張燕玉 韓卓然 孫敬鋒 呂愛軍 胡秀彩 劉軍鋒
摘要:【目的】明確海藻希瓦氏菌(Shewanella algae)感染對(duì)半滑舌鰨(Cynoglossus semilaevis)腸道菌群結(jié)構(gòu)及相關(guān)功能基因表達(dá)的影響,揭示腸道菌群和腸道組織相關(guān)功能基因在疾病發(fā)生及免疫應(yīng)答過程中的作用機(jī)制?!痉椒ā恳灾虏⌒院T逑M呤暇斯じ腥景牖圉嵑?,采用16S rDNA高通量測(cè)序技術(shù)探究其腸道菌群組成結(jié)構(gòu)的變化情況,并利用實(shí)時(shí)熒光定量PCR檢測(cè)分析半滑舌鰨腸道組織中參與疾病發(fā)生和免疫應(yīng)答相關(guān)功能基因的表達(dá)規(guī)律?!窘Y(jié)果】共測(cè)序獲得118657條有效序列,按97%的序列相似度聚類后得到6732個(gè)OTUs。Alpha多樣性分析結(jié)果顯示,Shannon指數(shù)和Chao1指數(shù)以感染前(CG)的健康半滑舌鰨最高,在感染后12 h(12hpi)最低;感染海藻希瓦氏菌前后半滑舌鰨腸道優(yōu)勢(shì)菌門無(wú)明顯變化,但不同類群的相對(duì)豐度發(fā)生變化。在屬水平上,Elizabethkingia、曼噬甲殼菌屬(Chitinophaga)、Brevinema、苯基桿菌屬(Phenylobacterium)、假單胞菌屬(Pseudomonas)、乳桿菌屬(Lactobacillus)、Marivita和雷爾氏菌屬(Ralstonia)的相對(duì)豐度在CG半滑舌鰨腸道菌群組成中占比最高,希瓦氏菌屬(Shewanella)、Petrimonas、Proteiniphilum和Aminobacterium的相對(duì)豐度在12hpi的占比最高,食酸菌屬(Acidovorax)、芽孢桿菌屬(Bacillus)和弧菌屬(Vibrio)的相對(duì)豐度在感染后24 h(24hpi)的占比最高。半滑舌鰨腸道組織相關(guān)功能基因的表達(dá)變化表現(xiàn)為:果糖二磷酸醛縮酶A基因(ALDOA)的相對(duì)表達(dá)量在24hpi時(shí)顯著高于CG(P<0.05,下同);磷脂酶B1基因(PLB1)、熱休克蛋白70 kD蛋白1A基因(HSPA1A)、組氨酸三聚體核苷結(jié)合蛋白1基因(HINT1)和γ谷氨酰轉(zhuǎn)移酶1基因(GGT1)的相對(duì)表達(dá)量顯著高于CG和24hpi;海藻糖酶基因(TREH)的相對(duì)表達(dá)量在12hpi時(shí)顯著低于CG和24hpi。【結(jié)論】半滑舌鰨感染海藻希瓦氏菌后其腸道菌群多樣性降低、菌群結(jié)構(gòu)發(fā)生變化,腸道組織中免疫功能相關(guān)基因(HSPA1A和HINT1)及代謝功能相關(guān)酶類基因(ALDOA、PLB1、GGT1和TREH)呈差異表達(dá),說明海藻希瓦氏菌感染引起半滑舌鰨腸道微生態(tài)紊亂,且腸道組織中免疫功能相關(guān)基因和代謝功能相關(guān)酶類基因分別參與機(jī)體的免疫應(yīng)答及疾病發(fā)生過程。
關(guān)鍵詞: 半滑舌鰨;海藻希瓦氏菌;腸道菌群;16S rDNA高通量測(cè)序;實(shí)時(shí)熒光定量PCR
中圖分類號(hào): S941.42? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2019)10-2300-08
Effects of infection with Shewanella algae on the microbial communities and expression of related functional genes in the intestine of Cynoglossus semilaevis
ZHANG Yan-yu1, HAN Zhuo-ran1, SUN Jing-feng1*, LYU Ai-jun1,
HU Xiu-cai1, LIU Jun-feng2
(1College of Fisheries, Tianjin Agricultural University/Tianjin Key Lab of Aqua-Ecology and Aquaculture, Tianjin 300384; 2Tianjin Yushengtang Biotechnology Co., Ltd., Tianjin? 300404, China)
Abstract:【Objective】The purpose of this study was to investigate the changes of intestinal microbial communities and expression of related functional genes in the intestine of Cynoglossus semilaevis after artificial infection with the pathogenic Shewanella algae, and reveal the role of intestinal microbial flora and related functional genes in the process of disease occurrence and intestinal immune response in the host. 【Method】After C. semilaevis were artificially infected with the pathogenic S. algae,16S rDNA high-throughput sequencing technique was used to study the changes of intestinal microbial communities, and real-time fluorescence quantitative PCR technology was used to study the expression pattern of functional genes involved in the process of disease occurrence and immune response in the intestinal tissues. 【Result】A total of 118657 effective tags were obtained and assigned to 6732 OTUs based on a 97% sequence similarity level. The results of alpha diversity analysis showed that the indexes of Shannon and Chao1 were the highest in the control group (CG), and the lowest in the group of 12 h post-injection(12hpi). At phylum level,although the identified dominant intestinal bacteria were consistent between the control and infection groups, the relative abundance of the bacterial taxa varied. At genus level, the relative abundances of Elizabethkingia, Chitinophaga, Brevinema, Phenylobacterium, Pseudomonas, Lactobacillus, Marivita, andalstonia were the highest in the intestinal microbiota of CG; the relative abundances of Shewanella, Petrimonas, Proteiniphilum, and Aminobacterium in 12hpi group were more than those in other groups. Acidovorax, Bacillus, and Vibrio had the highest relative abundance in the group of 24 h post-injection (24hpi). The expression patterns of related functional genes in the intestine of C. semilaevis were as follows:the relative expression of fructose drphosphate aldolase A gene ALDOA in 24hpi group was significantly higher than that in CG(P<0.05, the same below); the relative expression of phospholipase b1 gene(PLB1), heat shock protein 70 kD protein 1A gene(HSPA1A),histidine trimer nucleoside binding protein 1 gene(HINT1) and gamma glutamyltransferase 1 gene(GGT1)in 12hpi group was significantly higher than those in CG and 24hpi groups; the relative expression of trehalase gene(TREH) in 12hpi group was significantly lower than those in CG and 24hpi groups.【Conclusion】The structure of the microflora changes with the diversity of intestinal microflora of C. semilaevis decreasing after infection with S. algae. The immune function related genes(HSPA1A and HINT1) and metabolism-related enzyme genes (ALDOA, PLB1,GGT1 and TREH) are diffe-rentially expressed. It indicates that infection with S. algae results in the disturbance of intestinal microecology of C. semilaevis, and the immune function related genes and metabolism-related enzyme genes are involved in the process of immune response against bacterial infection and disease occurrence.
Key words: Cynoglossus semilaevis;Shewanella algae; intestinal microflora; 16S rDNA high-through sequencing technique; real-time fluorescence quantitative PCR
0 引言
【研究意義】半滑舌鰨(Cynoglossus semilaevis)因具有產(chǎn)量高、肉質(zhì)鮮美等優(yōu)點(diǎn),已發(fā)展成為海水漁業(yè)中最具養(yǎng)殖價(jià)值的魚類品種之一。近年來,隨著漁業(yè)工廠化養(yǎng)殖技術(shù)的不斷成熟,半滑舌鰨規(guī)模化養(yǎng)殖密度越來越高,導(dǎo)致養(yǎng)殖水質(zhì)惡化、疾病頻發(fā),給養(yǎng)殖戶帶來極大的經(jīng)濟(jì)損失。侵染半滑舌鰨的常見病原菌有副溶血弧菌(Vibrio parahemolyticus)(胡璇等,2014)、創(chuàng)傷弧菌(V. vulnificus)(高桂生等,2016)及殺鮭氣單胞菌(Aeromonas salmonicida)(周紅霞等,2017)等。至今,越來越多研究表明腸道菌群結(jié)構(gòu)與水產(chǎn)養(yǎng)殖動(dòng)物的健康密切相關(guān)(Pérez et al.,2010)。腸道微生物群作為一個(gè)復(fù)雜的生態(tài)系統(tǒng),通過參與免疫應(yīng)答、營(yíng)養(yǎng)吸收及疾病防御,對(duì)促進(jìn)宿主健康至關(guān)重要(Lin et al.,2014)。魚類腸道作為機(jī)體重要的組織器官,不僅承擔(dān)著消化吸收功能,還在免疫防御過程中發(fā)揮重要作用(Wang et al.,2018)。因此,研究半滑舌鰨感染病原菌后其腸道菌群結(jié)構(gòu)及相關(guān)功能基因表達(dá)的變化規(guī)律,可為揭示腸道菌群和腸道組織相關(guān)功能基因在疾病發(fā)生及免疫應(yīng)答過程中的作用機(jī)制提供參考依據(jù)?!厩叭搜芯窟M(jìn)展】腸道微生物對(duì)于宿主健康至關(guān)重要,針對(duì)水產(chǎn)動(dòng)物的相關(guān)研究主要集中在機(jī)體健康狀態(tài)下的腸道菌群組成結(jié)構(gòu)和多樣性分析(Giatsis et al.,2015;Narrowe et al.,2015;Han et al.,2018)。最近的研究表明,環(huán)境因素和養(yǎng)殖條件對(duì)水產(chǎn)動(dòng)物腸道菌群組成結(jié)構(gòu)有顯著影響(Talwar et al.,2018)。不同外界因素如生活環(huán)境(Cornejo-Granados et al.,2017)、飲食組成(Duan et al.,2017;He et al.,2017)、養(yǎng)殖水質(zhì)(Suo et al.,2017)及生長(zhǎng)階段(Cornejo-Granados et al.,2018)等均可導(dǎo)致南美白對(duì)蝦(Litopenaeus vannamei)腸道菌群組成差異。在魚類上,年齡(Lauzon et al.,2010)、飼料成分(Desai et al.,2012)、食性(Ye et al.,2014)及性別(Li et al.,2016b)等因素均會(huì)影響腸道菌群組成結(jié)構(gòu)及其種類豐度。除這些因素外,病原微生物感染及疾病發(fā)生對(duì)水生動(dòng)物的腸道微生態(tài)系統(tǒng)也有重要影響。白斑綜合征病毒(WSSV)感染可改變中華絨螯蟹(Eriocheir sinensis)和南美白對(duì)蝦的腸道微生物種類及其相對(duì)豐度(Ding et al.,2017;Wang et al.,2019);弧菌可引起斑節(jié)對(duì)蝦(Penaeus monodon)和南美白對(duì)蝦腸道細(xì)菌動(dòng)態(tài)變化(Rungrassamee et al.,2014),并改變南美白對(duì)蝦腸道微生物群落結(jié)構(gòu)(He et al.,2017);南美白對(duì)蝦急性肝胰腺壞死病的發(fā)生常伴隨著宿主腸道微生物群落變化,導(dǎo)致與疾病有關(guān)的特異性細(xì)菌出現(xiàn)并增殖(Chen et al.,2017);溶藻弧菌(V. alginolyticus)感染三疣梭子蟹(Portunus trituberculatus)可引起腸道微生物不同類群的豐度產(chǎn)生變化(Xia et al.,2018);在魚類方面,從患瘡癤病的圓口銅魚(Coreius guichenoti)和嗜水氣單胞菌(A. hydrophila)感染的斑馬魚(Danio rerio)中均發(fā)現(xiàn)腸道微生物群落組成及其多樣性發(fā)生變化(Li et al.,2016a;Yang et al.,2017b)。魚類疾病的發(fā)生發(fā)展和病原生物感染均伴隨著腸道菌群結(jié)構(gòu)變化,腸道作為黏膜免疫應(yīng)答的重要器官,在抗感染免疫防御過程中發(fā)揮重要作用(Wang et al.,2018),如在黏孢子蟲(Enteromyxum leei)感染黑鯛(Sparus aurata)(Davey et al.,2011)和溶藻弧菌感染半滑舌鰨(Yang et al.,2017a)的腸道組織中某些免疫相關(guān)基因發(fā)生差異表達(dá)。目前,關(guān)于魚類抗感染免疫應(yīng)答的研究主要集中于脾臟和頭腎等系統(tǒng)性免疫器官,而針對(duì)腸道中功能基因參與免疫應(yīng)答及疾病發(fā)生過程的相關(guān)研究鮮見報(bào)道?!颈狙芯壳腥朦c(diǎn)】本課題組前期從以腸道炎癥為特征的患病半滑舌鰨中分離獲得致病性海藻希瓦氏菌(Shewanella algae),且證實(shí)腸道是其產(chǎn)生致病作用主要的靶器官(Han et al.,2017b),但目前對(duì)海藻希瓦氏菌感染引起的半滑舌鰨腸道菌群動(dòng)態(tài)變化及疾病發(fā)生和腸道免疫應(yīng)答反應(yīng)中的相關(guān)功能基因尚缺乏深入了解。【擬解決的關(guān)鍵問題】通過16S rDNA高通量測(cè)序技術(shù)探究人工感染海藻希瓦氏菌后半滑舌鰨腸道菌群結(jié)構(gòu)的變化情況,并利用實(shí)時(shí)熒光定量PCR檢測(cè)分析半滑舌鰨腸道組織中參與疾病發(fā)生和免疫應(yīng)答相關(guān)功能基因的表達(dá)規(guī)律,旨在揭示腸道菌群和腸道組織相關(guān)功能基因在疾病發(fā)生及免疫應(yīng)答過程中的作用機(jī)制。
1 材料與方法
1. 1 試驗(yàn)材料
試驗(yàn)用半滑舌鰨購(gòu)自天津市海發(fā)珍品實(shí)業(yè)發(fā)展有限公司,健康無(wú)病,體長(zhǎng)29±2 cm/尾,體重130±5 g/尾。養(yǎng)殖水溫(23±1)℃,pH 7.5,鹽度22‰,溶解氧含量5.5~6.0 mg/L。每日喂食2次,所喂飼料為普通商業(yè)飼料;早晚各換水1次,防止糞便及剩余飼料敗壞養(yǎng)殖水質(zhì)。暫養(yǎng)1周,待魚體狀況穩(wěn)定后進(jìn)行感染試驗(yàn);感染前隨機(jī)選取5尾用于病原菌檢測(cè)。
1. 2 細(xì)菌培養(yǎng)及感染試驗(yàn)
海藻希瓦氏菌CSG-15株分離自患病半滑舌鰨肝臟組織,由天津市水產(chǎn)生態(tài)及養(yǎng)殖重點(diǎn)實(shí)驗(yàn)室保存提供。將CSG-15株接種至無(wú)菌2216E液體培養(yǎng)基中,30 ℃培養(yǎng)18 h后,5000 r/min離心3 min,收集菌體,再用滅菌的0.9%生理鹽水懸浮菌體以獲得1.0×108 CFU/mL的菌懸液。將半滑舌鰨隨機(jī)均分為3組,每組9尾魚,分為3個(gè)平行。其中2組按200 μL/尾的劑量腹腔注射菌懸液,另一組注射等量無(wú)菌生理鹽水。分別于感染前(CG)及感染后12 h(12hpi)和24 h(24hpi)收集半滑舌鰨腸道組織及糞便樣本,將每組樣本分別混合,-80 ℃保存?zhèn)溆?,其中,糞便樣本用于腸道微生物基因組DNA提取,腸道組織用于RNA提取。
1. 3 腸道微生物基因組DNA提取
按照QIAamp Fast DNA試劑盒(德國(guó)QIAGEN公司)說明提取糞便樣品中微生物基因組DNA,以0.8%瓊脂糖凝膠電泳檢測(cè)DNA片段的完整性及大小,采用微量分光光度計(jì)檢測(cè)DNA純度。
1. 4 PCR擴(kuò)增及測(cè)序
以稀釋后的基因組DNA(1 ng/μL)為模版,用包含Barcode特異性序列的引物對(duì)16S rDNA基因V4區(qū)進(jìn)行擴(kuò)增(Guo et al.,2016)。正、反向引物分別為515F:5'-GTGCCAGCMGCCGCGGTAA-3'和806R:5'-GGACTACHVGGGTWTCTAAT-3'(Xiong et al.,2015)。按照Han等(2018)的方法,回收PCR產(chǎn)物并構(gòu)建文庫(kù),利用Qubit和實(shí)時(shí)熒光定量PCR對(duì)構(gòu)建好的文庫(kù)進(jìn)行定量,使用HiSeq 2500 PE250進(jìn)行高通量測(cè)序分析。
1. 5 數(shù)據(jù)處理
根據(jù)Barcode序列和PCR擴(kuò)增引物序列,從下機(jī)數(shù)據(jù)中拆分出各樣品數(shù)據(jù),并將每個(gè)樣品的序列拼接為原始Tags數(shù)據(jù)(Raw Tags),質(zhì)控后得到有效序列(Effective Tags)。利用UPARSE按97%的序列相似度將有效序列聚類成OTUs(Operational taxonomic units),同時(shí)對(duì)OTUs代表序列進(jìn)行物種注釋(Edgar,2013);以Qiime v1.7.0計(jì)算Chao1、Shannon和Simpson等指數(shù),并計(jì)算Unifrac距離及構(gòu)建UPGMA聚類分析樹;采用R軟件分析Alpha和Beta多樣性指數(shù)及組間差異。
1. 6 腸道組織總RNA提取及cDNA文庫(kù)構(gòu)建
根據(jù)RNAiso Plus總RNA提取試劑盒(TaKaRa公司)說明提取半滑舌鰨腸道組織總RNA,使用1.0%瓊脂糖凝膠電泳和微量分光光度計(jì)檢測(cè)RNA的完整性、濃度和質(zhì)量。采用PrimeScriptTM RT reagent Kit with gDNA Eraser試劑盒(TaKaRa公司)對(duì)RNA樣本進(jìn)行反轉(zhuǎn)錄,獲得的cDNA冷凍保存,用于實(shí)時(shí)熒光定量PCR。
1. 7 實(shí)時(shí)熒光定量PCR
利用實(shí)時(shí)熒光定量PCR對(duì)熱休克蛋白70 kD蛋白1A(HSPA1A)、組氨酸三聚體核苷結(jié)合蛋白1(HINT1)、果糖二磷酸醛縮酶A(ALDOA)、磷脂酶B1(PLB1)、海藻糖酶(TREH)和γ谷氨酰轉(zhuǎn)移酶1(GGT1)的基因表達(dá)情況進(jìn)行檢測(cè),以β-actin為內(nèi)參基因。通過NCBI Primer BLAST設(shè)計(jì)引物(表1),委托生工生物工程(上海)股份有限公司合成。實(shí)時(shí)熒光定量PCR反應(yīng)體系20.0 μL:SYBR? Premix Ex TaqTM Ⅱ 10.0 μL,cDNA模板2.0 μL,上、下游引物(10 μmol/L)各0.4 μL,滅菌蒸餾水7.2 μL。擴(kuò)增程序:95 ℃預(yù)變性3 min;95 ℃ 7 s,57 ℃ 10 s,72 ℃ 15 s,進(jìn)行45個(gè)循環(huán)。每次循環(huán)結(jié)束采集熒光信號(hào),然后進(jìn)行熔解曲線的采集與數(shù)據(jù)分析,采用2-△△Ct法計(jì)算各目的基因的相對(duì)表達(dá)量。每個(gè)基因擴(kuò)增設(shè)3次重復(fù),利用Duncan?s新復(fù)極差法進(jìn)行多重比較。
2 結(jié)果與分析
2. 1 半滑舌鰨腸道微生物多樣性分析結(jié)果
質(zhì)控后共測(cè)序獲得有效序列118657條,平均每個(gè)樣本為39552條。其中,12hpi時(shí)獲得有效序列數(shù)目最多(45346條),CG獲得有效序列數(shù)目最少(39724條)。各組有效序列按97%的序列相似度進(jìn)行聚類,結(jié)果3組樣本共獲得6732個(gè)OTUs。CG、12hpi和24hpi對(duì)應(yīng)的OTUs數(shù)目分別為2506、2819和2265個(gè),其中3組樣本的共有OTUs為225個(gè)(圖1)。Alpha多樣性分析結(jié)果表明,Shannon指數(shù)和Chao1指數(shù)在CG半滑舌鰨中最高,在12hpi半滑舌鰨中最低(圖2)。
2. 2 半滑舌鰨腸道微生物組成結(jié)構(gòu)分析結(jié)果
在門水平上共鑒定出38個(gè)菌門,其中,12hpi和24hpi半滑舌鰨腸道微生物組成均以變形菌門(Proteobacteria)、擬桿菌門(Bacteroidetes)和厚壁菌門(Firmicutes)占絕對(duì)優(yōu)勢(shì),三者的相對(duì)豐度之和超過90%;CG半滑舌鰨腸道微生物組成以變形菌門、擬桿菌門、厚壁菌門和螺旋體門(Spirochaetes)為優(yōu)勢(shì)菌門,其相對(duì)豐度之和也在90%以上(圖3-A)。變形菌門和厚壁菌門的相對(duì)豐度在12hpi半滑舌鰨腸道微生物組成中占比最高,分別為48.28%和22.08%;而擬桿菌門的相對(duì)豐度在CG半滑舌鰨腸道微生物組成中占比最高,為7.85%。
在屬水平上共鑒定出578個(gè)菌屬,相對(duì)豐度較高的前15個(gè)優(yōu)勢(shì)菌屬分別為希瓦氏菌屬(Shewanella)、Elizabethkingia、曼噬甲殼菌屬(Chitinophaga)、Petrimonas、Proteiniphilum、Brevinema、苯基桿菌屬(Phenylobacterium)、Aminobacterium、食酸菌屬(Aci-dovorax)、芽孢桿菌屬(Bacillus)、假單胞菌屬(Pseudomonas)、乳桿菌屬(Lactobacillus)、Marivita、弧菌屬(Vibrio)和雷爾氏菌屬(Ralstonia)(圖3-B)。其中,Elizabethkingia、曼噬甲殼菌屬、Brevinema、苯基桿菌屬、假單胞菌屬、乳桿菌屬、Marivita和雷爾氏菌屬的相對(duì)豐度在CG半滑舌鰨腸道微生物組成中占比最高,希瓦氏菌屬、Petrimonas、Proteiniphilum和Aminobacterium的相對(duì)豐度在12hpi半滑舌鰨腸道微生物組成中占比最高,食酸菌屬、芽孢桿菌屬和弧菌屬的相對(duì)豐度在24hpi半滑舌鰨腸道微生物組成中占比最高。
2. 3 半滑舌鰨腸道微生物Beta多樣性分析結(jié)果
基于Unifrac距離構(gòu)建UPGMA聚類分析樹,結(jié)果(圖4)顯示,CG和12hpi的半滑舌鰨腸道微生物樣本先聚為一支,二者與24hpi半滑舌鰨腸道微生物樣本的Unifrac距離相對(duì)較遠(yuǎn),說明海藻希瓦氏菌感染半滑舌鰨24 h后其腸道菌群相對(duì)豐度及多樣性發(fā)生了明顯變化。
2. 4 半滑舌鰨腸道組織相關(guān)功能基因的表達(dá)情況
由圖5可看出,半滑舌鰨腸道中ALDOA基因的相對(duì)表達(dá)量在24hpi時(shí)顯著高于CG(P<0.05,下同); PLB1、GGT1、HSPA1A和HINT1基因在12hpi時(shí)的相對(duì)表達(dá)量顯著高于CG和24hpi,而TREH基因的相對(duì)表達(dá)量在12hpi時(shí)顯著低于CG和24hpi,說明腸道組織中免疫功能相關(guān)基因(HSPA1A和HINT1)參與半滑舌鰨抗細(xì)菌感染的免疫應(yīng)答過程,而代謝功能相關(guān)酶類基因(ALDOA、PLB1、GGT1和TREH)與腸道代謝功能紊亂和疾病發(fā)生密切相關(guān)。
3 討論
目前,關(guān)于魚類腸道菌群的研究已有較多報(bào)道,但主要集中在健康魚類,而針對(duì)病原菌感染引起魚類腸道菌群結(jié)構(gòu)持續(xù)變化的研究相對(duì)較少(Han et al.,2010;Huang et al.,2016)。與健康魚相比,患病魚類腸道微生物多樣性顯著降低(Li et al.,2016a)。本研究采用16S rDNA高通量測(cè)序技術(shù)分析致病性海藻希瓦氏菌感染對(duì)半滑舌鰨腸道菌群結(jié)構(gòu)的影響,結(jié)果表明,健康半滑舌鰨腸道微生物豐度及多樣性均高于感染后,與張正等(2014)在患腹水病和皮膚潰爛病半滑舌鰨、劉志剛等(2018)在患鏈球菌病的尼羅羅非魚(Oreochromis niloticus)的研究結(jié)果一致。由此推測(cè),魚類健康狀況與腸道微生物多樣性具有一定相關(guān)性。本研究還發(fā)現(xiàn),半滑舌鰨腸道中變形菌門、擬桿菌門和厚壁菌門占絕對(duì)優(yōu)勢(shì),與張正等(2014)的研究結(jié)果相似,表明這些菌門可能是半滑舌鰨腸道內(nèi)的核心菌群。雖然感染海藻希瓦氏菌半滑舌鰨腸道中這些優(yōu)勢(shì)菌群的相對(duì)豐度與健康半滑舌鰨不同,但這些菌門均是豐度最高的類群。此外,本研究發(fā)現(xiàn)在海藻希瓦氏菌感染前后,半滑舌鰨腸道內(nèi)均存在弧菌屬、希瓦氏菌屬和芽孢桿菌屬,且這些菌屬的相對(duì)豐度在感染后明顯增加?;【囚~類腸道中常見的微生物類群(Jensen et al.,2004;Hovda et al.,2007),且某些種能引起水產(chǎn)動(dòng)物暴發(fā)惡性傳染病,如鰻弧菌(V. anguillarum)和溶藻弧菌(楊少麗等,2005);希瓦氏菌和芽孢桿菌也是水產(chǎn)動(dòng)物的主要條件性致病菌,可引起魚類暴發(fā)疾病(Han et al.,2017b)。健康魚類腸道內(nèi)存在大量條件性致病菌,當(dāng)機(jī)體腸道微生態(tài)被破壞時(shí)會(huì)迅速增殖,進(jìn)而威脅魚類健康,因此這些菌屬應(yīng)被給予高度關(guān)注。
除了腸道微生物組成與宿主健康狀況密切相關(guān)外,腸道本身在魚類的黏膜免疫系統(tǒng)中也發(fā)揮重要作用(Byadgi et al.,2014;Tafalla et al.,2016)。本研究結(jié)果表明,半滑舌鰨感染海藻希瓦氏菌后其腸道組織中的ALDOA、PLB1、HSPA1A、HINT1、GGT1和TREH基因表達(dá)水平均發(fā)生明顯變化。HSPA1A基因編碼Hsp72蛋白,該蛋白是熱休克蛋白70(Heat shock protein 70,HSP70)家族的重要成員之一。熱休克蛋白是一類保守的細(xì)胞蛋白,存在于從細(xì)菌到哺乳動(dòng)物的所有生物體中(Mu et al.,2013;Liu et al.,2015),在應(yīng)激反應(yīng)及應(yīng)激損傷中發(fā)揮重要作用(Ming et al.,2010;Mu et al.,2013)。至今,已有多種HSP70家族成員從患細(xì)菌性疾病的水產(chǎn)動(dòng)物不同組織中被鑒定出來。哈維氏弧菌(V. harveyi)感染武昌魚(Megalobrama amblycephala)6 h后其肝臟HSP70基因表達(dá)量顯著升高并達(dá)峰值,隨后開始降低(Ming et al.,2010);厚殼貽貝(Mytilus coruscus)血細(xì)胞中HSP70基因表達(dá)水平在鰻弧菌(V. anguillarum)感染后12~48 h顯著升高,至感染72 h時(shí)降到正常水平(Liu et al.,2014);哈維氏弧菌感染后,花鱸(Lateolabrax maculatus)頭腎、腸道和鰓組織中HSPA1A、HSC70-1、HSC70-2、HSPA4和HSPA14基因表達(dá)量呈先升高后下降的變化趨勢(shì)(Han et al.,2017a)。在本研究中,半滑舌鰨感染海藻希瓦氏菌后其腸道組織中HSPA1A基因相對(duì)表達(dá)量在感染12 h時(shí)顯著增高,但至感染24 h時(shí)又降至正常水平,與在武昌魚(Ming et al.,2010)和花鱸(Han et al.,2017a)受到病原感染后SPA1A基因及HSP70家族其他成員的表達(dá)模式具有一致性。HINT1基因編碼的蛋白分子是組氨酸三聚體蛋白超家族中分布最廣的成員,其在低等和高等動(dòng)物中的結(jié)構(gòu)及功能高度保守,可通過參與Wnt通路、核因子κB、激活蛋白1信號(hào)通路而控制多種轉(zhuǎn)錄過程,調(diào)節(jié)細(xì)胞的分化、增殖和凋亡,具有免疫監(jiān)視功能作用(Korsisaari et al.,2003)。感染海藻希瓦氏菌后,半滑舌鰨腸道組織HSPA1A和HINT1基因相對(duì)表達(dá)量均呈先升高后下降的規(guī)律,表明這兩種蛋白(HSPA1A和HINT1)參與半滑舌鰨腸道抗細(xì)菌感染的免疫應(yīng)答,但具體作用機(jī)理有待進(jìn)一步探究。
ALDOA、PLB1、GGT1和TREH是參與動(dòng)物機(jī)體生理過程的重要代謝酶類。其中,ALDOA是一種廣泛存在于生物體中并參與糖酵解的重要酶,主要存在于肌肉及血液紅細(xì)胞中(Zhang et al.,2017);PLB1是一種磷脂酶,作用于溶血磷脂Sn-1位酯鍵,廣泛存在于動(dòng)植物及微生物體內(nèi);PLB能水解磷脂生成相應(yīng)的甘油酰磷脂和脂肪酸,最后生成各類小分子物質(zhì),如氨基酸和乙醇胺等被機(jī)體利用(Xu et al.,2009);GGT1在微生物、植物和動(dòng)物中廣泛存在,從谷氨酰胺化合物水解和轉(zhuǎn)移氨?;鶊F(tuán)到受體,全程參與谷胱甘肽的代謝,在轉(zhuǎn)化白三烯C4過程中發(fā)揮重要作用(West et al.,2013);TREH是葡萄糖苷酶的一種,對(duì)海藻糖有特異作用,水解后生成2個(gè)分子的葡萄糖(Kamiya et al.,2004)。本研究結(jié)果表明,海藻希瓦氏菌感染半滑舌鰨12 h后,其腸道組織中的ALDOA、PLB1和GGT1基因表達(dá)升高,而TREH基因表達(dá)降低,故推測(cè)這些基因的差異表達(dá)還與半滑舌鰨腸道消化吸收代謝功能紊亂有關(guān),即參與機(jī)體疾病的發(fā)生過程。
4 結(jié)論
半滑舌鰨感染海藻希瓦氏菌后其腸道菌群多樣性降低、菌群結(jié)構(gòu)發(fā)生變化,腸道組織中ALDOA、PLB1、GGT1、HSPA1A、HINT1和TREH等相關(guān)功能基因呈差異表達(dá),說明海藻希瓦氏菌感染引起半滑舌鰨腸道微生態(tài)紊亂,且腸道組織中免疫功能相關(guān)基因和代謝功能相關(guān)酶類基因分別參與機(jī)體的免疫應(yīng)答及疾病發(fā)生過程。
參考文獻(xiàn):
高桂生,張艷英,張召興,吉志新,史秋梅,陳娟,高光平,趙欣欣,韓紅升,宋青春. 2016. 半滑舌鰨皮膚潰瘍病的病原分離鑒定與藥物敏感性分析[J]. 中國(guó)獸醫(yī)學(xué)報(bào),36(4):595-599. [Gao G S,Zhang Y Y,Zhang Z X,Ji Z X,Shi Q M,Chen J,Gao G P,Zhao X X,Han H S,Song Q C. 2016. Isolation and identification of pathogen of skin ulcer from Cynoglossus semilaevis and anaiysis of antibio-tic sensitivity[J]. Chinese Journal of Veterinary Science,36(4):595-599.]
胡璇,孫敬鋒,陳成勛,邢克智. 2014. 養(yǎng)殖半滑舌鰨腹水病的病原分離鑒定及藥物敏感性分析[J]. 天津農(nóng)學(xué)院學(xué)報(bào),21(3):12-16. [Hu X,Sun J F,Chen C X,Xing K Z. 2014. Isolation and identification of pathogen of ascites disease from Cynoglossus semilaevis Günther and its antibiotic sensitivity analysis[J]. Journal of Tianjin Agricultural University,21(3):12-16.]
劉志剛,盧邁新,可小麗,王淼,張德鋒. 2018. 尼羅羅非魚腸道及養(yǎng)殖環(huán)境中菌群結(jié)構(gòu)與鏈球菌病的相關(guān)性[J]. 水產(chǎn)學(xué)報(bào),42(10):1635-1647. [Liu Z G,Lu M X,Ke X L,Wang M,Zhang D F. 2018. Correlation between microflora structure in intestinal tract and aquaculture environment of tilapia(Oreochromis niloticus) and streptococcicosis[J]. Journal of Fisheries of China,42(10):1635-1647.]
楊少麗,王印庚,董樹剛. 2005. 海水養(yǎng)殖魚類弧菌病的研究進(jìn)展[J]. 漁業(yè)科學(xué)進(jìn)展,26(4):75-83. [Yang S L,Wang Y G,Dong S G. 2005. Progress of research on vibriosis in marine cultured fish[J]. Marine Fisheries Research,26(4):75-83.]
張正,廖梅杰,李彬,王印庚,王嵐,榮小軍,陳貴平. 2014. 兩種疾病發(fā)生對(duì)養(yǎng)殖半滑舌鰨腸道菌群結(jié)構(gòu)的影響分析[J]. 水產(chǎn)學(xué)報(bào),38(9):1565-1572. [Zhang Z,Liao M J,Li B,Wang Y G,Wang L,Rong X J,Chen G P. 2014. Study on cultured half-smooth tongue sole(Cynoglossus semilaevis Günther) intestinal microflora changes affec-ted by different disease occurrence[J]. Journal of Fisheries of China,38(9):1565-1572.]
周紅霞,姚俊杰,房文紅,李新蒼,趙姝,王元,吳俁學(xué),周俊芳. 2017. 半滑舌鰨潰瘍病原殺鮭氣單胞菌的分離鑒定與藥敏試驗(yàn)[J]. 海洋漁業(yè),39(3):322-330. [Zhou H X,Yao J J,F(xiàn)ang W H,Li X C,Zhao S,Wang Y,Wu Y X,Zhou J F. 2017. Isolation and identification & antimicrobial susceptibility test of Aeromonas salmonicida associa-ted with the skin ulceration disease of Cynoglossus semilaevis Günther[J]. Marine Fisheries,39(3):322-330.]
Byadgi O,Puteri D,Lee J W,Chang T C,Lee Y H,Chu C Y,Cheng T C. 2014. The effect of TLR9 agonist CpG oligodeoxynucleotides on the intestinal immune response of cobia(Rachycentron canadum)[J]. Journal of Immunology Research. doi:10.1155/2014/273284.
Chen W Y,Ng Y H,Wu J H,Chen J W,Wang H C. 2017. Microbiome dynamics in a shrimp grow-out pond with possible outbreak of acute hepatopancreatic necrosis di-sease[J]. Scientific Reports,7(1):9395.
Cornejo-Granados F,Gallardo-Becerra L,Leonardo-Reza M,Ochoa-Romo J P,Ochoa-Leyva A. 2018. A meta-analysis reveals the environmental and host factors shaping the structure and function of the shrimp microbiota[J]. PeerJ,6:e5382. doi:10.7717/peerj.5382.
Cornejo-Granados F,Lopez-Zavala A A,Gallardo-Becerra L,Mendoza-Vargas A,Sánchez F,Vichido R,Brieba L G,Viana M T,Sotelo-Mundo R R,Ochoa-Leyva A. 2017. Microbiome of Pacific white leg shrimp reveals differential bacterial community composition between wild,aquacultured and AHPND/EMS outbreak conditions[J]. Scientific Reports,7(1):11783. doi:10.1038/s41598-017- 11805-w.
Davey G C,Calduch-Giner J A,Houeix B,Talbot A,Sitjà-Bobadilla A,Prunet P,Pérez-Sánchez J,Cairns M T. 2011. Molecular profiling of the gilthead sea bream(Sparus aurata L.) response to chronic exposure to the myxosporean parasite Enteromyxum leei[J]. Molecular Immunology,48(15-16):2102-2112.
Desai A R,Links M G,Collins S A,Mansfield G S,Drew M D,van Kessel A G,Hill J E. 2012. Effects of plant-based diets on the distal gut microbiome of rainbow trout(Oncorhynchus mykiss)[J]. Aquaculture,350:134-142.
Ding Z F,Cao M J,Hu X S,Xu G H,Wang R L. 2017. Changes in the gut microbiome of the Chinese mitten crab(Eriocheir sinensis) in response to white spot syndrome virus(WSSV) infection[J]. Journal of Fish Disea-ses,40(11):1561-1571.
Duan Y,Zhang Y,Dong H,Wang Y,Zhang J. 2017. Effects of dietary poly-beta-hydroxybutyrate(PHB) on microbiota composition and the mTOR signaling pathway in the intestines of litopenaeus vannamei[J]. Journal of Microbiology,55(12):946-954.
Edgar R C. 2013. UPARSE:Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods,10:996-998.
Giatsis C,Sipkema D,Smidt H,Heilig H,Benvenuti G,Verreth J,Verdegem M. 2015. The impact of rearing environment on the development of gut microbiota in tilapia larvae[J]. Scientific Reports,5:18206. doi:10.1038/srep18206.
Guo H,Xian J A,Wang A L. 2016. Analysis of digital gene expression profiling in hemocytes of white shrimp Litopenaeus vannamei under nitrite stress[J]. Fish & Shellfish Immunology,56:1-11.
Han S F,Liu Y C,Zhou Z G,He S X,Cao Y N,Shi P J,Yao B,Ring? E. 2010. Analysis of bacterial diversity in the intestine of grass carp(Ctenopharyngodon idellus) based on 16S rDNA gene sequences[J]. Aquaculture Research,42(1):47-56.
Han Y L,Hou C C,Du C,Zhu J Q. 2017a. Molecular cloning and expression analysis of five heat shock protein 70 (HSP70) family members in Lateolabrax maculatus with Vibrio harveyi infection[J]. Fish & Shellfish Immunology,60:299-310.
Han Z R,Lü A J,Shi H Y,Sun J F,Xing K Z,Hu X C,Sung Y Y. 2017b. Isolation,identification and characterization of Shewanella algae from reared tongue sole,Cynoglossus semilaevis Günther[J]. Aquaculture,468:356-362.
Han Z R,Sun J F,Lü A J,Wang A L. 2018. Biases from different DNA extraction methods in intestine microbiome research based on 16S rDNA sequencing:A case in the koi carp,Cyprinus carpio var. Koi[J]. Microbiology Open,8(1):e00626.
He W Q,Rahimnejad S,Wang L,Song K,Lu K,Zhang C X. 2017. Effects of organic acids and essential oils blend on growth,gut microbiota,immune response and disease resistance of Pacific white shrimp(Litopenaeus vannamei) against Vibrio parahaemolyticus[J]. Fish & Shellfish Immunology,70:164-173.
Hovda M B,Lunestad B T,F(xiàn)ontanillas R,Rosnes J T. 2007. Molecular characterisation of the intestinal microbiota of farmed Atlantic salmon(Salmo salar L.)[J]. Aquaculture,272(1-4):581-588.
Huang Z B,Li X Y,Wang L P,Shao Z Z. 2016. Changes in the intestinal bacterial community during the growth of white shrimp,Litopenaeus vannamei[J]. Aquaculture Research,47(6):1737-1746.
Jensen S,?vre?s L,Bergh ?,Torsvik V. 2004. Phylogenetic analysis of bacterial communities associated with larvae of the Atlantic halibut propose succession from a uniform normal flora[J]. Systematic and Applied Microbio-logy,27(6):728-736.
Kamiya T,Hirata K,Matsumoto S,Arai C. 2004. Targeted disruption of the trehalase gene:Determination of the digestion and absorption of trehalose in trehalase-deficient mice[J]. Nutrition Research,24(2):185-196.
Korsisaari N,Rossi D J,Luukko K,Huebner K,Henkemeyer M,Makela T P. 2003. The histidine triad protein Hint is not required for marine development or Cdk7 function[J]. Molecular and Cellular Biology,23(11):3929-3935.
Lauzon H L,Gudmundsdottir S,Petursdottir S K,Reynisson E,Steinarsson A,Oddgeirsson M,Bjornsdottir R,Gudmundsdottir B K. 2010. Microbiota of Atlantic cod(Gadus morhua L.) rearing systems at pre-and post hatch stages and the effect of different treatments[J]. Journal of Applied Microbiology,109(5):1775-1789.
Li T T,Long M,Ji C,Shen Z X,Gatesoupe F J,Zhang X J,Zhang Q Q,Zhang L L,Zhao Y L,Liu X H,Li A H. 2016a. Alterations of the gut microbiome of largemouth bronze gudgeon(Coreius guichenoti) suffering from furunculosis[J]. Scientific Reports,6:30606. doi:10.1038/srep30606.
Li X M,Yan Q Y,Ring? E,Wu X B,He Y F,Yang D G. 2016b. The influence of weight and gender on intestinal bacterial community of wild large mouth bronze gudgeon (Coreius guichenoti,1874)[J]. BMC Microbiology,16(1):191.
Lin C S,Chang C J,Lu C C,Martel J,Ojcius D M,Ko Y F,Young J D,Lai H C. 2014. Impact of the gut microbiota,prebiotics,and probiotics on human health and disease[J]. Biomedical Journal,37(5):259-268.
Liu H H,He J Y,Chi C F,Shao J Z. 2014. Differential HSP70 expression in Mytilus coruscus under various stressors[J]. Gene,543(1):166-173.
Liu T,Pan L Q,Cai Y F,Miao J J. 2015. Molecular cloning and sequence analysis of heat shock proteins 70(HSP70) and 90(HSP90) and their expression analysis when exposed to benzo(a) pyrene in the clam Ruditapes philippinarum[J]. Gene,555(2):108-118.
Ming J,Xie J,Xu P,Liu W B,Ge X P,Liu B,He Y J,Cheng Y F,Zhou Q L,Pan L K. 2010. Molecular cloning and expression of two HSP70 genes in the Wuchang bream (Megalobrama amblycephala Yih)[J]. Fish & Shellfish Immunology,28(3):407-418.
Mu W J,Wen H S,Li J F,He F. 2013. Cloning and expre-ssion analysis of a HSP70 gene from Korean rockfish(Sebastes schlegeli)[J]. Fish & Shellfish Immunology,35(4):1111-1121.
Narrowe A B,Albuthi-Lantz M,Smith E P,Bower K J,Roane T M,Vajda A M,Miller C S. 2015. Perturbation and restoration of the fathead minnow gut microbiome after low-level triclosan exposure[J]. Microbiome,3:6.doi:10.1186/ s40168-015-0069-6.
Pérez T,Balcázar J L,Ruiz-Zarzuela I,Halaihel N,Vendrell D,de Blas I,Muzquiz J L. 2010. Host-microbiota interactions within the fish intestinal ecosystem[J]. Mucosal Immunology,3(4):355-360.
Rungrassamee W,Klanchui A,Maibunkaew S,Chaiyapechara S,Jiravanichpaisal P,Karoonuthaisiri N. 2014. Characte-rization of intestinal bacteria in wild and domesticated adult black tiger shrimp(Penaeus monodon)[J]. PLoS One,9(3):e91853.
Suo Y,Li E,Li T,Jia Y,Qin J G,Gu Z,Chen L. 2017. Response of gut health and microbiota to sulfide exposure in Pacific white shrimp Litopenaeus vannamei[J]. Fish & Shellfish Immunology,63:87-96.
Tafalla C,Leal E,Yamaguchi T,F(xiàn)ischer U. 2016. T cell immunity in the teleost digestive tract[J]. Developmental and Comparative Immunology,64:167-177.
Talwar C,Nagar S,Lal R,Negi R K. 2018. Fish gut microbio-me:Current approaches and future perspectives[J]. Indian Journal of Microbiology,58(4):397-414.
Wang J,Huang Y J,Xu K H,Zhang X Y,Sun H Y,F(xiàn)an L F,Yan M T. 2019. White spot syndrome virus(WSSV) infection impacts intestinal microbiota composition and function in Litopenaeus vannamei[J]. Fish & Shellfish Immunology,84:130-137.
Wang Y Z,Sun J F,Lv A J,Zhang S L,Sung Y Y,Shi H Y,Hu X C,Chen S J,Xing K Z. 2018. Histochemical distribution of four types of enzymes and mucous cells in the gastrointestinal tract of reared half-smooth tongue sole Cynoglossus semilaevis[J]. Journal of Fish Biology,92(1):3-16.
West M B,Chen Y,Wickham S,Heroux A,Cahill K,Hanigan M H,Mooers B H M. 2013. Novel insights into eukaryo-tic γ-glutamyltranspeptidase 1 from the crystal structure of the glutamate-bound human enzyme[J]. The Journal of Biological Chemistry,289(16):11569.
Xia M J,F(xiàn)eng P,Mu C K,Ye Y F,Wang C L. 2018. Disruption of bacterial balance in the gut of Portunus trituberculatus induced by Vibrio alginolyticus infection[J]. Journal of Oceanology and Limnology,36(5):1891-1898.
Xiong J,Wang K,Wu J,Qiuqian L,Yang K,Qian Y,Zhang D. 2015. Changes in intestinal bacterial communities are closely associated with shrimp disease severity[J]. Applied Microbiology and Biotechnology,99(16):6911-6919.
Xu S Y,Zhao L S,Larsson A,Venge P. 2009. The identification of a phospholipase B precursor in human neutrophils[J]. The FEBS Journal,276(1):175-186.
Yang G,Xiu Y J,Chen Y D,Bai L,Sha Z X. 2017a. Identification and expression of complement component C8α,C8β and C8γ gene in half-smooth tongue sole (Cynoglossus semilaevis) and C8α recombinant protein antibacterial activity analysis[J]. Fish & Shellfish Immunology,72:658-669.
Yang H T,Zou S S,Zhai L J,Wang Y,Zhang F M,An L G,Yang G W. 2017b. Pathogen invasion changes the intestinal microbiota composition and induces innate immune responses in the zebrafish intestine[J]. Fish & Shellfish Immunology,71:35-42.
Ye L,Amberg J,Chapman D,Gaikowski M,Liu W T. 2014. Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish[J]. The ISME Journal,10(8):2076. doi:10.1038/ismej.2016.71.
Zhang F,Lin J D,Zuo X Y,Zhang Y X,Hong C Q,Zhang G J,Cui X J,Cui Y K. 2017. Elevated transcriptional levels of aldolase A(ALDOA) associates with cell cycle-related genes in patients with NSCLC and several solid tumors[J]. BioData Mining,10:6.doi:10.1186/s13040-016-0122-4.
(責(zé)任編輯 蘭宗寶)