国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

微生物介導(dǎo)植物次生代謝產(chǎn)物累積及在藥用植物作用機制中的研究進展

2019-09-10 06:14郜玉鋼莫琪琪趙巖臧埔
南方農(nóng)業(yè)學(xué)報 2019年10期
關(guān)鍵詞:藥用植物微生物植物

郜玉鋼 莫琪琪 趙巖 臧埔

摘要:植物次生代謝產(chǎn)物是植物長期與生態(tài)環(huán)境適應(yīng)的結(jié)果,具有多種藥理、生理和生態(tài)學(xué)功能,已廣泛應(yīng)用于醫(yī)藥、保健品、化妝品、食品和農(nóng)藥等行業(yè)。文章重點介紹了病原菌、誘導(dǎo)子和內(nèi)生菌介導(dǎo)植物次生代謝產(chǎn)物累積的概況,指出利用病原菌介導(dǎo)植物次生代謝累積作用不持久和不安全,誘導(dǎo)子介導(dǎo)雖安全但更不持久,內(nèi)生菌介導(dǎo)遠(yuǎn)比生物侵害因子更安全、更可控和更持久,且經(jīng)濟可靠效率高,應(yīng)用前景更理想;同時總結(jié)了內(nèi)生菌介導(dǎo)植物次生代謝產(chǎn)物累積的主要途徑,歸納了內(nèi)生菌與宿主植物次生代謝的互作機制,并指出內(nèi)生菌在藥用植物藥效成分累積中的作用機制。今后應(yīng)借助高通量測序、SSH、HPLC、TLC、IR、MS和NMR等手段確定內(nèi)生菌介導(dǎo)藥用植物次生代謝產(chǎn)物累積的途徑、種類及其差異基因,再結(jié)合藥用植物次生代謝單體和差異基因表達量相關(guān)分析、Unigene注釋、差異基因結(jié)構(gòu)分析篩選候選基因并驗證其功能,綜合Unigene蛋白互作網(wǎng)絡(luò)等分析和關(guān)鍵酶基因作用信號通路,確定內(nèi)生菌介導(dǎo)藥用植物次生代謝累積的分子機制。

關(guān)鍵詞: 微生物;植物;藥用植物;次生代謝產(chǎn)物;互作機制

中圖分類號: S182? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻標(biāo)志碼: A 文章編號:2095-1191(2019)10-2234-07

Microbial mediated accumulation of plant secondary metabolites and its action mechanism in medicinal

plants: A review

GAO Yu-gang1,2,? MO Qi-qi1,2,? ZHAO Yan1,2,? ZANG Pu1,2*

(1College of Traditional Chinese Medicinal Materials, Jilin Agricultural University, Changchun? 130118, China; 2Ginseng Engineering Technology Research Center of Jilin Province, Changchun? 130118, China)

Abstract:Plant secondary metabolites are the result of long-term adaptation of plants to the ecological environment, they have a variety of pharmacological, physiological and ecological functions and are widely used in medicine, health care products, cosmetics, food and pesticide industries. The accumulation of plant secondary metabolites mediated by microorganisms was reviewed in this article, focusing on the pathogens, elicitors, endophytes to mediate plant secondary metabolism:pathogens were not persistent and unsafe. Elicitors were safe but less persistent. Endophytes were far safer, more controllable and lasting, and economically reliable and more efficient than biological aggressor. The main pathways of secondary metabolism mediated by endophytes, and the interaction mechanism between endophytes and host plants were summarized. The function mechanism of endophytes in effective component accumulation of medicinal plants was pointed out. High-throughput sequencing, SSH, HPLC, TLC, IR, MS and NMR were used to determine the pathways and species and differential genes of endophytes mediated medicinal plants secondary metabolism accumulation. In combination with the secondary metabolites of medicinal plants and differential gene expression analysis, Unigene annotation and differential gene structure analysis, candidate genes were screened and their functions were verified. The molecular mechanism of endophytes mediated the accumulation of secondary metabolism in medicinal plants were determined combining with the Unigene protein interaction network and key enzyme gene signaling pathways.

Key words: microbe; plant; medicinal plants; secondary metabolic products; interaction mechanism

0 引言

植物次生代謝產(chǎn)物是一類特殊的小分子有機化合物,其種類繁多,但并非是植物生長發(fā)育過程中所必需的物質(zhì)。植物次生代謝產(chǎn)物在增強植物抗病性、抵御害蟲侵害及其對環(huán)境的適應(yīng)中起著重要作用,是植物長期與生態(tài)環(huán)境相適應(yīng)的結(jié)果(牛麗麗等,2016;顧小輝等,2017),而植物次生代謝產(chǎn)物作為天然的活性成分,也具有一定的藥理作用和生物活性,在抗菌、抗炎、抗腫瘤、防治心血管疾病及抗心肌缺血等方面發(fā)揮重要作用(華曉雨等,2017;張建紅等,2018),已廣泛應(yīng)用于醫(yī)藥、保健品、化妝品、食品和農(nóng)藥等行業(yè),但次生代謝產(chǎn)物通常含量低,因而限制了其研究與應(yīng)用。作為藥用植物道地性的物質(zhì)基礎(chǔ),次生代謝產(chǎn)物的含量及種類通常被用于評價植物道地藥材質(zhì)量的優(yōu)劣(Liu et al.,2018;Wang et al.,2018)。生物(病原菌、害蟲、有益菌等)與非生物(干旱、鹽堿、重金屬、溫度等)因素可顯著影響植物次生代謝物的含量,尋找次生代謝合成途徑、關(guān)鍵酶基因及其機理已成為研究熱點。本研究就微生物介導(dǎo)植物次生代謝產(chǎn)物累積及在藥用植物中的作用機制進行綜述,不僅有助于闡明次生代謝產(chǎn)物累積的分子機制,還對藥用植物道地性成因及其質(zhì)量調(diào)控研究具有參考價值。

1 病原菌介導(dǎo)植物次生代謝

植物次生代謝產(chǎn)物與植物的防御反應(yīng)和被脅迫程度有密切關(guān)系。Brader等(2001)研究發(fā)現(xiàn),胡蘿卜軟腐歐文氏菌(Erwinia carotovora)促進擬南芥3-吲哚基甲基芥子油苷增加;Huffaker等(2011)研究發(fā)現(xiàn),禾谷鐮刀菌(Fusarium graminearum)接種玉米可合成萜類化合物;Stotz等(2011)研究發(fā)現(xiàn),擬南芥受到核盤菌(Sclerotinia sclerotiorum)侵染后可合成亞麻薺素,增加芥子油苷含量;龍月紅等(2012)研究發(fā)現(xiàn),尖孢鐮孢菌(Fusarium oxysporum)、葡萄座腔菌(Botryosphaeria dothidea)和角擔(dān)菌(Ceratoba-sidium spp.)在宿主刺五加體內(nèi)可提高刺五加苷E含量1.86~5.23倍;Onrubia等(2013)研究發(fā)現(xiàn),單胞菌(Pseudomonas syringae)產(chǎn)生的植物毒素Coronatine使紫杉烷含量增加。植物次生代謝產(chǎn)物合成需要消耗很高能量,對植物本身也有一定的毒害作用,因此,植物次生代謝受到本身的嚴(yán)格調(diào)控,一般處于關(guān)閉或半關(guān)閉狀態(tài),只有受到外界侵害時植物防御反應(yīng)才會被激活而啟動次生代謝產(chǎn)物合成(楊欣等,2013;Xia et al.,2016)。藥用植物被病原菌感染后會出現(xiàn)病癥,甚至死亡,嚴(yán)重影響藥用植物的生產(chǎn)性能和品質(zhì)??梢?,利用病原菌介導(dǎo)植物次生代謝產(chǎn)物的累積作用具有不持久性和不安全性。

2 誘導(dǎo)子介導(dǎo)植物次生代謝

誘導(dǎo)子是一種特殊的觸發(fā)因子,分為生物誘導(dǎo)子和非生物誘導(dǎo)子,具有效率高、成本低和可操控性強等特點,其被廣泛應(yīng)用于提高植物次生代謝產(chǎn)物含量。生物誘導(dǎo)子如細(xì)菌和真菌的菌絲體、菌絲體降解產(chǎn)物、發(fā)酵液及分泌物等;非生物誘導(dǎo)子包括金屬離子、茉莉酸甲酯、水楊酸、茉莉酸和乙烯等。由表1可知,誘導(dǎo)子能促使植物產(chǎn)生防御反應(yīng),從而誘導(dǎo)植物次生代謝產(chǎn)物的合成,其中,茉莉酸及茉莉酸衍生物是植物次生代謝物合成和積累最有效的誘導(dǎo)子。可見,直接應(yīng)用誘導(dǎo)子能有效模擬外來病原菌脅迫因子誘導(dǎo)次生代謝產(chǎn)物合成。但誘導(dǎo)子容易被植物本身降解而快速失活,這種介導(dǎo)植物次生代謝產(chǎn)物累積作用更不持久。

3 內(nèi)生菌介導(dǎo)植物次生代謝

內(nèi)生菌廣泛存在于植物體內(nèi),其長期與宿主植物協(xié)同進化,不僅促進植物生長,還能持續(xù)性促進藥用植物活性成分累積,提高藥用植物的品質(zhì)和產(chǎn)量,且不會引發(fā)宿主植物出現(xiàn)明顯感染癥狀(Cui et al.,2013;Chen et al.,2019)。目前研究發(fā)現(xiàn),多粘類芽孢桿菌噴施和灌根處理的1~4年生人參中,9種單體皂苷加和值與同年人參比較,分別提高36.83%、44.52%、67.96%和79.44%;多粘類芽孢桿菌與死態(tài)人參共培養(yǎng)顯著提高了12種人參皂苷單體加和值含量,特別是稀有人參皂苷CK和Protopanaxadiol含量分別提高1.38和7.78倍(Gao et al.,2015;Ji et al.,2015)。由表2可知,利用內(nèi)生菌模擬病原菌侵害因子來誘導(dǎo)植物次生代謝合成的防御反應(yīng),遠(yuǎn)比生物侵害因子更安全、更可控和更持久,且經(jīng)濟可靠效率高,應(yīng)用前景更理想。

4 內(nèi)生菌介導(dǎo)植物次生代謝產(chǎn)物累積的主要途徑

內(nèi)生菌介導(dǎo)植物次生代謝產(chǎn)物累積的主要途徑可能包括:①內(nèi)生菌直接產(chǎn)生各種化合物,成為宿主活性成分,或作為宿主的次生代謝產(chǎn)物前體再通過宿主合成酶催化合成活性成分,或被植物吸收調(diào)控,進而影響宿主次生代謝累積(Hassan and Mathesius,2012);②內(nèi)生菌通過誘導(dǎo)子效應(yīng)或橫向基因轉(zhuǎn)移等改變宿主基因表達和代謝途徑,導(dǎo)致相關(guān)基因活性的變化,進而介導(dǎo)某些次生代謝物的累積(Gluck-Thaler and Slot,2015);③內(nèi)生菌可通過生物轉(zhuǎn)化作用對宿主化合物產(chǎn)生影響(Tian et al.,2014)。由內(nèi)生菌促進植物次生代謝產(chǎn)物累積的主要途徑(表3)可知,內(nèi)生菌介導(dǎo)植物次生代謝產(chǎn)物累積,在不同植物中可能存在各自不同的互作作用,內(nèi)生菌與宿主互作介導(dǎo)次生代謝產(chǎn)物累積的分子機制還有待進一步研究。

5 展望

5. 1 內(nèi)生菌與宿主植物互作機制研究現(xiàn)狀

內(nèi)生菌與宿主植物互作機制存在馬賽克理論、獲得性免疫系統(tǒng)、外源性化學(xué)興奮效應(yīng)及平衡對抗等假說(Venugopalan and Srivastava,2015;Khan et al.,2017)。其中,公認(rèn)的平衡對抗假說認(rèn)為,內(nèi)生菌與宿主互作不同于病原菌,是其毒力因子與宿主防御反應(yīng)間的平衡對抗,二者只有通過協(xié)同進化達到平衡才能長期共存,但實際上平衡維持機制遠(yuǎn)比平衡對抗更復(fù)雜和精密(Raman and Suryanarayanan,2017)。研究發(fā)現(xiàn),喜樹堿能抑制內(nèi)生菌拓樸異構(gòu)酶的活性,但同時內(nèi)生菌能通過特有的氨基酸殘基結(jié)合在拓?fù)洚悩?gòu)酶與喜樹堿結(jié)合的活性結(jié)構(gòu)域,防止拓?fù)洚悩?gòu)酶失活,進而免受自身或宿主產(chǎn)生的喜樹堿的抵抗,而不產(chǎn)生喜樹堿的內(nèi)生菌通過直接編碼拓樸異構(gòu)酶的方式來抵抗宿主喜樹堿活性(Kusari et al.,2012);內(nèi)生菌單培養(yǎng)時,許多活性內(nèi)生菌的活力不穩(wěn)定,甚至逐步消失,該菌能產(chǎn)生喜樹堿的前體,但缺少來自宿主植物提供的活性成分合成酶,而無法合成活性成分。說明平衡對抗不僅存在二者之間橫向基因的簡單轉(zhuǎn)移(Kusari et al.,2011),還存在宿主植物同時與多種微生物間相互作用、同一宿主植物各內(nèi)生菌間相互作用,加之體外試驗很難模擬其真實互作關(guān)系,這些難題在研究中均需排除或加以解決。

植物次生代謝產(chǎn)物的生物途徑只有在生物和非生物因子脅迫下才被激活。基因是酶的基礎(chǔ),因此植物受到脅迫時,激發(fā)植物體內(nèi)的細(xì)胞信號轉(zhuǎn)導(dǎo)通路先將信號傳遞給受脅迫的轉(zhuǎn)錄因子,提高mRNA的轉(zhuǎn)錄水平,進而誘導(dǎo)次生代謝物關(guān)鍵酶的表達。如促進人參皂苷合成的關(guān)鍵酶基因3-羥基-3-甲基戊二酰輔酶A還原酶基因(HMGR)、法尼基焦磷酸合酶基因(FPS)、達瑪烷二醇合酶基因(DS)、角鯊烯合成酶基因(SS)和角鯊烯環(huán)氧酶基因(SE)等,但內(nèi)生菌介導(dǎo)人參單體皂苷的累積具體對應(yīng)哪個關(guān)鍵酶基因尚不明確,需更深入探究??梢?,闡明內(nèi)生菌與宿主植物互作介導(dǎo)藥用植物活性成分單體累積的理論及信號通路等分子機制,更需要直接證據(jù)加以證明。

5. 2 確定內(nèi)生菌介導(dǎo)藥用植物次生代謝累積的分子機制建議

宿主植物同時與多種微生物間相互作用,同一宿主植物各微生物間也存在相互作用,導(dǎo)致體外試驗很難模擬其真實互作關(guān)系,而利用內(nèi)生菌與宿主植物發(fā)根互作試驗材料,研究微生物介導(dǎo)植物次生代謝產(chǎn)物累積,既能模擬內(nèi)生菌與植物間的真實互作關(guān)系,又能排除其他微生物的干擾。

首先,借助高通量測序與SSH聯(lián)用篩選內(nèi)生菌介導(dǎo)藥用植物轉(zhuǎn)錄組的差異mRNA,且利用HPLC、TLC、IR、MS和NMR分析和鑒定藥用植物次生代謝產(chǎn)物單體,確定內(nèi)生菌介導(dǎo)藥用植物次生代謝產(chǎn)物累積的途徑和種類及其差異基因;其次,綜合藥用植物次生代謝單體和差異基因相關(guān)分析、Unigene注釋、差異基因結(jié)構(gòu)分析及相關(guān)次生代謝途徑信息,篩選內(nèi)生菌介導(dǎo)藥用植物次生代謝產(chǎn)物累積的候選基因,再依次用qRT-PCR、原核表達、真核過表達和沉默表達驗證該候選基因功能,確定內(nèi)生菌介導(dǎo)藥用植物次生代謝產(chǎn)物累積的關(guān)鍵酶基因;最后,綜合Unigene蛋白互作網(wǎng)絡(luò)等分析和關(guān)鍵酶基因作用信號通路及相關(guān)次生代謝途徑信息,確定內(nèi)生菌介導(dǎo)藥用植物次生代謝累積的分子機制。

參考文獻:

高媛,孫牧笛,徐全智,呂茜,張慶宸,顧沛雯. 2017. 苦豆子內(nèi)生真菌對宿主培養(yǎng)物生長及喹諾里西啶類生物堿合成的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究,35(3): 212-218. [Gao Y,Sun M D,Xu Q Z,Lü X,Zhang Q C,Gu P W. 2017. Effect of Sophora alopecuroides L.endophytic fungi on the growth of the host plant culture and synthesis of qui-nolizidine alkaloids[J]. Agricultural Research in the Arid Areas,35(3): 212-218.]

顧小輝,魏建和,王國全,高志暉. 2017. 蟲害誘導(dǎo)植物合成防御性次生代謝產(chǎn)物的研究進展[J]. 生命科學(xué)研究,21(5):458-465. [Gu X H,Wei J H,Wang G Q,Gao Z H. 2017. Progresses on the defensive secondary metabolites induced by herbivorous insects in plants[J]. Life Science Research,21(5):458-465.]

華曉雨,陶爽,孫盛楠,郭娜,閻秀峰,藺吉祥. 2017. 植物次生代謝產(chǎn)物——酚類化合物的研究進展[J]. 生物技術(shù)通報,33(12): 22-29. [Hua X Y,Tao S,Sun S N,Guo N,Yan X F,Lin J X. 2017. Research progress on phenolic compounds of plant secondary metabolites[J]. Biotechno-logy Bulletin,33(12): 22-29.]

李群,汪超,唐明,程世君,馬丹煒,王亞男,盧紅. 2015. 灰氈毛忍冬‘渝蕾1號’內(nèi)生菌對其懸浮細(xì)胞生物量及綠原酸含量的影響[J]. 植物生理學(xué)報,51(11): 1997-2005. [Li Q,Wang C,Tang M,Cheng S J,Ma D W,Wang Y N,Lu H. 2015.Effects of endophytes of Lonicera macranthoides cultivar ‘Yulei1’ on the bio-mass accumulation and chlorogenic acid production[J]. Plant Physiology Journal,51(11): 1997-2005.]

李艷冰,林亮,廖秋紅,楊生超,劉濤. 2019. 促進滇重樓皂苷類活性成分積累的內(nèi)生真菌篩選[J]. 云南農(nóng)業(yè)大學(xué)學(xué)報(自然科學(xué)),34(1): 132-137. [Li Y B,Lin L,Liao Q H,Yang S C,Liu T. 2019. Screening of endophytic fungi for promote the accumulation of active components of saponins from Pairs polyphylla var. yunnanensis[J]. Journal of Yunnan Agricultural University(Natural Science),34(1): 132-137.]

劉英,楊超,于莉莉,付金穎,付玉杰,李德文. 2019. 遮光脅迫下外源NO對長春花幼苗生長及生物堿積累的影響[J]. 中國藥學(xué)雜志,54(1):16-21. [Liu Y,Yang C,Yu L L,F(xiàn)u J Y,F(xiàn)u Y J,Li D W. 2019. Effects of exogenous nitric oxide on growth and alkaloid accumulation of Catha-ranthus roseus seedlings under light-shading treatment[J]. Chinese Pharmaceutical Journal,54(1):16-21.]

龍月紅,何閃,熊亞南,勞鳳云,陳龍,邢朝斌. 2012. 三株提高刺五加苷E含量內(nèi)生真菌的鑒定及其作用方式分析[J]. 現(xiàn)代生物醫(yī)學(xué)進展,12(13): 2429-2432. [Long Y H,He S,Xiong Y N,Lao F Y,Chen L,Xing Z B. 2012. Identification of three endophytic fungus that increase eleutheroside E and analysis on its function mechanism[J]. Pro-gress in Modern Biomedicine,12(13): 2429-2432.]

牛麗麗,袁肖寒,顧成波,劉紫薇,馬慧,寧文娟. 2016. 內(nèi)生真菌產(chǎn)植物次生代謝產(chǎn)物研究進展[J]. 安徽農(nóng)業(yè)科學(xué),44(11):12-16. [Niu L L,Yuan X H,Gu C B,Liu Z W,Ma H,Ning W J. 2016. Research progress on secondary metabolites produced from endophytic fungi[J]. Journal of Anhui Agricultural Sciences,44(11):12-16.]

齊鳳慧,陳思齊,景天忠,張宇昕,詹亞光. 2018. 真菌誘導(dǎo)子對茶條槭細(xì)胞沒食子酸積累的影響[J]. 植物研究,38(6): 948-955. [Qi F H,Chen S Q,Jing T Z,Zhang Y X,Zhan Y G. 2018. Effect of fungal elicitor on gallic acid accumulation in the cells of Acer ginnala Maxim.[J]. Bulletin of Botanical Research,38(6): 948-955.]

孫牧笛,張慶宸,胡麗杰,李文學(xué),閆思遠(yuǎn),呂苗苗,顧沛雯. 2018. 苦豆子內(nèi)生真菌誘導(dǎo)子促進宿主生物堿合成關(guān)鍵酶基因表達的熒光定量PCR檢測[J]. 中草藥,49(19): 4621-4627. [Sun M D,Zhang Q C,Hu L J,Li W X,Yan S Y,Lü M M,Gu P W. 2018. Real-time fluorescent quantitative PCR detection of key enzyme genes expression of alkaloid biosynthesis promoted by endophytic fungal elicitor in Sophora alopecuroides[J]. Chinese Traditional and Herbal Drugs,49(19): 4621-4627.]

王丹,藍惠萍,張影波,于福來,陳曉鷺,黃梅,王凱,龐玉新. 2018. 鎂對兩年生艾納香生物量、抗氧化酶活性及有效成分積累的影響[J]. 熱帶農(nóng)業(yè)科學(xué),38(7): 50-56. [Wang D,Lan H P,Zhang Y B, Yu F L,Chen X L, Huang M, Wang K,Pang Y X. 2018. The effect of magnesium on biomass,antioxidant enzyme activities,and active component accumulation of two years old Blumea balsamifera[J]. Chinese Journal of Tropical Agriculture,38(7): 50-56.]

王夢亮,焦晉,邢婕,田俊生,崔晉龍,王俊宏. 2016. 內(nèi)生真菌ZPRa-R-1對紅景天中關(guān)鍵信號分子及主要次生代謝物的影響[J]. 植物研究,36(3): 416-420. [Wang M L,Jiao J,Xing J,Tian J S,Cui J L,Wang J H. 2016. Effects of endophytic fungi ZPRa-R-1 on the key singnal molecules and the main secondary metabolites in Rhodiola crenulata.[J]. Bulletin of Botanical Research,36(3): 416-420.]

王曉梅,遲德富,宇佳. 2018. 茉莉酸甲酯對匍枝筋骨草細(xì)胞生長和β-蛻皮甾酮積累的影響[J]. 草業(yè)學(xué)報,27(9): 95-109. [Wang X M,Chi D F,Yu J. 2018. The effect of jasmonic acid methylester on cell growth and β-ecdysterone accumulation in Ajuga lobata[J]. Acta Prataculturae Sinica,27(9): 95-109.]

楊嘉偉,王康才,梁君怡,王娟,夏天爽,梁永富. 2016. 外源MeJA,SA及2種內(nèi)生菌處理對白芨幼苗生理及總酚含量影響[J]. 中國中藥雜志,41(15): 2794-2801. [Yang J W,Wang K C,Liang J Y,Wang J,Xia T S,Liang Y F. 2016. Effects of exogenous MeJA,SA and two kinds of endophytic fungi on physiology and total phenols content of seedlings of Bletilla striata[J]. China Journal of Chinese Materia Medica,41(15): 2794-2801.]

楊欣,徐艷紅,魏建和,劉娟,張巖. 2013. 幾種重要植物次生代謝防御反應(yīng)物質(zhì)的生物合成途徑及分子調(diào)控機制研究進展[J]. 生物技術(shù)通訊,24(2): 285-289. [Yang X,Xu Y H,Wei J H,Liu J,Zhang Y. 2013. Advances on the biosynthesis pathways and molecular regulation mechanism of several important defensive substances in plant secondary metabolism[J]. Letters in Biotechnology,24(2): 285-289.]

姚詩琪,曹灑,侯帥紅,黃芳,莫國艷,韓林濤. 2019. 茉莉酸甲酯對鵝掌草中三萜皂苷anhuienoside E含量積累的影響[J]. 湖北中醫(yī)藥大學(xué)學(xué)報,21(1): 38-41. [Yao S Q,Cao S,Hou S H,Huang F,Mo G Y,Han L T. 2019. Effects of methyl jasmonate on the accumulation of triterpenoid saponin anhuienoside E in Anemone flaccida[J]. Journal of Hubei University of Chinese Medicine,21(1): 38-41.]

張建紅,劉琬菁,羅紅梅. 2018. 藥用植物萜類化合物活性研究進展[J]. 世界科學(xué)技術(shù)—中醫(yī)藥現(xiàn)代化,20(3): 419-430. [Zhang J H,Liu W J,Luo H M. 2018. Advances in activities of terpenoids in medicinal plants[J]. World Science and Technology-Modernization of Traditional Chinese Medicine,20(3): 419-430.]

周麗思,唐坤,郭順星. 2018. 內(nèi)生真菌枝孢屬Cladosporium sp.對丹參生長和丹酚酸含量的影響[J]. 菌物學(xué)報,37(1): 95-101. [Zhou L S,Tang K,Guo S X. 2018. Active endophytic fungus Cladosporium sp. promoting growth and increasing salvianolic acid content of Salvia miltiorrhiza[J]. Mycosystema,37(1): 95-101.]

Brader G,Tas ,Palva E T. 2001. Jasmonate-dependent induction of indole glucosinolates in Arabidopsis by culture filtrates of the nonspecific pathogen Erwinia carotovora[J]. Plant Physiology,126(2): 849-860.

Chen L,Shi H,Heng J Y,Wang D X, Bian K. 2019. Antimicrobial,plant growth-promoting and genomic properties of the peanut endophyte Bacillus velezensis LDO2[J]. Microbiological Research,218: 41-48.

Cui J L,Wang C L,Guo S X,Xiao P G,Wang M L. 2013. Stimulation of dragon’s blood accumulation in Dracaena cambodiana via fungal inoculation[J]. Fitoterapia,87: 31-36.

Ding C H,Wang Q B,Guo S L,Wang Z Y. 2018. The improvement of bioactive secondary metabolites accumulation in Rumex gmelini Turcz through co-culture with endophytic fungi[J]. Brazilian Journal of Microbiology,49(2): 362-369.

Gao Y G,Liu Q,Zang P,Li X,Ji Q,He Z M,Zhao Y,Yang H,Zhao X L,Zhan,L X. 2015. An endophytic bacterium isolated from Panax ginseng C. A. Meyer enhances growth,reduces morbidity,and stimulates ginsenoside biosynthesis[J]. Phytochemistry Letters,11:132-138.

Gluck-Thaler E,Slot J C. 2015. Dimensions of horizontal gene transfer in eukaryotic microbial pathogens[J]. PLoS Pathogens,11(10): e1005156.

Hassan S,Mathesius U. 2012. The role of flavonoids in root-rhizosphere signaling:Opportunities and challenges for improving plant-microbe interaction[J]. Journal of Expe-rimental Botany,63(9): 3429-3444.

Huffaker A,Kaplan F,Vaughan M M,Dafoe N J, Ni X, Rocca J R,Alborn H T,Teal P E,Schmelz E A. 2011. Novel acidic sesquiterpenoids constitute a dominant class of pathogen-induced phytoalexins in Maize[J]. Plant Physio-logy,156(4): 2082-2097.

Ji Q,Gao Y G,Zhao Y,He Z M,Zang P,Zhu H Y,Yang H,Li X,Zhang L X. 2015. Determination of ginsenosides by Bacillus polymyxa conversion and evaluation on pharmacological activities of the conversion products[J]. Process Biochemistry,50(6): 1016-1022.

Jiang D,Wang Y Y,Dong X W,Yan S C. 2018. Inducible defense responses in Populus alba berolinensis to Pb stress[J]. South African Journal of Botany,119: 295-300.

Jiao J,Gai Q Y,Wang W,Zang Y P,Niu L L,F(xiàn)u Y J,Wang X. 2018. Remarkable enhancement of flavonoid production in a co-cultivation system of Isatis tinctoria L. hairy root cultures and immobilized Aspergillus niger[J]. Industrial Crops and Products,112: 252-261.

Jisha S,Gouri P R,Anith K N,Sabu K K. 2018. Piriformospora indica cell wall extract as the best elicitor for asiaticoside production in Centella asiatica (L.) Urban,evidenced by morphological,physiological and molecular analyses[J]. Plant Physiology and Biochemistry,125: 106-115.

Khan A L,Waqas M,Asaf S,Kamran M,Shahzad R,Bilal S,Khan M A,Kang S M,Kim Y H,Yun B W,Rawahi A A,Harrasi A A,Lee I J. 2017. Plant growth-promoting endophyte Sphingomonas sp. LK11 alleviates salinity stress in Solanum pimpinellifolium[J]. Environmental and Experimental Botany,133: 58-69.

Khan T,Khan T,Hano C,Abbasi B H. 2019. Effects of chitosan and salicylic acid on the production of pharmacologically attractive secondary metabolites in callus cultures of Fagonia indica[J]. Industrial Crops and Products,129: 525-535.

Kilam D,Saifi M,Abdin M Z,Agnihotri A,Varma A. 2017. Endophytic root fungus Piriformospora indica affects trans-cription of steviol biosynthesis genes and enhances production of steviol glycosides in Stevia rebaudiana[J]. Physiological and Molecular Plant Pathology,97: 40-48.

Kusari S,Hertweck C,Spiteller M. 2012. Chemical ecology of endophytic fungi:Origins of secondary metabolites[J]. Chemistry & Biology,19(7): 792-798.

Kusari S,Zühlke S,Spiteller M. 2011. Effect of artificial reconstitution of the interaction between the plant Camptotheca acuminata and the fungal endophyte Fusarium solani on camptothecin biosynthesis[J]. Journal of Natural Products,74(4): 764-775.

Liu S L,Xu Y H,Gao Y G, Zhao Y,Zhang A H,Zang L S,Wu C S,Zhang L X. 2018. Panaxadiol saponins treatment caused the subtle variations in the global transcriptional state of Asiatic corn borer,Ostrinia furnacalis[J]. Journal of Ginseng Research,331(11): 1-11.

Luigi L,Greta B,Youssef R,Giuseppe C,Luigi B,Marco T. 2018. Chitosan treatment elicited defence mechanisms,pentacyclic triterpenoids and stilbene accumulation in grape(Vitis vinifera L.) bunches[J]. Phytochemistry,156: 1-8.

Mendoza D,Cuaspud O,Arias J P,Ruiz O, Arias M. 2018. Effect of salicylic acid and methyl jasmonate in the production of phenolic compounds in plant cell suspension cultures of Thevetia peruviana[J]. Biotechnology Reports,19: e00273.

Ming Q L, Su C Y, Zheng C J, Jia M, Zhang Q, Zhang H, Rahman K, Han T, Qin L. 2013. Elicitors from the endophytic fungus Trichoderma atroviride promote Salvia miltiorrhiza hairy root growth and tanshinone biosynthesis[J]. Journal of Experimental Botany,64(18): 5687-5694.

Mona S A,Hashem A,Abd_Allah E F,Abdulaziz A A,Dina W K S,Stephan W,Dilfuza E. 2017. Increased resistance of drought by Trichoderma harzianum fungal treatment correlates with increased secondary metabolites and proline content[J]. Journal of Integrative Agriculture,16(8): 1751-1757.

Onrubia M,Moyano E,Bonfill M,Cusidó R M, Goossens A, Palazón J. 2013. Coronatine,a more powerful elicitor for inducing taxane biosynthesis in Taxus media cell cultures than methyl jasmonate[J]. Journal of Plant Physio-logy,170(2): 211-219.

Raman A,Suryanarayanan T S. 2017. Fungus-plant interaction influences plant-feeding insects[J]. Fungal Ecology,29: 123-132.

Stotz H U,Sawada Y,Shimada Y,Hirai M Y,Sasaki E,Krischke M,Brown P D,Saito K, Kamiya Y. 2011. Role of camalexin,indole glucosinolates,and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum[J]. The Plant Journal,67(1): 81-93.

Su Z Z,Wang T,Shrivastava N,Chen Y Y,Liu X,Sun C,Yin Y,Gao Q K,Lou B G. 2017. Piriformospora indica promotes growth,seed yield and quality of Brassica napus L.[J]. Microbiological Research,199: 29-39.

Tian Y,Amand S,Buisson D,Kunz C,Hachette F,Dupont J,Nay B Prado S. 2014. The fungal leaf endophyte Paraconiothyrium variabile specifically metabolizes the host-plant metabolome for its own benefit[J]. Phytochemistry,108: 95-101.

Trinh C S,Jeong C Y,Lee W J,Truong H A,Chung N Y,Han J Y,Hong S W,Lee H J. 2018. Paenibacillus pabuli strain P7S promotes plant growth and induces anthocya-nin accumulation in Arabidopsis thaliana[J]. Plant Physio-logy and Biochemistry,129: 264-272.

Venugopalan A,Srivastava S. 2015. Endophytes as in vitro production platforms of high value plant secondary metabolites[J]. Biotechnology Advances,33(6): 873-887.

Wang W D,Liu X F,Liu J P,Cai E, Zhao Y, Li H, Zhang L, Li P, Gao Y. 2018. Sesquiterpenoids from the root of Panax ginseng attenuates,Lipopolysaccharide-induced depressive-like behavior through the brain-derived neurotrophic factor/tropomyosin-related kinase B and sirtuin type 1/nuclear factor-κB signaling pathways[J]. Journal of Agricultural and Food Chemistry,66(1): 265-271.

Wang X M,Yang B,Ren C G,Wang H W,Wang J Y,Dai C C. 2015. Involvement of abscisic acid and salicylic acid in signal cascade regulating bacterial endophyte-induced volatile oil biosynthesis in plantlets of Atractylodes lancea[J]. Physiologia Plantarum,153(1): 30-42.

Xia P G,Guo H B,Zhao H G,Jiao J,Deyholos Michael K,Yan X J,Liu Y,Liang Z S. 2016. Optimal fertilizer application for Panax notoginseng and effect of soil water on root rot disease and saponin contents[J]. Journal of Ginseng Research,40(1): 38-46.

Xie Z C, Chu Y K, Zhang W J,Lang D Y, Zhang X H. 2019. Bacillus pumilus alleviates drought stress and increases metabolite accumulation in Glycyrrhiza uralensis Fisch.[J]. Environmental and Experimental Botany,158: 99-106.

Zheng L P,Tian H,Yuan Y F,Wang J W. 2016. The influence of endophytic Penicillium oxalicum B4 on growth and artemisinin biosynthesis of in vitro propagated plantlets of Artemisia annua L.[J]. Plant Growth Regulation,80(1): 93-102.

Zhou J,Ran Z F,Liu Q,Xua Z X,Xiong Y H,F(xiàn)anga L,Guo L P. 2019. Jasmonic acid serves as a signal role in smoke-isolated butenolide-induced tanshinones biosynthesis in Salvia miltiorrhiza hairy root[J]. South African Journal of Botany,121: 355-359.

Zhou J Y,Sun K,Chen F,Yuan J, Li X, Dai C C. 2018. Endophytic Pseudomonas induces metabolic flux changes that enhance medicinal sesquiterpenoid accumulation in Atractylodes lancea[J]. Plant Physiology and Biochemistry,130: 473-481.

(責(zé)任編輯 麻小燕)

猜你喜歡
藥用植物微生物植物
尋找家里的藥用植物
哦,不怕,不怕
將植物穿身上
藥用植物當(dāng)歸早期抽薹研究進展
高職中藥專業(yè)藥用植物學(xué)理實一體教學(xué)探析
紅樹林微生物來源生物堿的開發(fā)利用
微生物對垃圾滲濾液中胡敏酸降解和形成的影響
植物罷工啦?
植物也瘋狂
左云县| 汝州市| 张掖市| 富阳市| 囊谦县| 曲松县| 南澳县| 永康市| 康乐县| 竹山县| 中宁县| 乌拉特后旗| 冀州市| 乐平市| 沂南县| 吕梁市| 莱州市| 钟山县| 宜宾县| 思茅市| 安岳县| 璧山县| 鹿邑县| 原阳县| 灌云县| 溧阳市| 嘉义市| 贵溪市| 静宁县| 兴宁市| 泰顺县| 仁怀市| 大渡口区| 渝中区| 侯马市| 崇左市| 保定市| 江阴市| 新巴尔虎右旗| 林周县| 龙陵县|