国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

利用變式教學(xué)培育數(shù)學(xué)學(xué)科核心素養(yǎng)的思考

2019-09-12 03:21鄭福梅
關(guān)鍵詞:變式教學(xué)高中數(shù)學(xué)核心素養(yǎng)

鄭福梅

[摘? 要] 在高中數(shù)學(xué)教學(xué)中,變式教學(xué)與數(shù)學(xué)學(xué)科核心素養(yǎng)有著密切的聯(lián)系,充分挖掘變式教學(xué)的積極因素,可以更好地實現(xiàn)核心素養(yǎng)的落地. 核心素養(yǎng)強調(diào)必備品格與關(guān)鍵能力,數(shù)學(xué)學(xué)科核心素養(yǎng)強調(diào)六大要素(史寧中教授歸納為“三會”):品格與能力是人(學(xué)生)發(fā)展的兩個組成部分,兩者互相依存、互相促進;數(shù)學(xué)學(xué)科核心素養(yǎng)的六個要素各有側(cè)重,同時又互相依靠. 在數(shù)學(xué)教學(xué)中,既需要解構(gòu)式的教學(xué)設(shè)計與實踐,以讓數(shù)學(xué)學(xué)科核心素養(yǎng)能夠體現(xiàn)得更加明顯一些,同時又應(yīng)當(dāng)從整體視角出發(fā),關(guān)注學(xué)生的具體學(xué)習(xí)過程.

[關(guān)鍵詞] 高中數(shù)學(xué);核心素養(yǎng);變式教學(xué)

在高中數(shù)學(xué)教學(xué)中,教師經(jīng)常有這樣的體會:學(xué)生在分析問題時往往會由于某種框架束縛,以至于他們的思維沒有徹底打開,學(xué)生也經(jīng)常受困于題海戰(zhàn)術(shù)的怪圈,學(xué)生這樣的學(xué)習(xí)顯然不利于自身發(fā)展,也無助于他們能力的提升.怎樣改變這一現(xiàn)狀呢?筆者認為,我們可以采用變式教學(xué),讓學(xué)生在變化的情境中活化自己的認識,并不斷地調(diào)整自己的思維,這樣的處理有助于學(xué)生發(fā)現(xiàn)知識之間的內(nèi)在關(guān)聯(lián),他們的思維能力也將由此而得到提升與發(fā)展. 變式教學(xué)直指學(xué)生的思維,學(xué)生可以在變式中自覺運用比較、分析、綜合、歸納、演繹等基本思維,可以在基本思維運用的基礎(chǔ)上生成能力,這是直接指向核心素養(yǎng)的. 文章嘗試從變式教學(xué)促進核心素養(yǎng)落地的角度,闡述其中的理論可能性與課堂教學(xué)實踐的基本思考.

[?]變式教學(xué)與數(shù)學(xué)學(xué)科核心素養(yǎng)的理論關(guān)聯(lián)

變式及其變式教學(xué),其實是數(shù)學(xué)教學(xué)的優(yōu)秀傳統(tǒng),自從20世紀開始于上海青浦中學(xué)的變式教學(xué)獲得了大面積的豐收之后,變式教學(xué)也引發(fā)了全國教育界的思考,至今仍然是高中數(shù)學(xué)教學(xué)研究領(lǐng)域中的常用熱詞. 值得注意的是,對于變式及其教學(xué)的理解,常常是經(jīng)驗性的,相當(dāng)一部分人認為“變式就是變換形式”“變式教學(xué)就是變換問題的形式”,這樣的理解主要源自經(jīng)驗,也觸摸到了變式的一些特征,同時又是不完整的,局限于這樣的理解,不利于真正基于變式及變式教學(xué)的思想去把握數(shù)學(xué)教學(xué)的本質(zhì).

通常認為,變式是變換事物的非本質(zhì)特征的表現(xiàn)形式,以體現(xiàn)事物的本質(zhì)要素;相應(yīng)的變式教學(xué)是指教師在教學(xué)中有目的地變換條件或情境,以凸顯數(shù)學(xué)概念或規(guī)律的本質(zhì)屬性的教學(xué). 具體到培養(yǎng)學(xué)生核心素養(yǎng)背景下的變式教學(xué),可以理解為對問題進行變通、推廣,讓學(xué)生能在不同角度、不同層次、不同情形、不同背景下重新認識問題本質(zhì). 在數(shù)學(xué)教學(xué)中,變式能營造一種生動活潑、寬松自由的氛圍,能開闊視野,激發(fā)思維,有助提升學(xué)生的探索精神與創(chuàng)新意識,從而培養(yǎng)學(xué)生的核心素養(yǎng).

從理論的角度來看,在高中數(shù)學(xué)教學(xué)中,變式教學(xué)與數(shù)學(xué)學(xué)科核心素養(yǎng)有著密切的聯(lián)系,具體體現(xiàn)在:第一,變式強調(diào)對數(shù)學(xué)概念或規(guī)律的本質(zhì)屬性與非本質(zhì)屬性的研究,這意味著教師在研究數(shù)學(xué)概念的時候,不僅要關(guān)注數(shù)學(xué)視野下的概念或規(guī)律的本質(zhì),還要關(guān)注學(xué)生在學(xué)習(xí)概念的過程中有可能被哪些非本質(zhì)特征影響甚至是干擾,因此學(xué)生在學(xué)習(xí)數(shù)學(xué)概念的時候,更容易在變式學(xué)習(xí)(站在學(xué)生的角度對變式教學(xué)的描述)的過程中,認清如何建立數(shù)學(xué)概念或規(guī)律. 這對于高中階段的學(xué)生來說,不僅是學(xué)習(xí)某一個具體的數(shù)學(xué)概念或規(guī)律,更加是習(xí)得了一種數(shù)學(xué)概念或規(guī)律的建立方法,因此變式教學(xué)是指向?qū)W生的數(shù)學(xué)學(xué)習(xí)品質(zhì)的,是能夠提升學(xué)生的數(shù)學(xué)學(xué)習(xí)能力的,進而也就是面向數(shù)學(xué)學(xué)科核心素養(yǎng)的.

第二,變式學(xué)習(xí)的過程中,學(xué)生會對教師提供的影響數(shù)學(xué)概念或規(guī)律學(xué)習(xí)的因素進行辨別,辨別的依據(jù)就是看這些因素是否、如何影響概念或規(guī)律的建立. 這在客觀上豐富了數(shù)學(xué)概念或規(guī)律的生成過程,避免了輕概念規(guī)律教學(xué)、重習(xí)題訓(xùn)練的應(yīng)試模式的發(fā)生. 其必然會讓學(xué)生在變式學(xué)習(xí)的過程中,能夠有更多的時間、更廣的空間去認識數(shù)學(xué)概念和規(guī)律,有更多的數(shù)學(xué)抽象、邏輯推理、數(shù)學(xué)建模的過程,進而也就促進了學(xué)生對數(shù)學(xué)知識的深刻理解.

因此我們認為,變式教學(xué)與數(shù)學(xué)學(xué)科核心素養(yǎng)的培育是密切相關(guān)的,充分挖掘變式教學(xué)的積極因素,可以更好地實現(xiàn)核心素養(yǎng)的落地.

[?]利用變式教學(xué)培育數(shù)學(xué)學(xué)科核心素養(yǎng)嘗試

對變式教學(xué)如何促進學(xué)生核心素養(yǎng)落地的研究,已經(jīng)有不少同行開始行動,有研究者認為,培養(yǎng)學(xué)生的核心素養(yǎng)是中學(xué)數(shù)學(xué)教學(xué)的重要任務(wù). 在數(shù)學(xué)教學(xué)中,要重視變式教學(xué),引導(dǎo)學(xué)生多角度、多方位思考問題,提高學(xué)生的思維靈活性,培養(yǎng)學(xué)生的創(chuàng)新能力. 當(dāng)然,這樣的闡述還只是宏觀層面的一種認識,具體的通過變式教學(xué)實現(xiàn)核心素養(yǎng)落地的途徑,還需要結(jié)合具體的教學(xué)實例去探究.

以“三角函數(shù)”為例,在本知識的學(xué)習(xí)中,“同角三角函數(shù)的關(guān)系”是一個重要的教學(xué)內(nèi)容,常規(guī)的要求是要學(xué)生通過學(xué)習(xí)之后,能夠根據(jù)三角函數(shù)的代數(shù)定義、幾何定義推導(dǎo)出同角三角函數(shù)之間的基本關(guān)系,能夠一個角的某一三角函數(shù)值求出其他的三角函數(shù)值. 為了達成這樣的知識目標,需要學(xué)生經(jīng)歷探究同角三角函數(shù)關(guān)系過程中的數(shù)形結(jié)合、分類、化歸等過程,形成數(shù)形結(jié)合思想、分類思想、化歸思想,并且能夠?qū)⑦@些思想遷移到新的情境包括問題解決情境當(dāng)中去. 基于這樣的思路,筆者進行了這樣的設(shè)計:

首先,直接提出問題:如果已知某角的正弦值為,那你能否求出其余弦值和正切值?

其次,引導(dǎo)學(xué)生探究同角三角函數(shù)的基本關(guān)系,重點探究和這兩個關(guān)系式. 這樣的一個探究過程,應(yīng)盡量由學(xué)生自主完成,引導(dǎo)學(xué)生探究的時候,可以從圖形角度進行,也可以從三角函數(shù)定義的角度進行,重點是讓學(xué)生體驗數(shù)形結(jié)合的過程,感悟符號語言與圖形語言在描述同一對象的時候的特點.

再次,體驗變式過程. 主要包括兩個方面:一是對上述兩個關(guān)系式進行變式,認識到變式之后的公式可以求不同的三角函數(shù),如利用可以求正弦函數(shù),利用可以求余弦函數(shù)等. 這樣的一個變式過程,既體現(xiàn)在函數(shù)形式的變化上,也體現(xiàn)在定義域與值域的變化上. 二是進行變式訓(xùn)練. 主要是教師通過向?qū)W生提供不同形式的與上述兩個關(guān)系式相關(guān)的數(shù)學(xué)習(xí)題,讓學(xué)生在解題過程中體會同角三角函數(shù)的變換技巧(主要是指邏輯關(guān)系,對應(yīng)著數(shù)學(xué)學(xué)科核心素養(yǎng)中的邏輯推理等).

最后,反思變式學(xué)習(xí)的過程,感悟變式所起到的作用. 這樣的一個過程,是通過引導(dǎo)學(xué)生進行反思的方式,既鞏固數(shù)學(xué)概念,又鞏固問題解決的過程.

從核心素養(yǎng)培育的角度看這個過程中的變式教學(xué),我們可以獲得這樣的認識:變式訓(xùn)練的基礎(chǔ)是學(xué)生對已有數(shù)學(xué)概念的理解,只有當(dāng)學(xué)生認識到了同角三角函數(shù)的基本關(guān)系之后,再進行變式,學(xué)生才能夠感受到變式帶來的深化概念理解、有效運用于問題解決的作用;同時,無論是同角三角函數(shù)關(guān)系的建立,還是變式之后的問題解決,都涉及大量的邏輯推理、數(shù)學(xué)建模、數(shù)學(xué)運算等過程(相比較而言,數(shù)學(xué)抽象、數(shù)學(xué)直觀與數(shù)據(jù)分析在本知識的教學(xué)中體現(xiàn)較少,但在其他相關(guān)數(shù)學(xué)知識的學(xué)習(xí)與運用中,會有豐富的體現(xiàn),此不再舉例贅述). 這就意味著學(xué)生的數(shù)學(xué)學(xué)科核心素養(yǎng)培育是有保證的.

[?]基于變式教學(xué)培育數(shù)學(xué)學(xué)科核心素養(yǎng)反思

其實,上述案例分析中,對于核心素養(yǎng)的落地分析,還只是淺層的表述. 之所以如此行文,是考慮到筆者在教學(xué)中發(fā)現(xiàn),對于像數(shù)學(xué)學(xué)科核心素養(yǎng)這樣的教學(xué)要求而言,絕大多數(shù)數(shù)學(xué)教師的理解與實施,都是這種解析式的,即通過強調(diào)數(shù)學(xué)知識形成過程或運用過程中體現(xiàn)出來的核心素養(yǎng)要素,來實現(xiàn)核心素養(yǎng)的培育. 這是可以的,也是可行的,但同時也是不夠的.

在認識到變式教學(xué)與核心素養(yǎng)的直接關(guān)系的同時,我們還應(yīng)當(dāng)認識到變式教學(xué)可以激發(fā)學(xué)生的學(xué)習(xí)興趣、培養(yǎng)學(xué)生思維的靈活性和廣闊性、滲透一定的哲學(xué)思想. 這里筆者要強調(diào)的是哲學(xué)思想:核心素養(yǎng)強調(diào)必備品格與關(guān)鍵能力,數(shù)學(xué)學(xué)科核心素養(yǎng)強調(diào)六大要素(史寧中教授歸納為“三會”),其實都蘊含著哲學(xué)思考——品格與能力是人(學(xué)生)發(fā)展的兩個組成部分,兩者互相依存、互相促進;數(shù)學(xué)學(xué)科核心素養(yǎng)的六個要素各有側(cè)重,同時又互相依靠. 因此在數(shù)學(xué)教學(xué)中,我們既需要解構(gòu)式的教學(xué)設(shè)計與實踐,以讓數(shù)學(xué)學(xué)科核心素養(yǎng)能夠體現(xiàn)得更加明顯一些,同時又應(yīng)當(dāng)從整體視角出發(fā),關(guān)注學(xué)生的具體學(xué)習(xí)過程,不因為數(shù)學(xué)學(xué)科核心素養(yǎng)由六個方面組成,就將學(xué)生的學(xué)習(xí)過程解析為面向六個方面的某一個或某幾個方面,這樣的解構(gòu)式思路只適合教學(xué)研究,不適合具體的教學(xué)實施. 這是教學(xué)實踐中特別要注意的一點,也是核心素養(yǎng)哲學(xué)意味的基本體現(xiàn).

總之,高中數(shù)學(xué)教學(xué)中,堅持變式教學(xué)的傳統(tǒng)是必要的,是核心素養(yǎng)培育的新形勢下的教師的選擇之一. 努力研究變式教學(xué)與核心素養(yǎng)之間的關(guān)系,努力通過前者實現(xiàn)后者,是當(dāng)前高中數(shù)學(xué)教師最有價值的選擇之一.

猜你喜歡
變式教學(xué)高中數(shù)學(xué)核心素養(yǎng)
變式教學(xué)在初中化學(xué)教學(xué)中的應(yīng)用研究
淺析初中數(shù)學(xué)教學(xué)中變式教學(xué)的應(yīng)用途徑
透過現(xiàn)象看本質(zhì)
變式教學(xué)在初中數(shù)學(xué)教學(xué)中的應(yīng)用探究
高中數(shù)學(xué)數(shù)列教學(xué)中的策略選取研究
調(diào)查分析高中數(shù)學(xué)課程算法教學(xué)現(xiàn)狀及策略
基于新課程改革的高中數(shù)學(xué)課程有效提問研究
數(shù)學(xué)歸納法在高中數(shù)學(xué)教學(xué)中的應(yīng)用研究
“1+1”微群閱讀
向著“人”的方向邁進