制是通過破壞組織超微結(jié)構(gòu)、細(xì)胞成分和生物分子而引起植物毒性(Kumar and Prasad,2018)。
鋁(Al)是酸性土壤作物生長的主要限制因素。高濃度的Al3+通過與磷酸鹽、硫酸鹽和羰基官能團(tuán)結(jié)合而破壞各種細(xì)胞生長及組分,從而抑制對Al3+敏感的作物生長并降低產(chǎn)量(Poschenrieder et al.,2008;Valle et al.,2009)。高鉻(Cr)暴露對鐵氧還蛋白—煙酰胺腺嘌呤二核苷酸磷酸(Nicotinamide-adenine dinucleotide phosphate,NADP)還原酶、NADP-異檸檬酸脫氫酶、乙二醛酶I和谷氨酰胺合成酶等多種抗氧化酶水平產(chǎn)生影響(Zeng et al.,2014)。Hg暴露與代謝過程、光合作用、應(yīng)激反應(yīng)、能量代謝、信號通路和免疫抑制等相關(guān)(Liu et al.,2013a)。
以As為例說明重金屬對植物的毒害作用(圖1)和危害機(jī)理。As通過根進(jìn)入植物體內(nèi)的主要形式是無機(jī)As(III)和As(V),而一旦進(jìn)入植物根細(xì)胞,As(V)很容易轉(zhuǎn)化為毒性更大的As(III)。As(V)和As(III)均會破壞植物的新陳代謝,但通過不同的機(jī)制。As(V)是一種磷酸鹽類似物,能破壞某些與磷酸鹽有關(guān)的新陳代謝,其可通過磷酸鹽轉(zhuǎn)運蛋白在細(xì)胞膜上轉(zhuǎn)運,導(dǎo)致磷酸鹽供應(yīng)失衡;可在磷酸化反應(yīng)中與磷酸鹽競爭,取代用于線粒體的氧化磷酸化和三磷酸腺苷(Adenosine triphosphate,ATP)合成磷酸基,導(dǎo)致As(V)加合物的形成,解除光合磷酸化和氧化磷酸化,降低細(xì)胞產(chǎn)生ATP和進(jìn)行正常代謝的能力,導(dǎo)致細(xì)胞內(nèi)能量流動中斷(Cozzolino et al.,2010)。As(III)是一種二硫醇反應(yīng)性化合物,毒害機(jī)理有:(1)As(III)的暴露通常會誘導(dǎo)ROS產(chǎn)生,植物體內(nèi)過量的ROS會超過植物本身抗氧化系統(tǒng)的防御能力,進(jìn)而影響碳代謝、氮代謝和硫代謝等,導(dǎo)致碳水化合物、氨基酸與蛋白質(zhì)的形成及功能等受影響,進(jìn)而影響植物生長與結(jié)實,嚴(yán)重時會導(dǎo)致死亡(Begum et al.,2016)。(2)單體As較易與含有半胱氨酸殘基或二硫醇輔因子的酶、蛋白質(zhì)、DNA結(jié)合形成復(fù)合物,使酶失活或活性改變、蛋白質(zhì)/DNA變性功能喪失等。(3)As也能通過連接到鄰近的巰基上,改變蛋白質(zhì)結(jié)構(gòu)/功能,從而對磷酸鹽代謝產(chǎn)生不利影響(Tripathi et al.,2007)。(4)As通過調(diào)節(jié)參與代謝和氧化還原穩(wěn)態(tài)的蛋白,對葉綠體結(jié)構(gòu)和光合作用產(chǎn)生負(fù)面影響。如在水稻中,As通過破壞ROS的穩(wěn)態(tài)來破壞細(xì)胞超微結(jié)構(gòu),從而抑制水稻生長(Liu et al.,2013b)。(5)由于分子量及電荷數(shù)較小,單體As(III)被植物吸收速度較快,導(dǎo)致根的As(III)含量高而抑制植物對有益元素的吸收,從而抑制生長,或引起根受傷導(dǎo)致植物生長受損;同時,單體As(III)向上轉(zhuǎn)運的速度也較快,這就是大米中As(III)含量較其他As形態(tài)含量高的原因。As(III)遷移到植物生殖器官中對植物的生殖有著重要影響,導(dǎo)致產(chǎn)量降低、質(zhì)量下降等(Singh et al.,2015)。
2 花青素的生物學(xué)功能
花青素不僅對人體具有較強的生理活性,對植物也具有較多的生物學(xué)功能?;ㄇ嗨厥菢?gòu)成花瓣和果實顏色的主要色素之一,在授粉過程中起著重要作用,花青素能在自然界花朵發(fā)育過程(如在開花和授粉后)中通過許多方式改變,為傳粉者和播種者提供視覺線索以吸引動物進(jìn)行授粉和果實傳播(Grotewold,2006)?;ㄇ嗨馗淖儗?dǎo)致的顏色變化具有一系列的生物化學(xué)機(jī)制,影響因素有溫度、共色素、pH、金屬、糖、花青素堆積和細(xì)胞形狀等(Miller et al.,2011)。花青素還被認(rèn)為在多種植物/動物的相互作用中發(fā)揮作用,包括傳粉媒介和吸引食果動物,以及排斥食草動物和寄生蟲?;ㄇ嗨氐墓鈱W(xué)特性可作為潛在食草動物的視覺信號,顯示出對有毒或難吃化學(xué)物質(zhì)的強大代謝包埋?;ㄇ嗨剡€涉及植物與其背景的部分偽裝,潛在破壞昆蟲的保護(hù)色及防御結(jié)構(gòu)的擬態(tài)偽裝(Lev-Yadun and Gould,2008)?;ㄇ嗨卦跔I養(yǎng)器官中積累,不僅有利于保護(hù)光合系統(tǒng)免受強光和紫外線的傷害,還能提高植株抗低溫、抗旱、抗病蟲害、抗重金屬、抗食草動物侵襲等非生物和生物脅迫(Imtiaz et al.,2018)。如紫莖的蜈蚣草耐鹽性較綠莖的蜈蚣草好,主要是花青素的高積累能夠通過調(diào)節(jié)生理功能和滲透平衡促進(jìn)耐鹽性(Li et al.,2018)?;ㄇ嗨乜梢詼p少在光脅迫條件下葉綠素的光抑制和光漂白。在高輻照度下植物體內(nèi)的花青素通常聚集在外周組織,但也有一些例外?;ㄇ嗨貙獾乃p有可能幫助建立新的平衡,作為植物組織的光保護(hù)屏障降低光氧化損傷的風(fēng)險(Steyn et al.,2002);在種子中積累,可作為內(nèi)源性抗氧化劑保護(hù)種子內(nèi)的化學(xué)物質(zhì),也有利于種子休眠(Lepiniec et al.,2006)。
3 花青素介導(dǎo)植物抗重金屬脅迫的機(jī)理
花青素通過清除自由基、抗氧化系統(tǒng)的促進(jìn)與激活、與重金屬螯合、區(qū)室化隔離、花青素結(jié)構(gòu)/調(diào)控基因表達(dá)等方式調(diào)節(jié)植物吸收轉(zhuǎn)運重金屬,從而緩解重金屬對植物的毒害(Raab et al.,2005;Ahmed et al.,2013;Le?o et al.,2013;Uraguchi et al.,2018)。
3. 1 清除自由基
當(dāng)植物受重金屬脅迫時,體內(nèi)會產(chǎn)生過多的ROS,如超氧陰離子自由基([O][2])、羥基自由基(·OH)、過氧化氫(H2O2)、單線態(tài)氧和脂氧自由基等,其化學(xué)性質(zhì)比較活躍,幾乎可以與各種物質(zhì)發(fā)生作用,引起一系列對細(xì)胞具有破壞性的連鎖反應(yīng),對光合作用、呼吸作用等有重要的不利影響(Maleva et al.,2018),過量時可導(dǎo)致細(xì)胞突變或死亡、組織病變或死亡。
花青素含有多個酚羥基供體,作為氫或電子供體具有較強的反應(yīng)活性,是一種較強的抗氧化劑,能清除氧自由基(O·)、1,1-二苯基-2-三硝基苯肼自由基(DPPH·)、2,2'-連氮基-雙-(3-乙基苯并二氫噻唑啉-6-磺酸)二銨鹽自由基(ABTS·)、過氧自由基(ROO·)、氫過氧自由基(HO2·)、[O][2]和H2O2等,也可與蛋白結(jié)合抑制過氧化反應(yīng),還可清除脂質(zhì)自由基,進(jìn)而抑制自由基鏈反應(yīng)的啟動、切斷脂肪鏈反應(yīng)中的氧化環(huán)節(jié)、控制自由基反應(yīng)傳播從而抑制脂質(zhì)過氧化反應(yīng)。ROS通過上調(diào)生物合成后期對應(yīng)的結(jié)構(gòu)基因和相應(yīng)的調(diào)控基因來誘導(dǎo)花青素積累,這是花青素積累的重要來源信號。作為一種反饋調(diào)控,花青素通過調(diào)節(jié)ROS水平、對產(chǎn)生ROS脅迫的敏感性來增強植物抗性(Xu et al.,2017)?;ㄇ嗨剡€參與調(diào)控ROS誘導(dǎo)的負(fù)責(zé)細(xì)胞生長和分化的信號級聯(lián)(Hatier and Gould,2008)。通過調(diào)節(jié)ROS信號,花青素可以成為調(diào)節(jié)回路的一部分,從而增強ROS信號網(wǎng)絡(luò)的穩(wěn)健性(Payne et al.,2013)?;ㄇ嗨氐恼{(diào)控因子R2R3-MYB也受控于氧化還原勢(Heine et al.,2004),進(jìn)一步說明細(xì)胞內(nèi)的氧化還原電位與調(diào)節(jié)花青素積累兩者之間有聯(lián)系(Taylor and Grotewold,2005)。
花青素消除自由基的機(jī)理是通過分子環(huán)上的酚羥基與自由基反應(yīng)生成較穩(wěn)定的半醌式自由基,終止自由基鏈?zhǔn)椒磻?yīng),從而減少并清除自由基(曹志超等,2009)。目前花青素清除自由基的反應(yīng)機(jī)理有兩種(Gaulejac et al.,1999):(1)自由基進(jìn)攻花青素分子C環(huán)(圖2)。[O][2]之所以與花青素有高反應(yīng)活性,主要是由于花青素分子的脆性結(jié)構(gòu)(氧鎓離子),使其在C環(huán)的開口處更易被氧化。該反應(yīng)主要是針對帶負(fù)電荷的自由基。(2)自由基進(jìn)攻苯環(huán)B的酚羥基供體,失去質(zhì)子后被氧化成酮的結(jié)構(gòu)(圖3)。該反應(yīng)主要是無電荷的自由基發(fā)生可能性較大。研究表明花青素的抗氧化性能比維生素E高50倍,比維生素C高20倍(唐忠厚和周麗,2009),也較抗氧化酶強(Le?o et al.,2013)。當(dāng)植物受重金屬脅迫體內(nèi)的抗氧化酶活性下降或抗壞血酸(AsA)耗盡時,花青素含量仍然上升或通過清除H2O2以維持細(xì)胞內(nèi)的氧化還原平衡(Mubarakshina et al.,2010;da-Silva et al.,2017)?;ㄇ嗨赝ㄟ^消除重金屬脅迫下植物體內(nèi)的過多自由基,使得植物體內(nèi)的自由基達(dá)到平衡或近似平衡,緩解自由基對植物的傷害,從而改善植物的光合作用、呼吸作用、蛋白質(zhì)合成和碳水化合物合成等,進(jìn)而促進(jìn)植物生長,增強抵抗重金屬脅迫的能力。缺乏花青素的突變體對ROS敏感,在體內(nèi)會積累更多的ROS,外源添加花青素增加了突變體內(nèi)花青素含量、降低突變體內(nèi)的ROS含量,同時也降低了體內(nèi)的H2O2和[O][2]含量。這一體內(nèi)補充實驗表明花青素可作為對抗ROS的一種重要保護(hù)劑,調(diào)節(jié)植物體內(nèi)ROS水平以減輕ROS造成的損傷(Xu et al.,2017)。
3. 2 激發(fā)/促進(jìn)內(nèi)源抗氧化系統(tǒng)
植物體本身有抗氧化系統(tǒng),包括抗氧化酶系統(tǒng)[超氧化物歧化酶(SOD)、過氧化物酶(POD)、過氧化氫酶(CAT)、抗壞血酸過氧化物酶(APX)、谷胱甘肽還原酶(GR)等]和非酶系統(tǒng)[谷胱甘肽(GSH)、AsA等],能夠有效清除ROS以減輕植物傷害?;ㄇ嗨亟閷?dǎo)植物抗重金屬脅迫作用就在于能夠激發(fā)或促進(jìn)植物體內(nèi)的抗氧化系統(tǒng)。大量研究表明植物的抗逆性取決于其抗氧化成分,而高花青素含量的植物具有高抗氧化活性(Winkel-Shirley,2002;Dixon et al.,2005;Agati et al.,2011;Dehghan et al.,2014;Naing et al.,2017)。Cd和錳(Mn)脅迫下,外源添加花青素的巴西伊樂藻屬植物體內(nèi)的脯氨酸和AsA含量分別是對照的2.0和1.7倍;Cd脅迫下,外源添加花青素的巴西伊樂藻屬植物體內(nèi)的SOD、谷胱甘肽過氧化物酶(GPX)和APX活性分別是對照的1.6、4.0和1.5倍;Mn脅迫下,CAT和SOD活性較對照分別增加50%和14%。這表明外源花青素激發(fā)了植物體內(nèi)的抗氧化酶活性,提高了抗氧化物含量,對該植物的重金屬脅迫有保護(hù)與緩解效應(yīng)(Maleva et al.,2018)。此外,當(dāng)植物受重金屬脅迫時,也會激起體內(nèi)的花青素合成,提高自身抗氧化特性以緩解重金屬導(dǎo)致的氧化壓(Hale et al.,2001)。內(nèi)源花青素被激活也會提高植物體內(nèi)的抗氧化酶活性進(jìn)而增強植物的抗氧化性。如在硫酸銅(CuSO4)、硫酸鋅(ZnSO4)、硫酸錳(MnSO4)和重鉻酸鉀(K2Cr2O7)脅迫下,矮牽?;ㄖ蠸OD、過氧化物酶(POX)和CAT基因表達(dá)量較對照高,且花青素調(diào)控基因RsMYB1表達(dá)水平越高,SOD、POX和CAT基因表達(dá)量越高。酶基因的表達(dá)水平與植物對重金屬脅迫的耐受性程度一致,表明植物通過提高抗氧化酶的表達(dá)量以抵御重金屬引起的ROS形成,在富含內(nèi)源花青素的植物中表現(xiàn)更明顯。同時參與重金屬解毒的谷胱甘肽轉(zhuǎn)移酶(GST)和植物絡(luò)合酶的表達(dá)量也較空白高(Ai et al.,2018)。在Cd脅迫下,滿江紅葉中的花青素含量升高,同時作為植物抗性指標(biāo)的苯丙氨酸解氨酶(PAL)活性也極大提高(Dai et al.,2006)。同樣,在Fe2+脅迫下,檸檬香蜂草體內(nèi)的花青素含量高于空白,同時體內(nèi)的SOD和POD活性較空白高(Esmaeilzadeh-Salestani et al.,2014)。在0.5 mmol/L Cu2+脅迫下,紅球甘藍(lán)幼苗中的花青素含量較空白高,同時體內(nèi)的SOD、CAT和POD活性也較空白高(Posmyk et al.,2009)。紫葉甜羅勒比綠葉甜羅勒含有更多的GSH,部分解釋了紫葉甜羅勒除了含有明顯的花青素外,對硼(B)的耐受性也更高(Landi et al.,2014)。其他植物中花青素的抗氧化性能也被證實(Glińska et al.,2007)。
3. 3 螯合重金屬
花青素是一種多羥基、帶供電子的化合物,具有多酚結(jié)構(gòu),較易與金屬離子發(fā)生螯合,其B環(huán)上的鄰位羥基(-OH)能直接與金屬離子螯合(Kohno et al.,2015)。已證實富含巰基(-SH)的多肽[如植物絡(luò)合素(PCs)]與重金屬絡(luò)合是植物體內(nèi)重金屬解毒機(jī)制的一個重要方面(Raab et al.,2005)。而-OH與 -SH具有相似結(jié)構(gòu),且比-SH具有更強的親電荷性,進(jìn)一步說明重金屬能與富含-OH的花青素反應(yīng)。在20世紀(jì)早期已發(fā)現(xiàn)花青素具有金屬螯合性(Shibata et al.,1919),之后通過X射線晶體學(xué)分析證實了螯合物結(jié)構(gòu)(Kondo et al.,1992),即一種自組裝的含有一定化學(xué)計量花青素的超分子金屬復(fù)合物(圖4)。目前,已報道能夠形成超分子復(fù)合物的金屬有Mg2+、Cd2+、Zn2+、鈷(Co2+)、鎳(Ni2+)、Mn2+(Kondo et al.,1992;Harborne and Williams,2000;Veitch and Grayer,2011)?;ㄇ嗨啬芘c眾多金屬離子螯合,如鎢(W)和鉬(Mo)(Hale et al.,2001,2002)、Mn(Weber and Konieczyński,2003)、Cu(Esparza et al.,2004)、Fe(Esparza et al.,2004;Buchweitz et al.,2012)、Zn(Esparza et al.,2004;Park et al.,2012)、As(Raab et al.,2005)、Pb(Al-Aboudi et al.,2006)、Cd(Dai et al.,2006,2012;Park et al.,2012)、Mg(Mori et al.,2008;Shiono et al.,2008)、Al(Schreiber et al.,2010)、鎵(Ga)(Buchweitz et al.,2012)等。不同的重金屬甚至是同一種重金屬在不同條件下與花青素的螯合特征都不一樣,如Mg與花青素的螯合比為4∶6(Shiono et al.,2008)或1∶3(Mori et al.,2008),Cu、Zn與花青素的螯合比均為1∶1(Esparza et al.,2004),在pH 4時花青素與Pb(II)形成絡(luò)合物(λmax=555 nm,甲醇),而在pH 3時花青素與Cd(II)形成絡(luò)合物(λmax=706 nm,甲醇)(Ahmed et al.,2013)。
螯合物的形成:(1)因分子量變大或/和發(fā)生沉淀,降低了重金屬在植物體內(nèi)的移動性,從而減少重金屬在植物體某個組織(如地上部)或亞細(xì)胞內(nèi)(如細(xì)胞質(zhì))的含量;(2)減少向上遷移速率,也減輕對生殖器官(如花)的脅迫進(jìn)而穩(wěn)定產(chǎn)量;(3)減少在果實中的積累,進(jìn)而保證果實的質(zhì)量安全。如在同等生長條件下,富含花青素的黑米中總As含量較不含花青素的普通大米中總As含量低(Geng et al.,2017);(4)降低重金屬毒性(重金屬復(fù)合物的毒性較自由態(tài)?。═u et al.,2004);(5)阻止具有氧化還原活性的金屬離子(如Fe2+)發(fā)生催化作用以減弱/減少自由基生成;(6)抑制氧化酶如黃嘌呤氧化酶活性(螯合Ca)從而減弱/減少過氧化物的生成;(7)能有效提高太陽光譜紫外區(qū)和可見光區(qū)的吸光值,提供進(jìn)一步防線以抵御過量的有害紫外線,尤其是當(dāng)葉綠體功能已受金屬毒害時(Kondo et al.,1992;Yoshida et al.,2009;Schreiber et al.,2010);(8)減少重金屬與蛋白質(zhì)等活性物質(zhì)結(jié)合,從而減少蛋白質(zhì)等活性物質(zhì)失活而導(dǎo)致的生長受阻等。上述8方面均能緩解重金屬脅迫帶來的傷害。如富含花青素的印度芥菜幼苗較不含花青素的印度芥菜幼苗在Mo脅迫下,通過花青素螯合Mo在外圍細(xì)胞層積累水溶性的藍(lán)色晶體(螯合物),從而更好地促進(jìn)根與地上部生長(Hale et al.,2001);富含花青素的紅球甘藍(lán)抗W脅迫較不含花青素的甘藍(lán)強(Hale et al.,2002);滿江紅的Cd螯合能力與其花青素含量呈正比(Dai et al.,2012)。
3. 4 區(qū)室化隔離
花青素不僅能與重金屬形成螯合物,還能將多余的有毒離子重新定位到無害的細(xì)胞或組織(如細(xì)胞壁或液泡)中,減輕重金屬或非金屬過量所引起的毒性。這樣的區(qū)室化隔離不僅降低細(xì)胞質(zhì)中可利用的重金屬離子濃度,提高植物對重金屬的耐受性,還能阻止重金屬向其他組織特別是地上部的遷移。植物中金屬解毒的主要途徑是通過GST與GSH結(jié)合,然后通過膜相關(guān)轉(zhuǎn)運蛋白將螯合物與細(xì)胞質(zhì)分離,形成區(qū)室化隔離(Jozefczak et al.,2012)。此外,GSH是植物螯合素的胞質(zhì)前體,當(dāng)植物暴露于金屬或類金屬時,這些由GSH衍生的肽促進(jìn)金屬在液泡中積累,也促進(jìn)金屬在地上部和根之間的長距離運輸。植物螯合蛋白和GSH缺失突變體對不同的金屬都非常敏感,可能是因為二者無法將金屬離子轉(zhuǎn)移到液泡中,或無法將金屬離子有效地從根部傳遞到地上部組織(Cobbett,2000;Vernoux et al.,2000)。
進(jìn)入液泡的方式主要有:(1)通過連接蛋白轉(zhuǎn)運體Ligandin transporter(LT),在GST的協(xié)助下被靶向定位到液泡附近。這是一種非專一性的轉(zhuǎn)運模式,已在GST轉(zhuǎn)移酶基因突變體中被證實,如玉米的BZ2(Marrs et al.,1995)、矮牽?;ǖ腁N9(Mueller et al.,2000)、擬南芥的TT19(Kitamura et al.,2004)等,這些植物的突變體則阻止花青素在液泡中的定位。GST轉(zhuǎn)移酶作為連接蛋白,從內(nèi)質(zhì)網(wǎng)到液泡膜運載花青素(Marrs et al.,1995),液泡膜上的多藥耐藥輔助蛋白(Multidrug resistance associated protein,MRP)類轉(zhuǎn)運蛋白(如玉米的ZmMrp3)能夠識別GST-矢車菊素3-O-葡萄糖苷(C3G)復(fù)合物,而后將跨C3G膜轉(zhuǎn)運至液泡(Goodman et al.,2004)。(2)由液泡膜上的多藥及毒性化合物外排(Multidrug and toxic compound extrusion transporter,MATE)類轉(zhuǎn)運蛋白將C3G跨膜轉(zhuǎn)運到液泡中(Debeaujon et al.,2001;Marinova et al.,2007)。(3)由囊泡轉(zhuǎn)運Vesicular transport(VT),通過膜融合的方式進(jìn)入液泡(Zhao and Dixon,2010)。該方式也是一種非專一性的轉(zhuǎn)運模式,該發(fā)現(xiàn)是以許多植物中的花青素在細(xì)胞質(zhì)中的積累以離散結(jié)構(gòu)形式存在為基礎(chǔ)(Zhang et al.,2006;Hsieh and Huang,2007;Poustka et al.,2007)。花青素介導(dǎo)金屬/類金屬區(qū)隔化的原理見圖5。經(jīng)外源花青素浸泡后的洋蔥分生組織,有Pb沉積的細(xì)胞核減少至30%,無Pb沉積的細(xì)胞核占絕大多數(shù),花青素提取物極大降低了Pb在洋蔥根分生組織細(xì)胞核內(nèi)的沉積數(shù)量,主要是由于花青素對Pb的吸收及亞細(xì)胞定位(Glińska et al.,2007)?;ㄇ嗨亟閷?dǎo)的Mo主要隔離在蕓苔屬植物表皮(Hale et al.,2001)。
3. 5 花青素相關(guān)基因表達(dá)
花青素合成和轉(zhuǎn)運受結(jié)構(gòu)基因和調(diào)控基因共同控制。結(jié)構(gòu)基因[包括PAL、黃烷酮羥化酶(F3H)、查爾酮合酶(CHS)、花青素合成酶(ANS)、查爾酮異構(gòu)酶(CHI)和二氫黃酮醇還原酶(DFR)等]編碼相關(guān)的生物合成酶,組成花青素生物合成途徑,其表達(dá)直接受控于MYB、bHLH和WDR 3類轉(zhuǎn)錄因子形成的MBW復(fù)合體,具體的MYB、bHLH和WDR決定MBW復(fù)合體調(diào)控的對象和強度(Zhu et al.,2015)。結(jié)構(gòu)基因和調(diào)控基因的表達(dá)均會影響花青素含量,進(jìn)而影響植物的生長與抗逆性。花青素調(diào)控基因的過量表達(dá)增加花青素含量與抗氧化特性,進(jìn)而增強植物體的抗性(Lim et al.,2016)。
在50 μmol/L Cd處理下,全紅楊樹的F3H、DFR、CHI和UFGT上調(diào),花青素含量較空白高,表現(xiàn)出促進(jìn)全紅楊樹生長,而在100和150 μmol/L Cd處理下,全紅楊樹的F3H、DFR、CHI和UFGT下調(diào),花青素含量較空白低,表現(xiàn)出抑制全紅楊樹生長(Zhang et al.,2014)。Cd毒誘導(dǎo)了花青素在滿江紅中的積累,這是由于CHS和DFR上調(diào)所致(Dai et al.,2012)。矮牽?;ǖ幕ㄇ嗨剞D(zhuǎn)錄因子RsMYB1過量表達(dá)增加花青素含量,在CuSO4、ZnSO4、MnSO4或K2Cr2O7脅迫下,其生長不受影響,抗性增強;而普通矮牽牛花的生長受抑制(Ai et al.,2018)。紫色芥菜較綠色芥菜具有更高的耐釩(V)性是因為紫色芥菜中花青素合成酶基因TT8、F3H和MYBL2在V脅迫下(20、40、80和100 mg/L)高表達(dá),而綠色芥菜未表現(xiàn)出該特性(Imtiaz et al.,2018)。IbMYB1過量表達(dá)的轉(zhuǎn)基因土豆(Cheng et al.,2013)和snapdragon Delila(Del)過量表達(dá)的轉(zhuǎn)基因煙草(Naing et al.,2017)表現(xiàn)出花青素生成量增加、無機(jī)脅迫抗性提高的特性。
4 展望
重金屬污染嚴(yán)重不僅影響植物的生長發(fā)育、產(chǎn)品的品質(zhì)與質(zhì)量,還通過食物鏈最終威脅人體健康,因此,如何調(diào)控植物重金屬脅迫對提高植物產(chǎn)品的產(chǎn)量與質(zhì)量有著重要意義。花青素來源廣泛,據(jù)初步統(tǒng)計在27個科73個屬植物中均含有花青素,如紫甘薯、葡萄、血橙、紅球甘藍(lán)、藍(lán)莓、茄子、櫻桃、紅莓、草莓、桑葚、山楂、牽牛花等植物的組織中均有一定含量,是一種廣泛存在于植物體內(nèi)的天然抗氧化物;且花青素對植物和動物均具有較強的生物活性,其應(yīng)用前景廣闊、潛力巨大。而目前研究主要集中在其活性和用于醫(yī)療、食品、化妝品等領(lǐng)域,農(nóng)林業(yè)和環(huán)境領(lǐng)域的研究主要是考察花青素在植物重金屬脅迫下的響應(yīng),在花青素對重金屬脅迫響應(yīng)機(jī)理及其對應(yīng)的實際應(yīng)用研究上還比較薄弱,為此,未來的研究方向建議如下:
4. 1 開展花青素介導(dǎo)植物重金屬歸趨相關(guān)研究
植物食用部位重金屬的積累關(guān)系到其產(chǎn)品的質(zhì)量與安全,進(jìn)而關(guān)系到消費者攝入重金屬含量的多少。如何減少植物可食部位重金屬的含量對保障產(chǎn)品質(zhì)量與人體健康具有積極作用。花青素能否調(diào)控重金屬在土壤—植物體系統(tǒng)的吸收、遷移和轉(zhuǎn)化,怎樣調(diào)控,其影響因素有哪些,哪些因素能使花青素介導(dǎo)的重金屬富集在非食用部位,弄清楚這些問題,不僅有利于豐富和發(fā)展植物富集重金屬的理論,還能更加明確產(chǎn)品質(zhì)量與花青素的調(diào)控效果,對提高產(chǎn)品質(zhì)量有著重要作用。
4. 2 深入研究花青素抗植物重金屬脅迫的調(diào)控機(jī)理
植物、重金屬和花青素的種類均多種多樣,加上重金屬和花青素的濃度及濃度比、植物生長環(huán)境條件等不同,導(dǎo)致全面、準(zhǔn)確地獲得花青素對植物重金屬脅迫的調(diào)控作用機(jī)理是一件比較困難、任務(wù)量較大的事,這就需要采用快速、高通量、準(zhǔn)確的方法。隨著分子生物學(xué)及其他檢測技術(shù)的日趨成熟,可從組織器官、細(xì)胞及亞細(xì)胞、離子組學(xué)、代謝組學(xué)、蛋白組學(xué)和基因組學(xué)等多層次、多角度獲得花青素調(diào)控重金屬的普遍規(guī)律與特性,對植物品種的選育與改良等具有積極作用。
4. 3 開展外源花青素介導(dǎo)植物抗重金屬脅迫的研究
自然界富含花青素的植物較多,其成分的復(fù)雜性和多樣性、與土壤微生物的相互作用等因素較單純的花青素而言,對介導(dǎo)重金屬脅迫有一定影響。若從富含花青素的廢棄物中提取、純化后再進(jìn)行花青素噴施必然會增加成本,且仍會有廢棄物。基于富含花青素的有色果蔬、制糖原料甜菜等廢棄物本身可作為有機(jī)肥的特性,開展直接施加富含花青素的廢棄物或通過簡單處理(如堆肥等方式)進(jìn)行外源花青素介導(dǎo)植物重金屬吸收富集研究,不僅能大規(guī)模地綜合利用這些有機(jī)廢棄物,減少廢棄物的任意排放,還能變廢為寶,對改善環(huán)境污染、提高土壤肥力、提高產(chǎn)品質(zhì)量等起著重要作用。
參考文獻(xiàn):
曹志超,顧翔,蘇佩清. 2009. 黃酮類化合物抗氧化及其作用機(jī)制的研究進(jìn)展[J]. 實用臨床醫(yī)藥雜志,13(13):110-112. [Cao Z C,Gu X,Su P Q. 2009. Advances in research on anti-oxidation and mechanism of action of flavonoids[J]. Journal of Clinical Medicine in Practice,13(13):110-112.]
唐忠厚,周麗. 2009. 花青素對人類健康影響的研究進(jìn)展及其前景[J]. 食品研究與開發(fā),30(7):159-162. [Tang Z H,Zhou L. 2009. Study on anthocyanins influencing on human health and its prospect[J]. Food Research and Development,30(7):159-162.]
汪文忠. 2017. 花青素在飼料上的應(yīng)用探析[J]. 廣東飼料,26(4):30-31. [Wang W Z. 2017. Analysis of the application of anthocyanins in feed[J]. Guangdong Feed,26(4):30-31.]
Abbas G,Murtaza B,Bibi I,Shahid M,Niazi N K,Khan M I,Amjad M,Hussain M,Natasha. 2018. Arsenic uptake,toxicity,detoxification,and speciation in plants:Physiological, biochemical,and molecular aspects[J]. International Journal of Environmental Research and Public Health,15(59). doi:10.3390/ijerph15010059.
Adrees M,Ali S,Rizwan M,Ibrahim M,Abbas F,F(xiàn)arid M,Zia-ur-Rehman M,Irshad M K,Bharwana S A. 2015. The effect of excess copper on growth and physiology of important food crops:A review[J]. Environmental Scien-ce and Pollution Research,22:8148-8162.
Agati G,Biricolti S,Guidi L,F(xiàn)errini F,F(xiàn)ini A,Tattini M. 2011. The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves[J]. Journal of Plant Physiology,168(3):204-212.
Ahmed J K,Salih H A M,Hadi A G. 2013. Anthocyanins in red beet juice act as scavengers for heavy metals ions such as lead and cadmium[J]. Journal of Applicable and Chemistry,2(4):797-804.
Ai T N,Naing A H,Yun B W,Lim S H,Kim C K. 2018. Overexpression of RsMYB1 enhances anthocyanin accumulation and heavy metal stress tolerance in Transgenic Petunia[J]. Frontiers in Plant Science,9:1388.
Al-Aboudi A,F(xiàn)ayyak M K,Abu Zarga M H. 2006. Polarographic study of the complexation between the chemica l constituents of Phragmites australis and heavy metals[J]. Fresenius Environmental Bulletin,15(10):1271-1275.
Begum M C,Islam M S,Islam M,Amin R,Parvez M S,Kabir A H. 2016. Biochemical and molecular responses underlying differential arsenic tolerance in rice(Oryza sativa L.)[J]. Plant Physiology and Biochemistry,104:266-277.
Bona E,Marsano F,Cavaletto M,Berta G. 2007. Proteomic characterization of copper stress response in Cannabis sativa roots[J].Proteomics,7(7):1121-1130.
Buchweitz M,Gudi G,Carle R,Kammerer D R,Schulz H. 2012. Systematic investigation of anthocyanin-metal interactions by Raman spectroscopy[J]. Journal of Raman Spectroscopy,43(12):2001-2007.
Chanu L B,Gupta A. 2016. Toxicity of zinc on growth of an aquatic macrophyte,Ipomoea aquatica Forsk[J]. Current World Environment,1:218-227.
Chen Y F,Shibu M A,F(xiàn)an M J,Chen M C,Viswanadha V P,Lin Y L,Lai C H,Lin K H,Ho T J,Kuo W W,Huang C Y. 2016. Purple rice anthocyanin extract protects cardiac function in STZ-induced diabetes rat hearts by inhibiting cardiac hypertrophy and fibrosis[J]. The Journal of Nutritional Biochemistry,31:98-105.
Cheng Y J,Kim M D,Deng X P,Kwak S S,Chen W. 2013. Enhanced salt stress tolerance in transgenic potato plants expressing IbMYB1,a sweet potato transcription factor[J]. Journal of Microbiology and Biotechnology,23(12):1737-1746.
Cobbett C S. 2000. Phytochelatin biosynthesis and function in heavy-metal detoxification[J]. Current Opinion in Plant Biology,3(3):211-216.
Cozzolino V,Pigna M,Di Meo V,Caporale A G,Violante A. 2010. Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth of Lactuca sativa L. and arsenic and phosphorus availability in an arsenic polluted soil under nonsterile conditions[J]. Applied Soil Ecology,45:262-268.
Dai L P,Dong X J,Ma H H. 2012. Antioxidative and chela-ting properties of anthocyanins in Azolla imbricata induced by cadmium[J]. Polish Journal of Environmental Studies,21:837-844.
Dai L P,Xiong Z T,Huang Y,Li M J. 2006. Cadmium induced changes in pigments,total phenolics,and phenyla-lanine ammonia-lyase activity in fronds of Azolla imbricate[J]. Environmental Toxicology,21(5):505-512.
da-Silva C J,Canatto R A,Cardoso A A,Ribeiro C,Oliveira J A. 2017. Arsenic-hyperaccumulation and antioxidant system in the aquatic macrophyte Spirodela intermedia W. Koch(Lemnaceae)[J]. Theoretical and Experimental Plant Physiology,29:203-213.
Debeaujon I,Peeters A J M,Léon-Kloosterziel K M,Koornneef M. 2001. The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuo-les of the seed coat endothelium[J]. The Plant Cell,13(4):853-871.
Dehghan S,Sadeghi M,P?ppel A,F(xiàn)ischer R,Lakes-Harlan R,Kavousi H R,Vilcinskas A,Rahnamaeian M. 2014. Differential inductions of phenylalanine ammonia-lyase and chalcone synthase during wounding,salicylic acid treatment,and salinity stress in safflower,Carthamus tinctorius[J]. Bioscience reports,34(3):273-282.
Dixon R A,Xie D Y,Sharma S B. 2005. Proanthocyanidins: A final frontier in flavonoid research?[J]. New Phytologist,165(1):9-28.
Du C Y,Shi Y H,Ren Y Z,Wu H J,Yao F,Wei J Y,Wu M,Hou Y J,Duan H J. 2015. Anthocyanins inhibit high-glucose-induced cholesterol accumulation and inflammation by activating LXRα pathway in HK-2 cells[J]. Drug Design,Development and Therapy,9:5099-5113.
Esmaeilzadeh-Salestani K,Riahi-Madvar A,Maziyar M A. 2014. Antioxidant enzymes activity and anthocyanin content in Fe2+-treated lemon balm seedlings[J]. International Journal of Farming and Allied Sciences,3(5):562-565.
Esparza I,Salinas I,Caballero I,Santamaría C,Calvo I,García-Mina J M,F(xiàn)ernández J M. 2004. Evolution of metal and polyphenol content over a 1-year period of vini-fication:Sample fractionation and correlation between metals and anthocyanins[J]. Analytica Chimica Acta,524(1-2):215-224.
Fagioni M,D'Amici G M,Timperio A M,Zolla L. 2009. Proteomic analysis of multiprotein complexes in the thylakoid membrane upon cadmium treatment[J]. Journal of Proteome Research,8(1):310-326.
Gaulejac S C D,Glories Y,Vivas N. 1999. Free radical sca-venging effect of anthocyanins in red wines[J]. Food Research International,32(5):327-333.
Geng A J,Wang X,Wu L S,Wang F H,Chen Y,Yang H,Zhang Z,Zhao X L. 2017. Arsenic accumulation and speciation in rice grown in arsanilic acid-elevated paddy soil[J]. Ecotoxicology and Environmental Safety,137:172-178.
Glińska S,Bartczak M,Oleksiak S,Wolska A,Gabara B,Posmyk M M,Janas K M. 2007. Effects of anthocyanin-rich extract from red cabbage leaves on meristematic cells of Allium cepa L. roots treated with heavy metals[J]. Ecotoxicology and Environmental Safety,68(3):343-350.
Goodman C D,Casati P,Walbot V. 2004. A multidrug resistance-associated protein involved in anthocyanin transport in Zea mays[J]. The Plant Cell,16(7):1812-1826.
Grat?o P L,Monteiro C C,Antunes A M,Peres L E P,Azevedo R A. 2008. Acquired tolerance of tomato(Lycopersicon esculentum cv. Micro-Tom) plants to cadmium-induced stress[J]. Annals of Applied Biology,153(3):321-333.
Grotewold E. 2006. The genetics and biochemistry of floral pigments[J]. Annual Review of Plant Biology,57:761-780.
Gupta D K,Huang H G,Nicoloso F T,Schetinger M R,F(xiàn)a-rias J G,Li T Q,Razafindrabe B H N,Aryal N,Inouhe M. 2013. Effect of Hg,As and Pb on biomass production,photosynthetic rate,nutrients uptake and phytochelatin induction in Pfaffia glomerata[J]. Ecotoxicology,22(9):1403-1412.
Hale K L,McGrath S P,Lombi E,Stack S M,Terry N,Picke-ring I J,George G N,Pilon-Smits E A. 2001. Molybdenum sequestration in Brassica species. A role for anthocyanins?[J]. Plant Physiology,126(4):1391-1402.
Hale K L,Tufan H A,Pickering I J,George G N,Terry N,Pilon M,Pilon-Smits E A H. 2002. Anthocyanins facilitate tungsten accumulation in Brassica[J]. Physiologia Plantarum,116(3):351-358.
Harborne J B,Williams C A. 2000. Advances in flavonoid researches since 1992[J]. Phytochemistry,55(6):481-504.
Hatier J H B,Gould K S. 2008. Foliar anthocyanins as modulators of stress signals[J]. Journal of Theoretical Biology,253(3):625-627.
Heine G F,Hernandez J M,Grotewold E. 2004. Two cystei-nes in plant R2R3 MYB domains participate in REDOX-dependent DNA binding[J]. The Journal of Biological Chemistry,279(36):37878-37885.
Hopff D,Wienkoop S,Lüthje S. 2013. The plasma membrane proteome of maize roots grown under low and high iron conditions[J]. Journal of Proteomics,91:605-618.
Hsieh K,Huang A H. 2007. Tapetosomes in Brassica tapetum accumulate endoplasmic reticulum-derived flavonoids and alkanes for delivery to the pollen surface[J]. The Plant Cell,19(2):582-596.
Imtiaz M,Mushtaq M A,Nawaz M A,Ashraf M,Rizwan M S,Mehmood S,Aziz O,Rizwan M,Virk M S,Shakeel Q,Ijaz R,Androutsopoulos V P,Tsatsakis A M,Coleman M D. 2018. Physiological and anthocyanin biosynthesis genes response induced by vanadium stress in mustard genotypes with distinct photosynthetic activity[J]. Environmental Toxicology and Pharmacology,62:20-29.
Jozefczak M,Remans T,Vangronsveld J,Cuypers A. 2012. Glutathione is a key player in metal-induced oxidative stress defenses[J]. International Journal of Molecular Scien-ces,13(3):3145-3175.
Kitamura S,Shikazono N,Tanaka A. 2004. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis[J]. Plant Journal,37(1):104-114.
Kohno Y,Kato Y,Shibata M,F(xiàn)ukuhara C,Maeda Y,Tomita Y,Kobayashi K. 2015. Enhanced stability of natural anthocyanin incorporated in Fe-containing mesoporous silica[J]. Microporous and Mesoporous Materials,203:232-237.
Kondo T,Yoshida K,Nakagawa A,Kawai T,Tamura H,Goto T. 1992. Structural basis of blue-colour development in flower petals from Commelina communis[J]. Nature,358:515-518.
Kumar A,Prasad M N V. 2018. Plant-lead interactions:Transport,toxicity,tolerance,and detoxification mechanisms[J]. Ecotoxicology and Environmental Safety,166:401-418.
Landi M,Guidi L,Pardossi A,Tattini M,Gould K. 2014. Photoprotection by foliar anthocyanins mitigates effects of boron toxicity in sweet basil (Ocimum basilicum)[J]. Planta,240(5):941-953.
Landi M,Tattini M,Gould K S. 2015. Multiple functional roles of anthocyanins in plant-environment interactions[J]. Environmental and Experimental Botany,119:4-17.
Le?o G A,Oliveira J A D,F(xiàn)elipe R T A,F(xiàn)arnese F S,Gusman G S. 2013. Anthocyanins,thiols,and antioxidant scavenging enzymes are involved in Lemna gibba tole-rance to arsenic[J]. Journal of Plant Interactions,9(1):143-151.
Lepiniec L,Debeaujon I,Routaboul J M,Baudry A,Pourcel L,Nesi N,Caboche M. 2006. Genetics and biochemistry of seed flavonoids[J]. Annual Review of Plant Biology,57:405-430.
Lev-Yadun S,Gould K S. 2008. Role of anthocyanins in plant defense[M]. New York:Springer:22-28.
Li J J,Ma J J,Guo H L,Zong J Q,Chen J B,Wang Y,Li D D,Li L,Wang J J,Liu J X. 2018. Growth and physiological responses of two phenotypically distinct accessions of centipedegrass(Eremochloa ophiuroides(Munro) Hack.) to salt stress[J]. Plant Physiology and Biochemistry,126:1-10.
Lim S H,Song J H,Kim D H,Kim J K,Lee J Y,Kim Y M,Ha S H. 2016. Activation of anthocyanin biosynthesis by expression of the radish R2R3-MYB transcription factor gene RsMYB1[J]. Plant Cell Reports,35:641-653.
Lin B W,Gong C C,Song H F,Cui Y Y. 2017. Effects of anthocyanins on the prevention and treatment of cancer[J]. British Journal of Pharmacology,174(11):1226-1243.
Liu X L,Wu H F,Ji C L,Wei L,Zhao J M,Yu J B. 2013a. An integrated proteomic and metabolomic study on the chronic effects of mercury in Suaeda salsa under an environmentally relevant salinity[J]. PLoS One,8(5):e64041.
Liu Y X,Li M,Han C,Wu F X,Tu B K,Yang P F. 2013b. Comparative proteomic analysis of rice shoots exposed to high arsenate[J]. Journal of Integrative Plant Biology,55(10):965-978.
Maleva M,Garmash E,Chukina N,Malec P,Waloszek A,Strza?ka K. 2018. Effect of the exogenous anthocyanin extract on key metabolic pathways and antioxidant status of Brazilian elodea(Egeria densa (Planch.) Casp.) exposed to cadmium and manganese[J]. Ecotoxicology and Environmental Safety,160:197-206.
Marinova K,Pourcel L,Weder B,Schwarz M,Barron D,Routaboul J M,Debeaujon I,Klein M. 2007. The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin-accumulating cells of the seed coat[J]. The Plant Cell,19(6):2023-2038.
Marrs K A,Alfenito M R,Lloyd A M,Walbot V. 1995. A glutathione S-transferase involved in vacuolar transfer enco-ded by the maize gene bronze-2[J]. Nature,375(6530):397-400.
Miller R,Owens S J,Rorslett B. 2011. Plants and colour:Flowers and pollination[J]. Optics and Laser Technology,43(2):282-294.
Mori M,Kondo T,Yoshida K. 2008. Cyanosalvianin,a supramolecular blue metalloanthocyanin,from petals of Salvia uliginosa[J]. Phytochemistry,69(18):3151-3158.
Mubarakshina M M,Ivanov B N,Naydov I A,Hillier W,Badger M R,Krieger-Liszkay A. 2010. Production and diffusion of chloroplastic H2O2 and its implication to signalling[J]. Journal of Experimental Botany,61(13):3577-3587.
Mueller L A,Goodman C D,Silady R A,Walbot V. 2000. AN9,a petunia glutathione S-transferase required for anthocyanin sequestration,is a flavonoid-binding protein[J]. Plant Physiology,123(4):1561-1570.
Munagala R,Aqil F,Jeyabalan J,Agrawal A K,Mudd A M,Kyakulaga A H,Singh I P,Vadhanam M V,Gupta R C. 2017. Exosomal formulation of anthocyanidins against multiple cancer types[J]. Cancer Letters,393:94-102.
Naing A H,Park K I,Ai T N,Chung M Y,Han J S,Kang Y W,Lim K B,Kim C K. 2017. Overexpression of snapdragon Delila(Del) gene in tobacco enhances anthocyanin accumulation and abiotic stress tolerance[J]. BMC Plant Biology,17(1):65.
Nizio?-?ukaszewska Z,Osika P,Wasilewski T,Bujak T. 2017. Hydrophilic dogwood extracts as materials for reducing the skin irritation potential of body wash cosmetics[J]. Molecules,22(2):320.
Parizad P A,Capraro J,Scarafoni A,Bonomi F,Blandino M,Marengo M,Giordano D,Carpen A,Iametti S. 2019. The bio-functional properties of pigmented cereals may involve synergies among different bioactive species[J]. Plant Foods for Human Nutrition,74(1):128-134.
Park W,Han K H,Ahn S J. 2012. Differences in root-to-shoot Cd and Zn translocation and by HMA3 and 4 could influence chlorophyll and anthocyanin content in Arabidopsis Ws and Col-0 ecotypes under excess metals[J]. Soil Science and Plant Nutrition,58(3):1-15.
Payne J L,Moore J H,Wagner A. 2013. Robustness,evol-vability,and the logic of genetic regulation[J]. Artificial Life,20(1):111-126.
Poschenrieder C,Gunsé B,Corrales I,Barceló J. 2008. A glance into aluminum toxicity and resistance in plants[J]. Science of the Total Environment,400(1-3):356-368.
Posmyk M M,Kontek R,Janas K M. 2009. Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress[J]. Ecotoxicology and Environmental Safety,72(2):596-602.
Poustka F,Irani N G,F(xiàn)eller A,Lu Y,Pourcel L,F(xiàn)rame K,Grotewold E. 2007. A trafficking pathway for anthocyanins overlaps with the endoplasmic reticulum-to-vacuole protein sorting route in Arabidopsis and contributes to the formation of vacuolar inclusions[J]. Plant Physiology,145(4):1323-1335.
Punvittayagul C,Sringarm K,Chaiyasut C,Wongpoomchai R. 2014. Mutagenicity and antimutagenicity of hydrophilic and lipophilic extracts of Thai northern purple rice[J]. Asian Pacific Journal of Cancer Prevention,15(21):9517-9522.
Raab A,Schat H,Meharg A A,F(xiàn)eldmann J. 2005. Uptake,translocation and transformation of arsenate and arsenite in sunflower(Helianthus annuus):Formation of arsenic-phytochelatin complexes during exposure to high arsenic concentrations[J]. New Phytologist,168(3):551-558.
Schreiber H D,Swink A M,Godsey T D. 2010. The chemical mechanism for Al3+ complexing with delphinidin:A mo-del for the bluing of hydrangea sepals[J]. Journal of Inorganic Biochemistry,104(7):732-739.
Shibata K,Shibata Y,Kasiwagi I. 1919. Studies on anthocyanins: Colour variation in anthocyanins[J]. Journal of the American Chemical Society,41(2):208-220.
Shiono M,Matsugaki N,Takeda K. 2008. Structure of commelinin,a blue complex pigment from the blue flowers of Commelina communis[J]. Proceedings of the Japan Aca-demy:Series B,84(10):452-456.
Singh A P,Dixit G,Mishra S,Dwivedi S,Tiwari M,Mallick S,Pandey V,Trivedi P K,Chakrabarty D,Tripathi R D. 2015. Salicylic acid modulates arsenic toxicity by redu-cing its root to shoot translocation in rice(Oryza sativa L.)[J]. Frontiers in Plant Science,6:340.
Steyn W J,Wand S J E,Holcroft D M,Jacobs G. 2002. Anthocyanins in vegetative tissues:A proposed unified function in photoprotection[J]. New Phytologist,155(3):349-361.
Sui X N,Zhang Y,Zhou W B. 2016. Bread fortified with anthocyanin-rich extract from black rice as nutraceutical sources:Its quality attributes and in vitro digestibility[J]. Food Chemistry,196:910-916.
Taylor L P,Grotewold E. 2005. Flavonoids as developmental regulators[J]. Current Opinion in Plant Biology,8(3):317-323.
Thummayot S,Tocharus C,Pinkaew D,Viwatpinyo K,Srin-garm K,Tocharus J. 2014. Neuroprotective effect of purple rice extract and its constituent against amyloid beta-induced neuronal cell death in SK-N-SH cells[J]. Neurotoxicology,45:149-158.
Tripathi R D,Srivastava S,Mishra S,Singh N,Tuli R,Gupta D K,Maathuis F J. 2007. Arsenic hazards:Strategies for tolerance and remediation by plants[J]. Trends in Biotechnology,25(4):158-165.
Tu S,Ma L Q,MacDonald G E,Bondada B. 2004. Effects of arsenic species and phosphorus on arsenic absorption,arsenate reduction and thiol formation in excised parts of Pteris vittata L[J]. Environmental and Experimental Bo-tany,51(2):121-131.
Uraguchi S,Sone Y,Ohta Y,Ohkama-Ohtsu N,Hofmann C,Hess N,Nakamura R,Takanezawa Y,Clemens S,Kiyor M. 2018. Identification of C-terminal regions in Arabidopsis thaliana phytochelatin synthase 1 specifically involved in activation by arsenite[J]. Plant and Cell Physio-logy,59(3):500-509.
Valle S R,Carrasco J,Pinochet D,Calderini D F. 2009. Grain yield,above-ground and root biomass of Al-tolerant and Al-sensitive wheat cultivars under different soil aluminum concentrations at field conditions[J]. Plant and Soil,318:299-310.
Veitch N C,Grayer R J. 2011. Flavonoids and their glycosides,including anthocyanins[J]. Natural Product Reports,28(10):1626-1695.
Vernoux T,Wilson R C,Seeley K A,Reichheld J P,Muroy S,Brown S,Maughan S C,Cobbett C S,Van Montagu M,Inzé D,May M J,Sung Z R. 2000. The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development[J]. The Plant Cell,12:97-109.
Weber G,Konieczyński P. 2003. Speciation of Mg,Mn and Zn in extracts of medicinal plants[J]. Analytical and Bioanalytical Chemistry,375(8):1067-1073.
Winkel-Shirley B. 2002. Biosynthesis of flavonoids and effects of stress[J]. Current Opinion in Plant Biology,5(3):218-223.
Xu Z H,Mahmood K,Rothstein S J. 2017. ROS induces anthocyanin production via late biosynthetic genes and anthocyanin deficiency confers the hypersensitivity to ROS-generating stresses in Arabidopsis[J]. Plant and Cell Phy-siology,58(8):1364-1377.
Yoshida K,Miro M,Kondo T. 2009. Blue flower color deve-lopment by anthocyanins:From chemical structure to cell physiology[J]. Natural Product Reports,26(7):884-915.
Zeng F R,Wu X J,Qiu B Y,Wu F B,Jiang L X,Zhang G P. 2014. Physiological and proteomic alterations in rice(Oryza sativa L.) seedlings under hexavalent chromium stress[J]. Planta,240(2):291-308.
Zhang F,Wan X Q,Zheng Y X,Sun L X,Chen Q B,Guo Y L,Zhu X Q,Liu M. 2014. Physiological and related anthocyanin biosynthesis genes responses induced by cadmium stress in a new colored-leaf plant “Quanhong Poplar”[J]. Agroforestry Systems,88(2):343-355.
Zhang H B,Wang L,Deroles S,Bennett R,Davies K. 2006. New insight into the structures and formation of anthocyanic vacuolar inclusions in flower petals[J]. BMC Plant Biology,6:29.
Zhao J,Dixon R A. 2010. The ‘ins and ‘outs of flavonoid transport[J]. Trends in Plant Science,15(2):72-80.
Zhu Z X,Wang H L,Wang Y T,Guan S,Wang F,Tang J Y,Zhang R J,Xie L L,Lu Y Q. 2015. Characterization of the cis elements in the proximal promoter regions of the anthocyanin pathway genes reveals a common regulatory logic that governs pathway regulation[J]. Journal of Experimental Botany,66(13):3775-3789.
(責(zé)任編輯 羅 麗)