牟斐斐 焦倩 杜希恂 畢明霞 姜宏
[摘要]目的探討縫隙連接蛋白43(Cx43)及其磷酸化蛋白在過表達(dá)α-突觸核蛋白(α-Syn)的帕金森病細(xì)胞模型表達(dá)及其意義。方法分別在SH-SY5Y細(xì)胞中過表達(dá)空載(空載組)、野生型α-Syn(WT α-Syn組)以及人突變型A53T α-Syn(A53T α-Syn組),應(yīng)用Western Blot技術(shù)檢測各組Cx43蛋白及磷酸化Cx43蛋白(p-Cx43)的表達(dá)。結(jié)果與空載組相比較,WT α-Syn組以及A53T α-Syn組的細(xì)胞內(nèi)Cx43蛋白表達(dá)增加(F=6.37,q=4.04、5.76,P<0.05),p-Cx43/Cx43升高,差異有顯著性(F=23.43,q=5.73、9.65,P<0.01);與WT α-Syn組相比,A53T α-Syn組的細(xì)胞內(nèi)p-Cx43/Cx43升高(q=3.61,P<0.05)。結(jié)論Cx43及p-Cx43蛋白表達(dá)水平的改變可能參與了帕金森病的發(fā)病過程。
[關(guān)鍵詞]縫隙連接蛋白43;帕金森病;α突觸核蛋白
[中圖分類號]R742.5[文獻(xiàn)標(biāo)志碼]A[文章編號] 2096-5532(2019)04-0379-04
[ABSTRACT]ObjectiveTo investigate the expression and significance of connexin 43 (Cx43) and its phosphorylated form (p-Cx43) in Parkinson disease (PD) cell model with overexpression of α-Synuclein (α-Syn). MethodsOverexpression of empty vector, wild-type α-Syn, and human mutant A53T α-Syn was performed in SH-SY5Y cells (named empty vector group, WT α-Syn group, and A53T α-Syn group, respectively). Western Blot was used to determine the expression of Cx43 and p-Cx43 proteins. ResultsCompared with the empty vector group, the WT α-Syn group and A53T α-Syn group had significantly higher Cx43 expression and p-Cx43/Cx43 ratio (F=6.37,q=4.04-5.76,P<0.05;F=23.43,q=5.73-9.65,P<0.01); the A53T α-Syn group had a significantly higher p-Cx43/Cx43 ratio than the WT α-Syn group (q=3.61,P<0.05). ConclusionThe changes in Cx43 and p-Cx43 levels may be involved in the development of PD.
[KEY WORDS]connexin 43; Parkinson disease; alpha-synuclein
帕金森病(PD)是一種好發(fā)于中老年人的神經(jīng)退行性疾病[1-2],其主要病理改變是中腦黑質(zhì)致密部(SNpc)多巴胺(DA)能神經(jīng)元的選擇性丟失,及殘存的神經(jīng)元內(nèi)形成α-突觸核蛋白(α-Syn)聚集為主的路易小體[3-4]。到目前為止,PD的病因尚未完全明確,但是α-Syn異常聚集參與了PD中DA能神經(jīng)元退行性病變過程[5-6]。縫隙連接(GJ)是將相鄰的兩個細(xì)胞的細(xì)胞膜上的連接小體對接形成的直徑約為1.5 nm的細(xì)胞通道,每個連接小體由6個相同或不同的桿狀的連接蛋白(Cx)構(gòu)成[7-9]。迄今為止,已經(jīng)發(fā)現(xiàn)的在人類中表達(dá)的Cx有20余種,其中在中樞神經(jīng)系統(tǒng)中表達(dá)的有13種[10]。大多數(shù)的Cx為磷蛋白并且處于不同的磷酸化水平,根據(jù)其分子質(zhì)量的差異而命名為Cx31、Cx32、Cx36、Cx37、Cx40、Cx43、Cx45、Cx46、Cx50和Cx56等[11-12],其中細(xì)胞間分布最廣泛的是Cx43[13]。Cx43的磷酸化影響廣泛,它能夠影響GJ的通透性及門控特性等,從而對細(xì)胞間連接產(chǎn)生作用,進(jìn)而在體內(nèi)外影響生理或者病理過程[14-15]。大量研究表明,Cx43及其磷酸化可能參與了諸多疾病的發(fā)生及發(fā)展[16-17]。但是Cx43作為細(xì)胞間通訊的重要調(diào)節(jié)蛋白,對PD的作用尚未明確。本文研究選取具有DA能神經(jīng)元特性的SH-SY5Y細(xì)胞,過表達(dá)野生型α-Syn以及人突變型A53T α-Syn,通過檢測Cx43蛋白及磷酸化Cx43蛋白(p-Cx43)的表達(dá),探討Cx43及p-Cx43在PD中的作用,從而闡明PD的發(fā)病機(jī)制,為藥物干預(yù)治療提供可能的作用靶點。
1材料和方法
1.1實驗細(xì)胞
本實驗選用的SH-SY5Y細(xì)胞購自中國科學(xué)院典型培養(yǎng)物保藏委員會細(xì)胞庫,其來自于人神經(jīng)母細(xì)胞瘤細(xì)胞,具有DA能神經(jīng)元特性。將其置于溫度37 ℃、含體積分?jǐn)?shù)0.05 CO2的培養(yǎng)箱中,使用含RPMI-1640(1∶1)、體積分?jǐn)?shù)0.2胎牛血清、10 g/L青霉素和鏈霉素混合液的完全培養(yǎng)液進(jìn)行培養(yǎng)。
1.2試劑
RPMI-1640(1∶1)培養(yǎng)液、胎牛血清和Opti-MEM Ⅰ培養(yǎng)液均購于Gibco公司,LipotamineTM2000、BCA蛋白試劑盒均購于Thermo公司,兔源 β-tubulin、Cx43、p-Cx43抗體均購于CST公司,兔源α-Syn抗體購于Abcam公司,辣根過氧化物酶標(biāo)記的山羊抗兔IgG二抗購于Absin公司,RIPA (strong) 裂解液、分離膠緩沖液、濃縮膠緩沖液和丙烯酰胺均購于康為公司,ECL試劑盒購于美國Millipore公司。
1.3實驗儀器
CO2培養(yǎng)箱購于Thermo Electron Corporation公司,倒置熒光顯微鏡購于Olympus公司,臺式低溫離心機(jī)(5417R)購于Eppendorf公司,電泳槽、電泳儀、電轉(zhuǎn)儀(濕轉(zhuǎn))均購于BIO-RAD公司。
1.4過表達(dá)α-Syn的細(xì)胞模型制備
待培養(yǎng)瓶中細(xì)胞生長良好,將細(xì)胞以1×108/L的密度接種至6孔板中,待板中的細(xì)胞融合度達(dá)到70%~90%時進(jìn)行轉(zhuǎn)染。取5 μL LipotamineTM2000溶于150 μL Opti-MEM Ⅰ無血清培養(yǎng)基中,同時取2 μg含有綠色熒光標(biāo)簽質(zhì)粒GV230-EGFP(對照組,A組)、GV230-EGFP-WT-α-Syn(WT α-Syn組,B組)、GV230-EGFP-A53T-α-Syn(A53T α-Syn組,C組)溶于150 μL Opti-MEM Ⅰ無血清培養(yǎng)基中,分別混勻后,室溫靜置5 min。將質(zhì)粒和 LipotamineTM2000混合均勻,在無菌操作臺中靜置30 min。置于培養(yǎng)箱中培養(yǎng)4 h后,棄去含 LipofectamineTM2000-DNA 混合物的Opti-MEM Ⅰ無血清培養(yǎng)液,換為含血清、抗生素的完全培養(yǎng)基培養(yǎng)24 h。使用倒置熒光顯微鏡觀察質(zhì)粒轉(zhuǎn)染效率。
1.5Western Blot檢測α-Syn、 Cx43及p-Cx43蛋白表達(dá)水平
待細(xì)胞處理完畢后吸除培養(yǎng)基,用預(yù)冷的 PBS洗細(xì)胞3次,完全去除培養(yǎng)基,向每孔加入120 μL細(xì)胞裂解液,在冰上進(jìn)行裂解,靜置30 min后將細(xì)胞刮下轉(zhuǎn)移至冰上預(yù)冷的EP管中, 4 ℃、12 000 r/min離心20 min,吸取上清置于新的EP管中,采用BCA法測蛋白濃度。按每孔25 μg蛋白上樣,經(jīng)SDS-PAGE電泳后,電轉(zhuǎn)移到PVDF膜上,室溫下使用100 g/L脫脂奶粉封閉2 h,加入相應(yīng)的一抗(Cx43、p-Cx4 及α-Syn稀釋滴度均為1∶1 000;β-tubulin稀釋滴度為1∶10 000),4 ℃搖床孵育過夜后,使用TBST洗脫3次,用1∶10 000稀釋辣根過氧化物酶標(biāo)記的山羊抗兔二抗于室溫孵育1 h,TBST洗脫3次后,ECL發(fā)光液顯影,UVP凝膠成像系統(tǒng)成像,Image J軟件讀取目的條帶的灰度值,對α-Syn、Cx43及p-Cx43蛋白表達(dá)水平進(jìn)行分析。
1.6統(tǒng)計學(xué)方法
應(yīng)用SPSS 17.0及GraphPad Prism軟件進(jìn)行統(tǒng)計分析,計量資料結(jié)果以±s表示,組間比較采用單因素方差分析(One-Way ANOVA)。以P<0.05表示差異有統(tǒng)計學(xué)意義。
2結(jié)果
2.1成功構(gòu)建過表達(dá)α-Syn的SH-SY5Y細(xì)胞模型
將含GV230-EGFP、GV230-EGFP-WT-α-Syn和GV230-EGFP-A53T-α-Syn的質(zhì)粒分別轉(zhuǎn)染至SH-SY5Y細(xì)胞24 h后,Western Blot檢測顯示,在過表達(dá)WT α-Syn和A53T α-Syn的SH-SY5Y細(xì)胞中,α-Syn的蛋白表達(dá)明顯增多(F=108.03,q=17.36、20.07,P<0.01)。見圖1、表1。
2.2過表達(dá)α-Syn后細(xì)胞內(nèi)Cx43及其磷酸化蛋白水平
Western Blot檢測顯示,與對照組相比,WT α-Syn組和A53T α-Syn組的細(xì)胞內(nèi)Cx43蛋白表達(dá)增加(F=6.37,q=4.04、5.76,P<0.05),p-Cx43/Cx43水平明顯升高(F=23.43,q=5.73、9.65,P<0.01);與WT α-Syn組相比,A53T α-Syn組的細(xì)胞內(nèi)Cx43蛋白表達(dá)差異無統(tǒng)計學(xué)意義(P>0.05), p-Cx43/Cx43水平升高,差異有顯著性(q=3.61,P<0.05)。見圖2,表1。
3討論
PD的病理表現(xiàn)為SNpc DA能神經(jīng)元選擇性缺失,并且形成α-Syn聚集為主的路易小體[3],α-Syn異常聚集可能參與了DA能神經(jīng)元退行性病變的過程[5-6,18]。在腦內(nèi),各細(xì)胞間都存在著GJ,迄今為止發(fā)現(xiàn)了3個連接蛋白家族:Cx、pannexin和innexin[19]。其中,以Cx家族研究最為廣泛[9],在細(xì)胞中表達(dá)最普遍及研究最多的是Cx43[13]。中樞神經(jīng)系統(tǒng)中Cx43廣泛分布在神經(jīng)元以及角質(zhì)細(xì)胞中[20],它首先在細(xì)胞內(nèi)質(zhì)網(wǎng)核糖體上合成,隨后被轉(zhuǎn)運到高爾基體中,最后在細(xì)胞膜上聚集形成了GJ[21-22],從而起到及時清除神經(jīng)元周圍聚集的各類代謝產(chǎn)物以及減弱代謝產(chǎn)物對細(xì)胞自身損傷的作用[23]。正常情況下,細(xì)胞間可通過Cx43對DA產(chǎn)生一定的保護(hù)支持作用,而在腦卒中、癲癇等病理情況下會出現(xiàn)Cx43的異常表達(dá)[17]。Cx43蛋白及其組成的GJ在腦內(nèi)形成了細(xì)胞傳遞信號的重要通道,參與調(diào)控離子通道的啟閉,并且參與了多種神經(jīng)系統(tǒng)疾病的發(fā)生[24-25]。在細(xì)胞的生命周期中,Cx43發(fā)生著不同的磷酸化[22,26],并且磷酸化是Cx43最主要的共價修飾[27]。Cx43的C端是磷酸化作用的區(qū)域,易受到大量絲氨酸(S)和酪氨酸激酶和磷酸酶的調(diào)節(jié),其中包括蛋白激酶A(PKA)、蛋白激酶C(PKC)、酪蛋白激酶1(CK1)以促分裂原活化蛋白激酶(MAPK)等[28-31],這些激酶和磷酸酶在其生命周期的所有階段產(chǎn)生多種作用,包括從內(nèi)質(zhì)網(wǎng)到高爾基體及質(zhì)膜的轉(zhuǎn)運、GJ的組裝及門控、GJ的降解和細(xì)胞周期調(diào)節(jié)[14,32-34],影響Cx43正常生理功能及細(xì)胞間通訊,進(jìn)而影響各種疾病的發(fā)生與發(fā)展。
本文研究結(jié)果顯示,與空載組相比,WT α-Syn組以及A53T α-Syn組SH-SY5Y細(xì)胞的Cx43蛋白以及p-Cx43/Cx43水平均明顯升高,且A53T α-Syn組p-Cx43/Cx43水平與WT α-Syn組相比明顯升高,說明Cx43及p-Cx43/Cx43水平隨著PD病情進(jìn)展而增加,Cx43作為一種重要的調(diào)節(jié)蛋白,可能參與了PD的發(fā)病過程,為闡明PD的發(fā)病機(jī)制提供了實驗依據(jù),進(jìn)而為藥物干預(yù)PD病程提供可能的作用靶點。
綜上所述,隨著PD病程的發(fā)展,Cx43蛋白及其磷酸化蛋白的表達(dá)水平發(fā)生異常,但是Cx43蛋白磷酸化對PD病程的影響還需進(jìn)一步研究。
[參考文獻(xiàn)]
[1]ASAHINA M, LOW D A, MATHIAS C J, et al. Skin temperature of the hand in multiple system atrophy and Parkinson’s disease[J]. ?Parkinsonism & Related Disorders, 2013,19(5):560-562.
[2]BEITZ J M. Parkinson’s disease: a review[J]. ?Frontiers in Bioscience-Landmark, 2014,6:65-74.
[3]LEX K M, KUNDT F S, LORENZL S. Using tube feeding and levodopa-carbidopa intestinal gel application in advanced Parkinson’s disease[J]. ?British Journal of Nursing (Mark Allen Publishing), 2018,27(5):259-262.
[4]ALERTE T N, AKINFOLARIN A A, FRIEDRICH E E, et al. Alpha-synuclein aggregation alters tyrosine hydroxylase phosphorylation and immunoreactivity: lessons from viral transduction of knockout mice[J]. ?Neuroscience Letters, 2008,435(1):24-29.
[5]CAO Zhentang, WU Yufeng, LIU Genliang, et al. alpha-Synuclein in salivary extracellular vesicles as a potential biomar-ker of Parkinson’s disease[J]. ?Neuroscience Letters, 2019,696:114-120.
[6]ZHANG Guoxin, XIA Yun, WAN Fang, et al. New perspectives on roles of alpha-Synuclein in Parkinson’s disease[J]. ?Frontiers in Aging Neuroscience, 2018,10:370-378.
[7]AVSHALUMOVA L J, KORIAKOS A. Overview of skin di-seases linked to connexin gene mutations[J]. ?International Journal of Dermatology, 2014,53(2):192-205.
[8]EPIFANTSEVA I, SHAW R M. Intracellular trafficking pathways of Cx43 gap junction channels[J]. ?Biochimica et Biophysica Acta-Biomembranes, 2018,1860(1):51-52.
[9]VINKEN M. Introduction: connexins, pannexins and their channels as gatekeepers of organ physiology[J]. ?Cellular and Molecular Life Sciences, 2015,72(15):2775-2778.
[10]NAGY J I, RASH J E. Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS[J]. ?Brain Research Reviews, 2000,32(1):51-52.
[11]BENNETT M V, BARRIO L C, BARGIELLO T A, et al. Gap-junctions-new tools, new answers, new questions[J]. ?Neuron, 1991,6(3):305-320.
[12]LAMPE P D, LAU A F. The effects of connexin phosphorylation on gap junctional communication[J]. ?The International Journal of Biochemistry & Cell Biology, 2004,36(7):1171-1186.
[13]SHL G, WILLECKE K. Gap junctions and the connexin protein family[J]. ?Cardiovascular Research, 2004,62(2):228-232.
[14]JOHNSON R G, REYNHOUT J K, TENBROEK E M, et al. Gap junction assembly: roles for the formation plaque and re-gulation by the C-Terminus of connexin43[J]. ?Molecular Biology of the Cell, 2011,22(1):71-86.
[15]SOLAN J L, LAMPE P D. Connexin43 phosphorylation: structural changes and biological effects[J]. ?The Biochemical Journal, 2009,419(2):261-272.
[16]LIN J H, YANG J, LIU S J, et al. Connexin mediates gap junction-independent resistance to cellular injury[J]. ?Journal of Neuroscience, 2003,23(2):430-441.
[17]FONSECA C G, GREEN C R, NICHOLSON L F. Upregulation in astrocytic connexin 43 gap junction levels may exacerbate generalized seizures in mesial temporal lobe epilepsy[J]. ?Brain Research, 2002,929(1):105-116.
[18]SURMEIER D J, OBESO J A, HALLIDAY G M. Selective neuronal vulnerability in Parkinson disease[J]. ?Nature Reviews Neuroscience, 2017,18(2):101-113.
[19]BEYER E C, BERTHOUD V M. Gap junction gene and protein families: connexins, innexins, and pannexins[J]. ?Biochimica et Biophysica Acta-Biomembranes, 2018,1860(1):5-8.
[20]FARBER N M, PEREZ-LLORET S, GAMZU E R. Design and development of a novel supportive care product for the treatment of sialorrhea in Parkinson’s disease[J]. ?Current Topics in Medicinal Chemistry, 2015,15(10):939-954.
[21]SAEZ J C, BERTHOUD V M, BRANES M C, et al. Plasma membrane channels formed by connexins: their regulation and functions[J]. ?Physiological Reviews, 2003,83(4):1359-1400.
[22]VANSLYKE J K, MUSIL L S. Dislocation and degradation from the ER are regulated by cytosolic stress[J]. ?Journal of Cell Biology, 2002,157(3):381-394.
[23]ZUNDORF G, KAHLERT S, REISER G. Gap-junction blocker carbenoxolone differentially enhances NMDA-induced cell death in hippocampal neurons and astrocytes in co-culture[J]. ?Journal of Neurochemistry, 2007,102(2):508-521.[24]VINKEN M, DECROCK E, LEYBAERT L, et al. Non-channel functions of connexins in cell growth and cell death[J]. ?Biochimica et Biophysica Acta-Biomembranes, 2012,1818(8,SI):2002-2008.
[25]GREER K, CHEN Jiang, BRICKLER T, et al. Modulation of gap junction-associated Cx43 in neural stem/progenitor cells following traumatic brain injury[J]. ?Brain Research Bulletin, 2017,134:38-46.
[26]SOLAN J L, LAMPE P D. Specific Cx43 phosphorylation events regulate gap junction turnover in vivo[J]. ?FEBS Letters, 2014,588(8):1423-1429.
[27]MUSIL L S, CUNNINGHAM B A, EDELMAN G M, et al. Differential phosphorylation of the gap junction protein connexin43 in junctional communication-competent and-deficient cell lines[J]. ?Journal of Cell Biology, 1990,111(5 Pt 1):2077-2088.
[28]YOGO K, OGAWA T, AKIYAMA M A, et al. PKA implicated in the phosphorylation of Cx43 induced by stimulation with FSH in rat granulosa cells[J]. ?Journal of Reproduction and Development, 2006,52(3):321-328.
[29]BERTHOUD V M, LEDBETTER M L, HERTZBERG E L, et al. Connexin43 in MDCK cells:regulation by a tumor-promoting phorbol ester and Ca2+[J]. ?European Journal of Cell Biology, 1992,57(1):40-50.
[30]COOPER C D, LAMPE P D. Casein kinase 1 regulates connexin-43 gap junction assembly[J]. ?The Journal of Biological Chemistry, 2002,277(47):44962-44968.
[31]CAMERON S J, MALIK S, AKAIKE M, et al. Regulation of epidermal growth factor-induced connexin 43 gap junction communication by big mitogen-activated protein kinase1/ERK5 but not ERK1/2 kinase activation[J]. ?The Journal of Biological Chemistry, 2003,278(20):18682-18688.
[32]THEVENIN A F, KOWAL T J, FONG J T, et al. Proteins and mechanisms regulating gap-junction assembly,internalization,and degradation[J]. ?Physiology (Bethesda, Md.), 2013,28(2):93-116.
[33]SOLAN J L, LAMPE P D. Kinase programs spatiotemporally regulate gap junction assembly and disassembly: effects on wound repair[J]. ?Seminars in Cell & Developmental Biology, 2016,50:40-48.
[34]FALK M M, BELL C L, KELLS A M, et al. Molecular mechanisms regulating formation, trafficking and processing of annular gap junctions[J]. ?BMC Cell Biology, 2016, Suppl 1:22-32.
(本文編輯 黃建鄉(xiāng))