周忠涵 趙文天 官豐菊 孫立江 張桂銘
[摘要]目的 通過加權(quán)基因共表達(dá)網(wǎng)絡(luò)分析(WGCNA)識(shí)別腎透明細(xì)胞癌發(fā)生及進(jìn)展過程中的樞紐基因。方法從基因表達(dá)綜合數(shù)據(jù)庫下載GSE73731數(shù)據(jù),通過WGCNA篩選樞紐基因,分析樞紐基因的表達(dá)水平及其與腫瘤分級(jí)、分期、預(yù)后的關(guān)系,使用GEPIA數(shù)據(jù)庫和UALCAN數(shù)據(jù)庫進(jìn)行驗(yàn)證,并對(duì)樞紐模塊基因進(jìn)行GO和KEGG富集分析。結(jié)果通過構(gòu)建共表達(dá)網(wǎng)絡(luò),確定green模塊(包括355個(gè)基因)為樞紐模塊,進(jìn)一步篩選得到CEP55、CCNB1、NUF2、BUB1B、KIF14共5個(gè)樞紐基因。各樞紐基因與腎透明細(xì)胞癌組織學(xué)分級(jí)密切相關(guān)(t=17.53~25.18,P<0.01),且BUB1B基因?qū)Φ图?jí)別與高級(jí)別腎透明細(xì)胞癌具有較高的診斷價(jià)值(AUC=0.706,P<0.01)。GEPIA和UALCAN數(shù)據(jù)庫驗(yàn)證結(jié)果顯示,各樞紐基因與腫瘤的分級(jí)及分期相關(guān),且CEP55、BUB1B高表達(dá)與腫瘤的總生存期及無病生存期較差明顯相關(guān)?;蚬δ芨患治鼋Y(jié)果顯示,樞紐模塊基因主要富集在細(xì)胞周期生物學(xué)過程及通路上。結(jié)論 本研究通過構(gòu)建基因共表達(dá)網(wǎng)絡(luò)篩選出5個(gè)樞紐基因,這5個(gè)基因與腫瘤的分期分級(jí)及預(yù)后密切相關(guān);樞紐基因可能通過細(xì)胞周期相關(guān)通路來影響腎透明細(xì)胞癌的發(fā)生、進(jìn)展及預(yù)后。
[關(guān)鍵詞]癌,腎細(xì)胞;寡核苷酸序列分析;數(shù)據(jù)挖掘;樞紐基因
[中圖分類號(hào)]R737.11[文獻(xiàn)標(biāo)志碼]A[文章編號(hào)]2096-5532(2019)04-0392-07
[ABSTRACT]ObjectiveTo identify the hub genes associated with the development and progression of clear cell renal cell carcinoma (ccRCC) using weighted gene co-expression network analysis (WGCNA). MethodsThe dataset GSE73731 was downloaded from Gene Expression Omnibus database. Besides, the hub genes were identified using WGCNA. The correlations between the expression levels of the hub genes and tumor grade, stage, and prognosis were analyzed, and then were validated using GEPIA and UALCAN databases. Moreover, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed for the genes in hub module. ResultsThrough constructing the co-expression network, green module (involving 355 genes) was identified as the hub module. Afterwards, five hub genes (CEP55, CCNB1, NUF2, BUB1B, and KIF14) were further screened out. All the hub genes showed close correlations with the histological grade of ccRCC (t=17.53-25.18,P<0.01), and BUB1B exhibited high diagnostic values for low-grade and high-grade ccRCCs (AUC=0.706,P<0.01). The validation results of GEPIA and UALCAN databases showed that all the hub genes were associated with tumor grade and stage, and increased CEP55 and BUB1B were significantly related to poor overall survival and disease-free survival. Enrichment analysis showed that the genes in green module were mainly involved in the biological processes and pathways related to cell cycle. ConclusionFive hub genes were identified by WGCNA, which were associated with tumor grade, stage, and prognosis. These hub genes might affect the development, progression, and prognosis of ccRCC through cell cycle-associated pathways.
[KEY WORDS]carcinoma, renal cell; oligonucleotide array sequence analysis; data mining; hub genes
腎細(xì)胞癌(RCC)是泌尿系統(tǒng)常見腫瘤,在男性腫瘤中居第9位,在女性腫瘤中居第14位。2018年,RCC占全球新發(fā)腫瘤病例的2.2%,死亡率為1.8%,其中80%~90%為腎透明細(xì)胞癌(ccRCC)[1-2]。
盡管癌癥的檢測(cè)和治療取得了很大進(jìn)展,但ccRCC的總生存率仍然很低。超過1/3的病人在診斷時(shí)已經(jīng)發(fā)生轉(zhuǎn)移,Ⅳ期ccRCC的5年標(biāo)準(zhǔn)化相對(duì)生存率僅為6%,而Ⅰ期約為84%[3-4]。因此,研究ccRCC的發(fā)生發(fā)展機(jī)制,尋找新的生物標(biāo)志物對(duì)ccRCC的早期診斷、治療及預(yù)后判斷具有重要意義。傳統(tǒng)的“單疾病單基因”的研究模式不能從多基因協(xié)同角度了解疾病的發(fā)生與發(fā)展。本研究采用生物信息學(xué)的方法,通過加權(quán)基因共表達(dá)網(wǎng)絡(luò)分析(WGCNA),將功能相似的基因歸入同一基因模塊,探究基因之間的相關(guān)性以及基因模塊和臨床特征之間的關(guān)聯(lián),篩選樞紐基因,以了解ccRCC發(fā)生進(jìn)展過程中的關(guān)鍵基因及信號(hào)通路,為ccRCC治療尋找新的靶點(diǎn)。
1材料與方法
1.1差異表達(dá)基因的篩選
從NCBI的GEO數(shù)據(jù)庫(https://www.ncbi.nlm.nih.gov/geo/)下載編號(hào)GSE73731的ccRCC芯片數(shù)據(jù)集。該數(shù)據(jù)集基于GLP570平臺(tái),包括265例ccRCC組織,其中包括高分化(Furhman Ⅰ/Ⅱ)病例112例,中/低分化病例144例(Furhman Ⅲ/Ⅳ),未分級(jí)者9例。Ⅰ期病人41例,Ⅱ期病人12例,Ⅲ期病人28例,Ⅳ期病人44例,分析數(shù)據(jù)缺失140例。利用R軟件中Bioconductor(http://www.bioconductor.org)內(nèi)的Affy包[5]讀取原始文件,使用RMA算法預(yù)處理得到標(biāo)準(zhǔn)化的基因表達(dá)譜數(shù)據(jù)。剔除離群樣本,用R軟件的limma包[6]對(duì)基因表達(dá)矩陣進(jìn)行分析,設(shè)置校正后P值(FDR)<0.05和對(duì)數(shù)化表達(dá)變化倍數(shù)(|log2FC|)>2.0作為篩選表達(dá)差異基因的閾值,得到高分化與中/低分化ccRCC組織間的差異表達(dá)基因(DEGs),并繪制熱圖及火山圖。
1.2基因共表達(dá)網(wǎng)絡(luò)構(gòu)建
使用R軟件的WGCNA包[7],通過方差分析篩選方差前25%的基因用于WGCNA。計(jì)算各基因間的Pearson相關(guān)系數(shù),選擇適當(dāng)?shù)能涢撝郸率沟脴?gòu)建的網(wǎng)絡(luò)更符合無標(biāo)度網(wǎng)絡(luò)的標(biāo)準(zhǔn)。采用一步法構(gòu)建基因網(wǎng)絡(luò),將鄰接矩陣轉(zhuǎn)化為拓?fù)渲丿B矩陣TOM,利用層次聚類產(chǎn)生一個(gè)基因的層次聚類樹。計(jì)算基因顯著性(GS)以及模塊顯著性(MS),用以衡量基因與臨床信息的顯著性,并分析模塊及模型的顯著關(guān)聯(lián)。
1.3樞紐基因的篩選
計(jì)算各基因模塊身份(MM)以衡量基因在模塊中的重要性。設(shè)置參數(shù)為|MM|>0.9和|GS|>0.2篩選基因。將樞紐模塊中的基因上傳至STRING數(shù)據(jù)庫(https://string-db.org/)構(gòu)建蛋白相互作用網(wǎng)絡(luò),選取點(diǎn)度中心性(degree)>80篩選基因,兩者取交集即為樞紐基因。
1.4樞紐基因的表達(dá)與ccRCC分級(jí)、分期及預(yù)后的關(guān)系
使用GSE73731數(shù)據(jù)對(duì)樞紐基因進(jìn)行線性回歸分析,探究基因表達(dá)量與ccRCC分級(jí)之間的關(guān)系,并繪制受試者工作特征(ROC)曲線,計(jì)算曲線下面積(AUC),當(dāng)AUC>0.7時(shí),認(rèn)為該基因?qū)υ\斷ccRCC進(jìn)展具有較高的靈敏度和特異度。使用基于TCGA的GEPIA數(shù)據(jù)庫(http://gepia.cancer-pku.cn/)和UALCAN數(shù)據(jù)庫(http://ualcan.path.uab.edu/)分析樞紐基因在 ccRCC中的表達(dá)水平及其與腫瘤分級(jí)、分期、預(yù)后的關(guān)系。
1.5GO和KEGG富集分析
使用DAVID數(shù)據(jù)庫(http://david.abcc.ncifcrf.gov/)對(duì)特定模塊的基因進(jìn)行GO和KEGG通路分析,以錯(cuò)誤發(fā)現(xiàn)率(FDR)<0.05為差異具有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
2.1差異表達(dá)基因篩選
使用R軟件讀取及預(yù)處理芯片數(shù)據(jù)后,共得到20 460個(gè)表達(dá)譜基因。以FDR<0.05和|log2FC|>5.0為閾值篩選后,得到 333個(gè)DEGs,其中上調(diào)基因152個(gè),下調(diào)基因181個(gè)。DEGs熱圖及火山圖見圖1。
2.2基因共表達(dá)網(wǎng)絡(luò)構(gòu)建
本研究通過方差分析篩選方差前25%的基因共5 115個(gè)用于WGCNA。以相關(guān)系數(shù)等于0.9作為標(biāo)準(zhǔn),使用pickSoftThreshold函數(shù),選擇鄰接矩陣權(quán)重參數(shù)(軟閾值)β=6構(gòu)建基因模塊。使用一步法構(gòu)建共表達(dá)矩陣,并利用動(dòng)態(tài)混合剪切法,得到12個(gè)基因模塊,其中g(shù)reen模塊(包括355個(gè)基因)的GS高于其他模塊(圖2)。
因此,green模塊與ccRCC病理分級(jí)的相關(guān)性最高,與腫瘤進(jìn)展明顯相關(guān)。
2.3樞紐基因的篩選
對(duì)green模塊基因以|MM|>0.9和|GS|>0.2為參數(shù)篩選樞紐基因得到10個(gè)樞紐基因,將green模塊基因上傳至STRING數(shù)據(jù)庫以degree>80為參數(shù)篩選樞紐基因得到23個(gè)樞紐基因,兩者取交集得到CEP55、CCNB1、NUF2、BUB1B、KIF14共5個(gè)在共表達(dá)網(wǎng)絡(luò)和蛋白相互作用網(wǎng)絡(luò)皆重要的樞紐基因(表1)。
2.4樞紐基因的表達(dá)與ccRCC分級(jí)、分期及預(yù)后的關(guān)系
使用GSE73731數(shù)據(jù)集進(jìn)行線性回歸分析,結(jié)果顯示各樞紐基因與ccRCC組織學(xué)分級(jí)呈正相關(guān)(t=17.53~25.18,P<0.01)。見圖3A~E。ROC曲線分析,BUB1B基因?qū)cRCC組織學(xué)分級(jí)具有較高診斷效能(AUC=0.706,P<0.01),而CEP55、CCNB1、NUF2、KIF14對(duì)ccRCC組織學(xué)分級(jí)診斷效能較弱(AUC=0.680~0.691,P<0.01)。見圖3F~J?;赥CGA的UALCAN和GEPIA數(shù)據(jù)庫驗(yàn)證結(jié)果顯示,5個(gè)樞紐基因的表達(dá)水平在腫瘤組織中均明顯升高(FC=1.76~7.13,P<0.01),且與腫瘤的分級(jí)及分期明顯相關(guān)。見圖4。預(yù)后結(jié)果顯示,CEP55、NUF2、BUB1B與腫瘤的總生存期(OS)明顯相關(guān)(HR=1.5~1.9,P<0.01)。見圖5A~E。CEP55、CCNB1、BUB1B、KIF14與腫瘤的無病生存期(DFS)明顯相關(guān)(HR=1.6~1.7,P<0.01)。見圖5F~J。
2.5GO和KEGG富集分析
為了了解樞紐模塊的可能功能,對(duì)green模塊中的基因進(jìn)行了GO和KEGG富集分析。GO富集分析顯示,模塊基因主要富集在細(xì)胞周期、細(xì)胞器分裂、核分裂等生物學(xué)過程;KEGG富集分析顯示,模塊基因主要富集在細(xì)胞周期通路上。見圖6。
3討論
本研究利用生物信息學(xué)方法,通過對(duì)ccRCC芯片數(shù)據(jù)集GSE73731進(jìn)行分析,篩選得到表達(dá)上調(diào)基因152個(gè),表達(dá)下調(diào)基因181個(gè)。通過WGCNA,將表達(dá)模式相似的基因進(jìn)行聚類,并分析模塊與特定性狀或表型之間關(guān)聯(lián)。結(jié)果顯示,green模塊與ccRCC病理分級(jí)的相關(guān)性最高,green模塊內(nèi)基因集與腫瘤的進(jìn)展與預(yù)后密切相關(guān)。為進(jìn)一步篩選在ccRCC進(jìn)展過程中的關(guān)鍵基因,將green模塊中進(jìn)一步篩選出的基因與蛋白相互作用網(wǎng)絡(luò)篩選出的基因交集,篩選出CEP55、CCNB1、NUF2、BUB1B、KIF14共5個(gè)樞紐基因。對(duì)GSE73731數(shù)據(jù)集進(jìn)行線性回歸分析,結(jié)果顯示各樞紐基因與ccRCC組織學(xué)分級(jí)密切相關(guān),且BUB1B基因具有較高的診斷價(jià)值,說明其能夠區(qū)分不同病理分級(jí)的ccRCC。使用TCGA數(shù)據(jù)進(jìn)行獨(dú)立的外部驗(yàn)證,各樞紐基因的表達(dá)水平在腫瘤組織中均明顯升高,且與腫瘤的分級(jí)及分期明顯相關(guān),說明其在ccRCC發(fā)生及進(jìn)展過程中起關(guān)鍵作用。本文預(yù)后結(jié)果顯示,CEP55、BUB1B基因與腫瘤的OS及DFS明顯相關(guān),提示CEP55和BUB1B基因?qū)cRCC病人的預(yù)后具有一定的預(yù)測(cè)價(jià)值。
CEP55基因編碼一種中心體相關(guān)蛋白,在中間體依賴性的細(xì)胞功能如中心體復(fù)制、細(xì)胞周期及胞質(zhì)分裂的調(diào)節(jié)中發(fā)揮重要作用[8]。有研究表明,在肝細(xì)胞肝癌、肺腺癌、卵巢癌、結(jié)腸癌、乳癌等腫瘤中,CEP55高表達(dá)與腫瘤的高惡性程度、高侵襲性以及不良預(yù)后相關(guān)[9-10]。CCNB1編碼細(xì)胞周期蛋白B1,是細(xì)胞周期G2/M期的重要調(diào)控因子,在非小細(xì)胞肺癌、外陰鱗狀細(xì)胞癌、結(jié)直腸癌中對(duì)腫瘤病人的抗藥性、局部或遠(yuǎn)處轉(zhuǎn)移、復(fù)發(fā)、生存等指標(biāo)具有良好的預(yù)測(cè)價(jià)值[11-13]。細(xì)胞分裂相關(guān)基因NUF2編碼的蛋白,作為NDC80復(fù)合體的重要組成部分之一,在動(dòng)粒-微管黏附中扮演重要角色,在有絲分裂和腫瘤發(fā)生發(fā)展中起著重要作用[14-16]。BUB1B為紡錘體檢測(cè)點(diǎn)蛋白,作為有絲分裂檢測(cè)點(diǎn)的重要功能蛋白,調(diào)節(jié)細(xì)胞周期及有絲分裂。BUB1B在腎癌及乳癌等多種腫瘤中過表達(dá),且其突變及過表達(dá)與染色體不穩(wěn)定性、細(xì)胞分化和衰老相關(guān),可促進(jìn)腫瘤的發(fā)生及進(jìn)展[17-18]。KIF4作為驅(qū)動(dòng)蛋白超家族中的成員,可調(diào)節(jié)紡錘體的形成、染色體的分離和胞質(zhì)分裂,其表達(dá)異??梢鹑旧w分離失敗和胞質(zhì)分裂不完全,從而引起細(xì)胞異常、增殖和分化,誘發(fā)腫瘤形成,其異常表達(dá)已經(jīng)在多種惡性腫瘤中得到證實(shí)[19-21]。
本研究對(duì)樞紐模塊基因進(jìn)行GO和KEGG富集分析,結(jié)果顯示,模塊基因主要富集在細(xì)胞周期等相關(guān)生物學(xué)過程及通路上。在真核生物中,細(xì)胞周期主要受細(xì)胞周期蛋白(Cyclin)、細(xì)胞周期蛋白依賴激酶(CDK)以及細(xì)胞周期蛋白依賴激酶抑制劑(CKI)所構(gòu)成的Cyclin-CDK-CKI信號(hào)網(wǎng)絡(luò)精準(zhǔn)調(diào)節(jié)。具有明顯周期性表達(dá)的Cyclin可以與不同的CDK結(jié)合成復(fù)合物,并激活CDK的激酶活性,從而在不同時(shí)相對(duì)細(xì)胞周期進(jìn)行調(diào)控。而CKI對(duì)CDK具有抑制作用。Cyclin-CDK-CKI信號(hào)網(wǎng)絡(luò)對(duì)細(xì)胞周期的調(diào)控主要通過Rb途徑和p53途徑。在Rb途徑中,生長因子與細(xì)胞表面受體如fos/jun/myc結(jié)合,可促進(jìn)Cyclin表達(dá)并形成Cyclin-CDK復(fù)合物,磷酸化Rb蛋白后,Rb-E2F復(fù)合物釋放E2F進(jìn)入細(xì)胞核,促進(jìn)下游DNA表達(dá)。而CKI可以抑制Cyclin-CDK活性,使得Rb去磷酸化,阻滯細(xì)胞周期進(jìn)展。在p53通路中,DNA受損后,p53可結(jié)合到p21基因啟動(dòng)子區(qū),激活p21轉(zhuǎn)錄。P21作為重要的CKI,可抑制CDK活性,可阻滯細(xì)胞從G1期進(jìn)入S期[11-12,22]。
CCNB1是細(xì)胞周期中G2/M轉(zhuǎn)換的關(guān)鍵因子,可進(jìn)入細(xì)胞核內(nèi),與CDK1結(jié)合形成CCNB1-CDK1復(fù)合物,通過Rb途徑誘導(dǎo)細(xì)胞進(jìn)入M期。當(dāng)細(xì)胞退出M期時(shí),CCNB1降解,CDK1激酶活性喪失,細(xì)胞進(jìn)入下一周期[22]。一項(xiàng)針對(duì)骨肉瘤的研究表明,CEP55的表達(dá)水平與CCND1呈正相關(guān),敲低CEP55表達(dá)導(dǎo)致CCND1表達(dá)水平降低。CCND1可與CDK4/CDK6形成復(fù)合物,調(diào)控G1期到S期的轉(zhuǎn)換[23-24]。一項(xiàng)針對(duì)肝細(xì)胞肝癌的研究表明,敲低NUF2表達(dá)可導(dǎo)致CCNB1、Cdc25A、Cdc2等蛋白表達(dá)水平降低,誘導(dǎo)細(xì)胞周期停滯在G0/G1期,說明NUF2也可以通過Rb通路調(diào)控細(xì)胞周期[25]。一項(xiàng)針對(duì)多發(fā)性骨髓瘤的研究表明,BUB1B可通過介導(dǎo)CDC20/CCNB軸促進(jìn)細(xì)胞增殖,在腫瘤進(jìn)展中起重要作用[26]。有研究表明,KIF14敲低可下調(diào)Skp2和Cks1的表達(dá),進(jìn)而抑制蛋白酶體依賴性p27Kip1泛素化,p27Kip1的增加抑制細(xì)胞周期蛋白的表達(dá),包括CCNB1、CCND1和CCNE1,從而抑制腫瘤發(fā)生及進(jìn)展[25,27-28]。因此,CEP55、CCNB1、NUF2、BUB1B、KIF14等5個(gè)樞紐基因可能通過細(xì)胞周期相關(guān)通路,尤其是Rb通路,來影響ccRCC的發(fā)生、進(jìn)展及預(yù)后。
綜上所述,本研究通過構(gòu)建基因共表達(dá)網(wǎng)絡(luò),篩選出與ccRCC進(jìn)展相關(guān)的5個(gè)樞紐基因,這5個(gè)基因與腫瘤的分期、分級(jí)及預(yù)后密切相關(guān);樞紐基因可能通過細(xì)胞周期相關(guān)通路來影響ccRCC的發(fā)生、進(jìn)展及預(yù)后[1]。
[參考文獻(xiàn)]
[1]BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].? CA-A Cancer Journal for Clinicians, 2018,68(6):394-424.
[2]ZNAOR A, LORTET-TIEULENT J, LAVERSANNE M A, et al. International variations and trends in renal cell carcinoma incidence and mortality[J].? European Urology, 2015,67(3):519-530.
[3]SCELO G, LAROSE T L. Epidemiology and risk factors for kidney cancer[J].? Journal of Clinical Oncology, 2018,36:3574-3581.
[4]LJUNGBERG B, BENSALAH K, CANFIELD S, et al. EAU guidelines on renal cell carcinoma:2014 update[J].? European Urology, 2015,67(5):913-924.
[5]GAUTIER L, COPE L, BOLSTAD B M, et al. Affy—analysis of affymetrix GeneChip data at the probe level[J].? Bioinformatics, 2004,20(3):307-315.
[6]RITCHIE M E, PHIPSON B, WU D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J].? Nucleic Acids Research, 2015,43(7):e47.
[7]LANGFELDER P, HORVATH S. WGCNA:an R package for weighted correlation network analysis[J].? BMC Bioinforma-
tics, 2008,9:559.
[8]JEFFERY J, SINHA D, SRIHARI S, et al. Beyond cytokinesis:the emerging roles of CEP55 in tumorigenesis[J].? Oncogene, 2016,35(6):683-690.
[9]ZHANG Weijing, NIU Chunhao, HE Weiling, et al. Upregulation of centrosomal protein 55 is associated with unfavorable prognosis and tumor invasion in epithelial ovarian carcinoma[J].? Tumor Biology, 2016,37(5):6239-6254.
[10]CHENG W Y, YANG T H, ANASTASSIOU D. Biomolecular events in cancer revealed by attractor metagenes[J].? PLoS Computational Biology, 2013,9(2):e1002920.
[11]FANG Yifeng, YU Hong, LIANG Xiao, et al. Chk1-induced CCNB1 overexpression promotes cell proliferation and tumor growth in human colorectal cancer[J].? Cancer Biology & Therapy, 2014,15(9):1268-1279.
[12]PFAFF K L, KING R W. Determinants of human cyclin B1 association with mitotic chromosomes[J].? PLoS One, 2013,8(3):e59169.
[13]WANG Z, SLIPICEVIC A, FORSUND M, et al. Expression of CDK1(Tyr15), pCDK1(Thr161), cyclin B1(total)and pCyclin B1(Ser126)in vulvar squamous cell carcinoma and their relations with clinicopatological features and prognosis[J].? PLoS One, 2015,10(4):e0121398.
[14]郭云韜,喻超,陳禮聞,等. siRNA干擾沉默NUF2基因?qū)Ω伟〩CCLM3細(xì)胞遷移和侵襲的影響[J].? 貴州醫(yī)科大學(xué)學(xué)報(bào), 2017,42(2):147-150.
[15]FU H L, SHAO L. Silencing of NUF2 inhibits proliferation of human osteosarcoma Saos-2 cells[J].? European Review for Medical and Pharmacological Sciences, 2016,20(6):1071-1079.
[16]HU Peng, SHANGGUAN Jianying, ZHANG Leida. Downregulation of NUF2 inhibits tumor growth and induces apoptosis by regulating lncRNA AF339813[J].? International Journal of Clinical and Experimental Pathology, 2015,8(3):2638-2648.
[17]MA Qing, LIU Yanmei, SHANG Liang, et al. The FOXM1/BUB1B signaling pathway is essential for the tumorigenicity and radioresistance of glioblastoma[J].? Oncology Reports, 2017,38(6):3367-3375.
[18]FU Xin, CHEN Guo, CAI Zhiduan, et al. Overexpression of BUB1B contributes to progression of prostate cancer and predicts poor outcome in patients with prostate cancer[J].? Onco Targets and Therapy, 2016,9(Issue 1):2211-2220.
[19]ZHANG Yixiang, YUAN Yeqing, LIANG Pei, et al. Overexpression of a novel candidate oncogene KIF14 correlates with tumor progression and poor prognosis in prostate cancer[J].? Oncotarget, 2017,8(28):45459-45469.
[20]LI K K, QI Y, XIA T, et al. The kinesin KIF14 is overexpressed in medulloblastoma and downregulation of KIF14 suppressed tumor proliferation and induced apoptosis[J].? Laboratory Investigation, 2017,97(8):946-961.
[21]QIU H L, DENG S Z, LI C, et al. High expression of KIF14 is associated with poor prognosis in patients with epithelial ovarian cancer[J].? European Review for Medical and Pharmacological Sciences, 2017,21(2):239-245.
[22]PAN Xiuwu, CHEN Lu, HONG Yi, et al. EIF3D silencing suppresses renal cell carcinoma tumorigenesis via inducing G2/M arrest through downregulation of Cyclin B1/CDK1 signaling[J].? International Journal of Oncology, 2016,48(6):2580-2590.
[23]XU Leilei, XIA Chao, SHENG Fei, et al. CEP55 promotes the proliferation and invasion of tumour cells via the AKT signalling pathway in osteosarcoma[J].? Carcinogenesis, 2018,39(4):623-631.
[24]ZHAO W M, SEKI A, FANG G W. Cep55, a microtubule-bundling protein, associates with centralspindlin to control the midbody integrity and cell abscission during cytokinesis[J].? Molecular Biology of the Cell, 2006,17(9):3881-3896.
[HJ2mm]
[25]LIU Qiang, DAI Shejiao, LI Hong, et al. Silencing of NUF2 inhibits tumor growth and induces apoptosis in human hepatocellular carcinomas[J].? Asian Pacific Journal of Cancer Prevention, 2014,15(20):8623-8629.
[26]YANG Ye, GU Chunyan, LUO Chen, et al. BUB1B promotes multiple myeloma cell proliferation through CDC20/CCNB axis[J].? Medical Oncology, 2015,32(3):81.
[27]XU H, CHOE C, SHIN S H, et al. Silencing of KIF14 interferes with cell cycle progression and?cytokinesis by blocking the p27Kip1 ubiquitination pathway in hepatocellular carcinoma[J].? Experimental & Molecular Medicinee, 2014,46(5):e97.
[28]HUANG S K, QIAN J X, YUAN B Q, et al. SiRNA-mediated knockdown against NUF2 suppresses tumor growth and induces cell apoptosis in human glioma cells[J].? Cellular and Molecular Biology, 2014,60(4):30-36.
(本文編輯 馬偉平)