張鵬 徐志明 左安俊 劉維生 趙鵬 丁婷
[摘要] 目的 探討血清和腦脊液中S100蛋白質(zhì)β(S100β)、白細(xì)胞介素1β(IL-1β)、白細(xì)胞介素6(IL-6)聯(lián)合檢測對(duì)青壯年創(chuàng)傷性顱腦損傷(TBI)診斷和預(yù)后評(píng)估的價(jià)值。方法 選取青島市市立醫(yī)院神經(jīng)外科術(shù)后轉(zhuǎn)入ICU治療的青壯年TBI病人132例作為觀察組(輕型35例,中型55例,重型42例),以同期需行腦脊液穿刺檢查的非TBI住院青壯年病人50例作為對(duì)照組。采用電化學(xué)發(fā)光法檢測兩組病人血清和腦脊液中S100β、IL-1β、IL-6的含量。應(yīng)用受試者工作特征曲線(ROC曲線)分析S100β、IL-1β、IL-6聯(lián)合檢測對(duì)TBI的診斷價(jià)值,分析血清S100β、IL-1β、IL-6水平與TBI病人預(yù)后的相關(guān)性。結(jié)果 觀察組重型病人血清和腦脊液中S100β、IL-1β、IL-6含量均顯著高于對(duì)照組(F=8.351~8.967,P<0.05)。觀察組血清中S100β、IL-1β、IL-6的含量與腦脊液中的含量均呈正相關(guān)關(guān)系(r=0.83~0.89,P<0.05)。血清S100β、IL-1β、IL-6檢測及三者聯(lián)合檢測診斷TBI的ROC曲線下面積分別為0.810、0.758、0.703和0.922。觀察組血清和腦脊液中S100β、IL-1β、IL-6的表達(dá)水平與青壯年TBI預(yù)后呈負(fù)相關(guān)關(guān)系(F=8.671~9.371,P<0.05)。結(jié)論 血清和腦脊液中S100β、IL-1β、IL-6水平與青壯年TBI病人病情嚴(yán)重程度和預(yù)后密切相關(guān),且三者聯(lián)合檢測診斷效率高于單獨(dú)檢測。
[關(guān)鍵詞] 顱腦損傷;S100蛋白質(zhì)類;白細(xì)胞介素1β;白細(xì)胞介素6;診斷;預(yù)后
[中圖分類號(hào)] R446.1;R651 ?[文獻(xiàn)標(biāo)志碼] A ?[文章編號(hào)] ?2096-5532(2019)04-0461-05
[ABSTRACT] Objective To investigate the value of combined measurement of S100β, interleukin-1β (IL-1β), and interleukin-6 (IL-6) in serum and cerebrospinal fluid in the diagnosis and prognostic evaluation of young adults with traumatic brain injury (TBI). ?Methods A total of 132 young adult patients with TBI who underwent surgery and were then transferred to the intensive care unit in Department of Neurosurgery in Qingdao Municipal Hospital were enrolled as observation group, among whom 35 had mild TBI, 55 had moderate TBI, and 42 had severe TBI; 50 young adult patients without TBI who were hospitalized and underwent cerebrospinal fluid puncture were enrolled as control group. Electrochemical luminescence was used to measure the levels of S100β, IL-1β, and IL-6 in serum and cerebrospinal fluid. The receiver operating characteristic (ROC) curve was used to observe the value of combined measurement of S100β, IL-1β, and IL-6 in the diagnosis of TBI, and the correlation of serum S100β, IL-1β, and IL-6 with the prognosis of TBI patients was analyzed. ?Results The patients with severe TBI had significantly higher levels of S100β, IL-1β, and IL-6 in serum and cerebrospinal fluid than those in the control group (F=8.351-8.967,P<0.05). In the observation group, the levels of S100β, IL-1β, and IL-6 in serum were positively correlated with their levels in cerebrospinal fluid (r=0.83-0.89,P<0.05). The measurement of serum S100β, IL-1β, or IL-6 alone had an area under the ROC curve of 0.810, 0.758, and 0.703, respectively, while combined measurement of serum S100β, IL-1β, and IL-6 had an area of 0.922. In the observation group, the expression levels of S100β, IL-1β, and IL-6 in serum and cerebrospinal fluid were negatively correlated with the prognosis of young adults with TBI (F=8.671-9.371,P<0.05). ?Conclusion The levels of S100β, IL-1β, and IL-6 in serum and cerebrospinal fluid are closely associated with disease severity and prognosis of young adult patients with TBI, and combined measurement of S100β, IL-1β, and IL-6 has a higher diagnostic efficiency than the measurement of S100β, IL-1β, or IL-6 alone.
[KEY WORDS] craniocerebral trauma; S100 proteins; interleukin-1beta; interleukin-6; diagnosis; prognosis
創(chuàng)傷性顱腦損傷(TBI)是神經(jīng)外科常見的急癥,顱腦外傷是青壯年的首要死亡原因[1]。因此,?TBI的及時(shí)診療及其預(yù)后的精準(zhǔn)判斷就顯得尤為重要。近年來的研究發(fā)現(xiàn),TBI發(fā)生后機(jī)體產(chǎn)生級(jí)聯(lián)應(yīng)激性炎癥反應(yīng)和免疫應(yīng)答,進(jìn)而引起神經(jīng)細(xì)胞損傷、凋亡[2-3]。很多生物標(biāo)志物與TBI密切相關(guān),如 S100蛋白質(zhì)β(S100β)、白細(xì)胞介素1β(IL-1β)、白細(xì)胞介素6(IL-6)等[4-6]。目前,我國診斷TBI的主要方法是影像學(xué)檢查,且臨床中用以輔助判斷的實(shí)驗(yàn)室指標(biāo)大多為S100β[7],比較單一。本研究測定了青壯年TBI病人血清和腦脊液中S100β、IL-1β、IL-6的表達(dá)水平,采用受試者工作特征曲線(ROC曲線)[8]評(píng)估三者聯(lián)合檢測對(duì)TBI的診斷價(jià)值,并探討上述指標(biāo)對(duì)評(píng)估TBI預(yù)后的臨床意義。
1 資料與方法
1.1 一般資料
2017年5月—2018年5月,選取青島市市立醫(yī)院神經(jīng)外科術(shù)后轉(zhuǎn)入ICU治療的青壯年TBI病人132例作為觀察組,其中男性77例,女性55例;年齡28~55歲,平均(40.5±11.2)歲。TBI病人均經(jīng)臨床確診,均符合TBI診療指南的標(biāo)準(zhǔn)[9]。根據(jù)格拉斯哥昏迷評(píng)分(GCS評(píng)分)的標(biāo)準(zhǔn)[10],輕型35例(GCS評(píng)分13~15分),中型55例(GCS評(píng)分9~12分),重型42例(GCS評(píng)分3~8分)。以我院同期需行腦脊液穿刺檢查的非TBI住院青壯年病人50例作為對(duì)照組,其中男33例,女17例;年齡 24~56 歲,平均(38.9±12.7)歲。兩組病人的性別、年齡差異無統(tǒng)計(jì)學(xué)意義。兩組病人采血和腦脊液前均未用藥物,均無器官功能衰竭、腫瘤等嚴(yán)重疾病;排除消化道出血、血液病、顱內(nèi)感染等影響因素;符合腦脊液采集的適應(yīng)證。本研究經(jīng)青島市市立醫(yī)院倫理委員會(huì)批準(zhǔn),病人及家屬均知情同意。
1.2 研究方法
1.2.1 標(biāo)本采集 TBI病人傷后12 h內(nèi)于生化促凝管中采集靜脈血5 mL,腰椎穿刺留取3 mL腦脊液。對(duì)照組病人因病情需要于入院后12 h內(nèi)于生化促凝管中采集靜脈血5 mL,腰椎穿刺留取腦脊液3 mL。所有標(biāo)本均送我院檢驗(yàn)科檢查。
1.2.2 檢測方法 應(yīng)用ROCHE Cobase 602電化學(xué)發(fā)光儀(瑞士羅氏公司)及原裝配套試劑盒,采用電化學(xué)發(fā)光法測定血和腦脊液中S100β、IL-1β、IL-6含量,操作嚴(yán)格按照說明書進(jìn)行。
1.2.3 隨訪 本組病人均獲得隨訪。采取電話或門診隨訪的形式,由工作人員在病人出院3個(gè)月及6個(gè)月后分別進(jìn)行隨訪。根據(jù)Glasgow預(yù)后分級(jí)(GOS)[10]評(píng)價(jià)病人目前的預(yù)后狀態(tài),4~5分為預(yù)后良好,2~3分為預(yù)后不良,1分為死亡。
1.3 統(tǒng)計(jì)學(xué)處理
采用SPSS 18.0軟件進(jìn)行統(tǒng)計(jì)學(xué)處理。符合正態(tài)分布計(jì)量資料結(jié)果以±s表示,組間比較采用方差分析;相關(guān)性分析采用Pearson 相關(guān)分析;繪制ROC曲線,并計(jì)算ROC曲線下面積(AUC),分析S100β、IL-1β、IL-6聯(lián)合檢測對(duì)TBI的診斷價(jià)值。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié) ?果
2.1 各組血清S100β、IL-1β、IL-6水平的比較
重型TBI病人血清S100β、IL-1β、IL-6水平均明顯高于對(duì)照組病人,差異有統(tǒng)計(jì)學(xué)意義(F=8.351~8.769,P<0.05);輕型和中型TBI病人血清S100β、IL-1β、IL-6水平與對(duì)照組相比,差異均無統(tǒng)計(jì)學(xué)意義(P>0.05)。見表1。
2.2 各組腦脊液S100β、IL-1β、IL-6水平的比較
重型TBI病人腦脊液S100β、IL-1β、IL-6水平均明顯高于對(duì)照組病人,差異有統(tǒng)計(jì)學(xué)意義(F=8.367~8.967,P<0.05);輕型和中型病人腦脊液S100β、IL-1β、IL-6水平與對(duì)照組相比,差異均無統(tǒng)計(jì)學(xué)意義(P>0.05)。見表2。
TBI病人血清中S100β、IL-1β、IL-6的含量與腦脊液中的含量均呈正相關(guān)關(guān)系(r=0.83~0.89,?
2.4 血清S100β、IL-1β和IL-6聯(lián)合檢測對(duì)TBI的診斷價(jià)值
ROC曲線分析顯示,血清S100β、IL-1β、IL-6檢測及三者聯(lián)合檢測診斷TBI的AUC分別為0.810、0.758、0.703和0.922,以聯(lián)合檢測的靈敏度和特異度最高。見表3。
2.5 血清S100β、IL-1β和IL-6水平與TBI預(yù)后的相關(guān)性
隨訪6個(gè)月,獲得之前采集血液標(biāo)本病人的預(yù)后信息:死亡15例,預(yù)后不良30例,預(yù)后良好87例。不同預(yù)后各組病人血清S100β、IL-1β和IL-6表達(dá)水平比較差異均有統(tǒng)計(jì)學(xué)意義(F=8.671~8.849,P<0.05)。見表4。Spearman相關(guān)分析顯示,血清S100β、IL-1β和IL-6水平均與GOS評(píng)分呈負(fù)相關(guān)關(guān)系(r=-0.426~-0.366,P<0.05),提示血清S100β、IL-1β和IL-6水平越高,GOS評(píng)分越低,病人預(yù)后越差。
2.6 腦脊液S100β、IL-1β和IL-6水平與TBI預(yù)后的相關(guān)性
隨訪6個(gè)月,獲得之前采集腦脊液標(biāo)本病人的預(yù)后信息:死亡6例,預(yù)后不良12例,預(yù)后良好34例。不同預(yù)后各組病人腦脊液S100β、IL-1β和IL-6水平比較差異均有統(tǒng)計(jì)學(xué)意義(F=8.948~9.371,P<0.05)。見表5。Spearman相關(guān)分析顯示,腦脊液S100β、IL-1β和IL-6水平與GOS評(píng)分呈負(fù)相關(guān)關(guān)系(r=-0.372~-0.252,P<0.05),提示腦脊液S100β、IL-1β和IL-6水平越高,GOS評(píng)分越低,病人預(yù)后越差。
3 討 ?論
TBI在外傷中僅次于四肢骨折,位居第2位,且主要患病人群為青壯年[11]。隨著醫(yī)療水平的提高和先進(jìn)醫(yī)療設(shè)備的引進(jìn),即使加以嚴(yán)密的護(hù)理和治療,TBI病人仍有42.50%的病死率和15.00%的致殘率[12]。TBI病人入院時(shí)通常情況緊急,大多臨床醫(yī)生只能依靠神經(jīng)學(xué)檢查和CT檢查來進(jìn)行即時(shí)診斷[13-14]。到目前為止,雖然還未有TBI診斷及預(yù)后評(píng)估的明確方法,但是有關(guān)生物標(biāo)志物已成為TBI診斷及預(yù)后判斷的首選[15]。生物標(biāo)志物特指能夠客觀反映正常生理過程、致病過程的指示物,甚至能夠反映治療的藥理學(xué)反應(yīng)[16-18]。最新的研究顯示,S100β以及炎癥因子是具有研究價(jià)值的診斷TBI及
S100β屬于Ca2+結(jié)合蛋白超家族,該超家族的蛋白質(zhì)常作為重要的實(shí)驗(yàn)室生物標(biāo)志物用于成人和兒科檢驗(yàn)醫(yī)學(xué)中[20-21]。腦損傷發(fā)生后,病人出現(xiàn)急性炎癥反應(yīng),同時(shí)S100β的合成和分泌增加,以利于損傷部位的修復(fù)。TBI發(fā)生后,血-腦脊液屏障通透性增加,通過該屏障S100β于外周釋放,引起外周血中S100β含量升高。本研究結(jié)果表明,血和腦脊液中S100β的含量與腦損傷的嚴(yán)重程度以及預(yù)后相關(guān),這一結(jié)論與有關(guān)研究的觀點(diǎn)一致[22]。
病人發(fā)生TBI后,大腦神經(jīng)元因應(yīng)激反應(yīng)發(fā)生以炎癥和免疫反應(yīng)為主的損傷,進(jìn)而導(dǎo)致腦組織死亡。有研究表明,細(xì)胞因子IL-1β和IL-6可促進(jìn)炎癥因子的聚集,從而導(dǎo)致血-腦脊液屏障受損[23-24]。生理狀態(tài)下腦組織中的IL-1β和IL-6含量極少,缺血低氧狀態(tài)下其含量會(huì)迅速增加,引起嗜酸性粒細(xì)胞、單核細(xì)胞以及中性粒細(xì)胞等大量炎癥細(xì)胞聚集和激活,導(dǎo)致腦組織繼發(fā)性水腫,同時(shí)也改變內(nèi)環(huán)境穩(wěn)態(tài),使血管內(nèi)外滲透壓差增大,血管結(jié)構(gòu)發(fā)生變化,進(jìn)而破壞血-腦脊液屏障,引發(fā)腦組織繼發(fā)性損傷[25]。本研究結(jié)果顯示,IL-1β和IL-6的含量與腦損傷的嚴(yán)重程度以及預(yù)后相關(guān),顱腦損傷越嚴(yán)重,血清及腦脊液中IL-1β和IL-6的含量越高,病人預(yù)后?
TBI的年發(fā)病率為(180~250)/10萬,青壯年是TBI的主要群體。TBI在青壯年死亡原因中占第1位,致死率高。因此,本研究選取28~55歲年齡段的病人為研究對(duì)象,探究TBI診斷及預(yù)后評(píng)估的敏感方法。本文研究結(jié)果顯示,輕型和中型TBI病人S100β、IL-1β和IL-6水平與對(duì)照組比較差異均無統(tǒng)計(jì)學(xué)意義。這可能是由于輕型和中型TBI病人的神經(jīng)細(xì)胞未被破壞,血-腦脊液屏障沒有明顯損傷性改變[2,26]。重型TBI病人S100β、IL-1β和IL-6水平與對(duì)照組相比較,差異具有統(tǒng)計(jì)學(xué)意義,且Spearman相關(guān)性分析顯示三者的含量與GOS評(píng)分均呈負(fù)相關(guān)關(guān)系,提示TBI病人的S100β、IL-1β和IL-6水平與疾病嚴(yán)重程度相關(guān),并且其含量變化與預(yù)后具有密切聯(lián)系。同時(shí),本研究采用ROC曲線分析,客觀評(píng)價(jià)血清S100β、IL-1β和IL-6檢測及三者聯(lián)合檢測對(duì)TBI的診斷價(jià)值。結(jié)果顯示,血清S100β、IL-1β和IL-6水平診斷TBI的AUC分別為0.810、0.758和0.703,按照SWEETS的判斷標(biāo)準(zhǔn)(AUC在0.7~0.9表明診斷試驗(yàn)具有相當(dāng)?shù)臏?zhǔn)確性,AUC大于0.9則代表準(zhǔn)確性較高),三者可作為TBI的診斷標(biāo)志物,并且可用于評(píng)判病情及指導(dǎo)預(yù)后。而S100β、IL-1β和IL-6聯(lián)合檢測的AUC為0.922,相較于單獨(dú)檢測某一指標(biāo),三者聯(lián)合檢測對(duì)TBI的診斷價(jià)值更高。
綜上所述,血清和腦脊液中S100β、IL-1β、IL-6水平與青壯年TBI病人病情嚴(yán)重程度和預(yù)后密切相關(guān),三者均可作為評(píng)價(jià)顱腦創(chuàng)傷程度和判斷預(yù)后的輔助實(shí)驗(yàn)室指標(biāo),且三者聯(lián)合檢測診斷效率高于單獨(dú)檢測。
[參考文獻(xiàn)]
[1] 張碩,王峰,孫奎勝,等. 重型顱腦損傷患者肺部感染發(fā)生率與吸煙的關(guān)系[J]. 中華神經(jīng)外科疾病研究雜志, 2013,12(2):175-176.
[2] LASKOWSKI R A, CREED J A, RAGHUPATHI R. Pathophysiology of mild TBI:implications for altered signaling pathways[J]. Journal of Neuroinflammation, 2015,12(1):120-122.
[3] GRIFFIN G D. The injured brain:TBI, mTBI, the immune system, and infection:connecting the dots[J]. Military Medicine, 2011,176(4):364-368.
[4] HUIE J R, DIAZ-ARRASTIA R, YUE J K, et al. Testing a multivariate proteomic panel for traumatic brain injury biomarker discovery:a TRACK-TBI pilot study[J]. Journal of Neurotrauma, 2019,36(1):100-110.
[5] HASHIZAKI T, NISHIMURA Y, TERAMURA K A, et al. Differences in serum IL-6 response after 1 degrees C rise in core body temperature in individuals with spinal cord injury and cervical spinal cord injury during local heat stress[J]. International Journal of Hyperthermia, 2019,35(1):541-547.
[6] ORIS C, PEREIRA B, DURIF J, et al. The biomarker S100B and mild traumatic brain injury:a meta-analysis[J]. Pediatrics, 2018,141(6):e20180037.
[7] HOOSHMAND M, SOROUSHMEHR S M R, WILLIAMSON C, et al. Automatic midline shift detection in traumatic brain injury [J]. Conference Proceedings, 2018,2018:131-134.
[8] 鄒莉玲,余小金,閔捷,等. ROC曲線在醫(yī)學(xué)診斷中的應(yīng)用與進(jìn)展[J]. 東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2003,22(1):67-70.
[9] CARNEY N, TOTTEN A M, O’REILLY C, et al. Guidelines for the management of severe traumatic brain injury, fourth edition[J]. Neurosurgery, 2016,80(1):6-15.
[10] WANG Xiaogang, GAO Ding, LI Tao, et al. The correlation analysis of prehospital GCS score of brain injury patients and prognosis[J]. Chinese Journal for Clinicians, 2015,87(1):23-25.
[11] DEKOSKY S T, ASKEN B M. Injury cascades in TBI-related neurodegeneration[J]. Brain Injury, 2017,31(9):1177-1182.
[12] IORIO-MORIN C, FORTIN D, BLANCHARD J. TBI prognosis calculator:a mobile application to estimate mortality and morbidity following traumatic brain injury[J]. Clinical Neuro-logy and Neurosurgery, 2016,142:48-53.
[13] CROKE L. Mild TBI in children:guidance from the CDC for diagnosis and treatment[J]. American Family Physician, 2019,99(7):462-464.
[14] PIKSTRA A R A, METTING Z, FOCK J M, et al. The juvenile head trauma syndrome-deterioration after mild TBI:diagnosis and clinical presentation at the Emergency Department[J]. European Journal of Paediatric Neurology, 2017,21(2):344-349.
[15] THOMPSON W H, THELIN E P, LILJA A A, et al. Functional resting-state fMRI connectivity correlates with serum levels of the S100B protein in the acute phase of traumatic brain injury[J]. NeuroImage Clinical, 2016,12:1004-1012.
[16] BOGOSLOVSKY T, GILL J, JEROMIN A, et al. Fluid biomarkers of traumatic brain injury and intended context of use[J]. Diagnostics, 2016,6(4):37.
[17] AGOSTON D V, SHUTES-DAVID A, PESKIND E R. Bio-fluid biomarkers of traumatic brain injury[J]. Brain Injury, 2017,31(9):1195-1203.
[18] WANG K K, YANG Z H, ZHU T, et al. An update on diagnostic and prognostic biomarkers for traumatic brain injury[J]. Expert Review of Molecular Diagnostics, 2018,18(2):165-180.
[19] PARK S H, HWANG S K. Prognostic value of serum levels of S100 calcium-binding protein B,g?neuron-specific enolase, and interleukin-6 in pediatric patients with traumatic brain injury[J]. World Neurosurgery, 2018,118:e534-e542.
[20] HEIZMANN C W. S100 proteins:diagnostic and prognostic biomarkers in laboratory medicine[J]. Biochimica et Biophysica Acta-Molecular Cell Research, 2019,1866(7):1197-1206.
[21] MICHETTI F, D’AMBROSI N, TOESCA A, et al. The S100B story:from biomarker to active factor in neural injury[J]. Journal of Neurochemistry, 2019,148(2):168-187.
[22] WELCH R D, AYAZ S I, LEWIS L M, et al. Ability of se-rum glial fibrillary acidic protein, ubiquitin C-terminal hydrolase-L1, and S100B to differentiate normal and abnormal head computed tomography findings in patients with suspected mild or moderate traumatic brain injury[J]. Journal of Neurotrauma, 2016,33(2):203-214.
[23] HELMY A, GUILFOYLE M R, CARPENTER K L, et al. Recombinant human interleukin-1 receptor antagonist promotes M1 microglia biased cytokines and chemokines following human traumatic brain injury[J]. Journal of Cerebral Blood Flow and Metabolism, 2016,36(8):1434-1448.
[24] WEBSTER K M, SUN M J, CRACK P, et al. Inflammation in epileptogenesis after traumatic brain injury[J]. Journal of Neuroinflammation, 2017,14(1):10-12.
[25] HELMY A, CARPENTER K L, MENON D K, et al. The cytokine response to human traumatic brain injury:temporal profiles and evidence for cerebral parenchymal production[J]. Journal of Cerebral Blood Flow and Metabolism, 2011,31(2):658-670.
(本文編輯 馬偉平)