邢存喬 陳海瓊 曾廣萍
[摘要] 目的 調(diào)查學(xué)齡前兒童骨密度(BMD)狀況及其與血清25-羥維生素D[25-(OH)D]的關(guān)系。 方法 收集2017年3月~2018年3月629例在三亞市婦幼保健院兒童保健科門診體檢行BMD檢查的0~7歲學(xué)齡前兒童為研究對象,采用定量超聲儀測量BMD,根據(jù)BMD水平將研究對象分為BMD正常組(n = 492)和BMD異常組(n = 137)。采用多因素Logistic回歸分析法分析學(xué)齡前兒童BMD的影響因素;采用酶聯(lián)免疫吸附法測定25-(OH)水平,比較不同25-(OH)D水平兒童的BMD,并采用Pearson積矩相關(guān)分析學(xué)齡前兒童BMD與血清25-(OH)D相關(guān)性。 結(jié)果 學(xué)齡前兒童BMD異常率為21.78%。5~7歲兒童BMD異常率較高,1歲兒童其次。女童、1歲及5~7歲兒童BMD異常率高于男童、2~4歲兒童(P < 0.05);活動時間≤3 h/周、睡眠時間≤8 h/d、日照時間≤7 h/d的學(xué)齡前兒童BMD異常率高于活動時間>3 h/周、睡眠時間>8 h/d、日照時間>7 h/d兒童(P < 0.05);挑食、維生素D攝入≤400 U/d、奶制品攝入≤150 mL/d、豆制品攝入≤4次/周、水果攝入≤5次/周的學(xué)齡前兒童BMD異常率高于不挑食、維生素D攝入>400 U/d、奶制品攝入>150 mL/d、豆制品攝入>4次/周、水果攝入>5次/周兒童(P < 0.05)。與2歲兒童比較,1歲、5~7歲是BMD異常的獨立危險因素(OR = 1.113、1.373、1.433、1.479,P < 0.05),活動時間、睡眠時間、日照時間、挑食情況、維生素D攝入、奶制品攝入、豆制品攝入、水果攝入是學(xué)齡前兒童BMD異常的影響因素(OR = 1.377、1.654、1.642、1.525、1.788、1.598、1.384、1.443,P < 0.05)。隨著25-(OH)D水平的降低,SOS值逐漸增大,Z值逐漸減小,BMD異常率逐漸增加(P < 0.05)。學(xué)齡前兒童SOS與血清25-(OH)D呈負(fù)相關(guān)(r = -0.729,P < 0.05),Z值與血清25-(OH)D呈正相關(guān)(r = 0.761,P < 0.05)。 結(jié)論 學(xué)齡前兒童BMD異常率較高,尤其多見于1歲以前及5~7歲兒童,對BMD異常高危兒童應(yīng)合理補充維生素D和鈣劑,并加強戶外活動,注意飲食均衡。
[關(guān)鍵詞] 學(xué)齡前兒童;骨密度;25-羥維生素D;相關(guān)性
[中圖分類號] R179? ? ? ? ? [文獻標(biāo)識碼] A? ? ? ? ? [文章編號] 1673-7210(2019)06(b)-0063-05
The correlation between bone mineral density and serum 25-(OH)D level in preschool children
XING Cunqiao? ?CHEN Haiqiong? ?CENG Guangping
Department of Child Health Care, Sanya City Womenfolk and Infant Health Care Hospital, Hainan Province, Sanya? ?572000, China
[Abstract] Objective To investigate the bone mineral density (BMD) in preschool children and its relationship with serum 25-hydroxyvitamin D [25-(OH)D]. Methods From March 2017 to March 2018, 629 preschool children aged 0-7 who underwent BMD examination in the Outpatient Department of Child Health Care of Sanya City Womenfolk and Infant Health Care Hospital were collected as subjects. BMD was measured by quantitative ultrasound, according to BMD level, the subjects were divided into normal BMD group (n = 492) and abnormal BMD group (n = 137). The influencing factor of BMD of preschool children was analyzed by multivariate Logistic regression analysis. The level of 25-(OH) was determined by ELISA, the BMD of children with different 25-(OH)D level was compared. Pearson product moment correlation analysis was used to analyze the correlation between BMD and serum 25-(OH)D in preschool children. Results The abnormal rate of BMD in preschool children was 21.78%, which in children aged 5-7 was higher than that in others, followed by children aged 1. The abnormal rate of BMD in girls, children aged 1-year-old and 5-7-year-old was higher than that in boys and children aged 2-4-year-old (P < 0.05). The abnormal rate of BMD in preschool children with activity time ≤3 h/week, sleeping time ≤8 h/d, sunshine time ≤7 h/d was higher than that of children whose activity time >3 h/week, sleeping time >8 h/d and sunshine time >7 h/d (P < 0.05). The abnormal rate of BMD in preschool children with picky diet, vitamin D intake ≤400 U/d, dairy intake ≤150 mL/d, bean products intake ≤4 times/week, fruit intake ≤5 times/week was higher than those of children without picky diet, vitamin D intake > 400 U/d, dairy intake >150 mL/d, bean products intake > 4 times/week, fruit intake > 5 times/week (P < 0.05). Compared with 2-year-old children, 1-year-old and 5-7-year-old was independent risk factors for abnormal BMD (OR = 1.113, 1.373, 1.433, 1.479, P < 0.05). Activity time, sleeping time, sunshine time, picky diet, vitamin D intake, dairy intake, bean products intake, fruit intake was the influencing factor of abnormal BMD in preschool children (OR = 1.377, 1.654, 1.642, 1.525, 1.788, 1.598, 1.384, 1.443, P < 0.05). With the decrease of 25-(OH)D level, SOS value increased gradually, Z value decreased gradually, and abnormal rate of BMD increased gradually (P < 0.05).There was a negative correlation between SOS and serum 25-(OH) D in preschool children (r = -0.729, P < 0.05), and a positive correlation between Z value and serum 25-(OH) D (r = 0.761, P < 0.05). Conclusion The abnormal rate of BMD in preschool children is higher, especially in children aged 1 and 5-7 years. Vitamin D and calcium should be supplemented reasonably for children at high risk of BMD, outdoor activities should be strengthened, and balanced diet should be paid attention to.
[Key words] Preschool children; Bone mineral density; 25-hydroxyvitamin D; Correlation
學(xué)齡前兒童期是機體新陳代謝、生長發(fā)育最活躍的階段,也是骨量增長、骨骼發(fā)育的時期,定量評估骨量可評估學(xué)齡前兒童生長發(fā)育進度[1]。骨密度(BMD),即骨骼礦物質(zhì)密度,是指單位面積內(nèi)骨礦物質(zhì)的含量,是一項敏感且特異地反映人體骨營養(yǎng)狀況的指標(biāo),也是目前臨床評估骨鈣水平,反映人體骨質(zhì)量常用的客觀指標(biāo)[2]。調(diào)查發(fā)現(xiàn)[3],學(xué)齡期兒童BMD異常率可高達20%~30%,BMD降低的兒童更易出現(xiàn)骨折,同時患佝僂病的風(fēng)險也明顯增加。維生素D參與調(diào)節(jié)鈣、磷代謝,對促進鈣吸收和重吸收及其在骨骼中的沉積具有重要作用,研究表明[4]。25-羥維生素D [25-(OH)D]是反映機體中維生素D營養(yǎng)狀態(tài)的敏感指標(biāo),檢測BMD可反映25-(OH)D水平,進而評估機體維生素D水平,但也有研究對此尚存爭議[5]。本研究通過檢測學(xué)齡前兒童BMD,旨在了解該地區(qū)學(xué)齡期兒童BMD與25-(OH)D的關(guān)系,旨在為制訂學(xué)齡期兒童BMD異常干預(yù)方案和評估機體維生素D營養(yǎng)狀況提供指導(dǎo)。
1 資料與方法
1.1 一般資料
收集2017年3月~2018年3月629例在三亞市婦幼保健院(以下簡稱“我院”)兒童保健科門診體檢自愿行BMD檢查的0~7歲學(xué)齡前兒童為研究對象。排除標(biāo)準(zhǔn):①>7歲的兒童;②肝、腎功能障礙的兒童;③內(nèi)分泌代謝性疾病、自身免疫性疾病兒童;④畸形性骨炎、成骨發(fā)育不全等可能影響本研究結(jié)果的骨骼疾病兒童。其中男382例,女247例;年齡0~7歲,平均(4.62±2.08)歲。
1.2 方法
1.2.1 資料采集? 在我院兒童保健科門診由專門經(jīng)過培訓(xùn)的護士填寫兒童基本資料,內(nèi)容包括性別、年齡、身高、體重,以及兒童活動時間、睡眠情況、日照時間、挑食情況、維生素D攝入、奶制品攝入、豆制品攝入、水果攝入等。
1.2.2 BMD測定? 采用Ominisense?誖7000超聲BMD檢測儀(購自于以色列Sunlight公司)對兒童左側(cè)脛骨遠端1/3處進行測量,并記錄兒童超聲傳導(dǎo)速度(SOS),參照亞洲兒童同性別、同齡SOS的Z值評分對所測兒童的BMD進行分類[6]:Z>-1.0定義為BMD正常,Z≤-1.0且>-1.5定義為BMD輕度不足,Z≤-1.5且>-2.0定義為BMD中度不足,Z<-2.0定義為BMD重度不足,本研究根據(jù)BMD將兒童分為BMD正常組,BMD輕度、中度和重度不足統(tǒng)一定義為BMD異常組。
1.2.3 血清25-(OH)D測定? 收集所有兒童靜脈血置于4℃環(huán)境下保存,并以3000 r/min離心10 min,離心半徑為15 cm,分離得到血清,并檢測25-(OH)D水平,檢測方法為酶聯(lián)免疫吸附法,操作按照試劑盒(北京博暉創(chuàng)新生物技術(shù)股份有限公司,生產(chǎn)批號:20160413)說明進行。維生素D評定標(biāo)準(zhǔn)[7]:血清25-(OH)D≥30 ng/mL定義為充足(充足組,n = 169),20 ng/mL≤25-(OH)D<30 ng/mL定義為不足(不足組,n = 253),10 ng/mL≤25-(OH)D<20 ng/mL定義為缺乏(缺乏組,n = 177),25-(OH)D<10 ng/mL定義為嚴(yán)重缺乏(嚴(yán)重缺乏組,n = 30)。
1.3 統(tǒng)計學(xué)方法
采用SPSS 22.0統(tǒng)計學(xué)軟件進行數(shù)據(jù)分析,計量資料用均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,兩組間比較采用t檢驗;計數(shù)資料用率表示,組間比較采用χ2檢驗;采用Pearson積矩相關(guān)進行相關(guān)性分析;采用多因素Logistic回歸分析學(xué)齡前兒童BMD異常的影響因素,以P < 0.05為差異有統(tǒng)計學(xué)意義。
2 結(jié)果
2.1 學(xué)齡前兒童BMD狀況
629例兒童BMD SOS值平均(2986.34±329.70),Z值平均(-0.12±0.93),其中BMD正常492例,BMD異常137例,學(xué)齡前兒童BMD異常率為21.78%,不同年齡兒童BMD異常率情況見圖1。
2.2 BMD正常組和異常組基線資料比較
女童、1歲以及5~7歲兒童BMD異常率高于男童、2~4歲兒童(P < 0.05);活動時間≤3 h/周、睡眠時間≤8 h/d、日照時間≤7 h/d的學(xué)齡前兒童BMD異常率更高(P < 0.05);挑食、維生素D攝入≤400 U/d、奶制品攝入≤150 mL/d、豆制品攝入≤4次/周、水果攝入≤5次/周的學(xué)齡前兒童BMD異常率更高(P < 0.05)。見表1。
2.3 學(xué)齡前兒童BMD異常的多因素Logistic回歸分析
以是否發(fā)生BMD異常為因變量,表1中差異有統(tǒng)計學(xué)意義的變量作為自變量,變量賦值見表2。多因素Logistic回歸分析顯示,與2歲兒童比較,1歲、5~7歲是BMD異常的獨立危險因素,活動時間、睡眠時間、日照時間、挑食情況、維生素D攝入、奶制品攝入、豆制品攝入、水果攝入是學(xué)齡前兒童BMD異常的影響因素。見表3。
2.4 不同25-(OH)D水平兒童BMD比較
隨著25-(OH)D水平的降低,SOS值逐漸增大,Z值逐漸減小,BMD異常率逐漸增加(P < 0.05)。見表4。
2.5 學(xué)齡前兒童BMD與血清25-(OH)D相關(guān)性分析
經(jīng)Pearson積矩相關(guān)分析,學(xué)齡前兒童SOS與血清25-(OH)D呈負(fù)相關(guān)(r = -0.729,P < 0.05),Z值與血清25-(OH)D呈正相關(guān)(r = 0.761,P < 0.05)。
3 討論
學(xué)齡前兒童處于生長發(fā)育關(guān)鍵時期,養(yǎng)不良以及骨骼發(fā)育遲滯不僅影響生長發(fā)育,也是造成兒童期骨質(zhì)軟化癥、佝僂病的重要原因[8-10]。本研究中,629例學(xué)齡前兒童BMD異常率為21.78%,與西安[11]、廣州[12]等地文獻報道的結(jié)果相近,但是略高于蘇州地區(qū)0~6歲兒童的11.90%[9],可能與不同地區(qū)日照時間長短密切相關(guān)。研究顯示[13],日照時間長的地區(qū)兒童BMD異常率明顯低于日照時間短的地區(qū)。研究[14]表明,1歲以內(nèi)兒童鈣元素的吸收來源主要依靠于食物中的營養(yǎng)物質(zhì)、維生素D制劑或者鈣劑的補充,并且1歲以內(nèi)兒童日照時間以及活動時間相對較短,因此BMD異常率相對較高,本研究得到相似結(jié)果,即1歲以內(nèi)兒童BMD異常率高于2~6歲兒童。本研究還發(fā)現(xiàn),1歲以后兒童BMD異常率隨著兒童年齡的增長,BMD異常率升高,7歲兒童BMD異常率高于1歲兒童,推測該趨勢的發(fā)生原因,可能是因為1歲以后兒童口服維生素D制劑的配合程度較高,且這個年齡段兒童活動時間增加有關(guān),但是隨著年齡的增加,兒童逐漸開始挑食,補充維生素D的頻率減少,且兒童進入幼兒園后減少了戶外活動時間[15]。
女童BMD異常率高于男童,可能與女童相對比較文靜,戶外活動相對減少有關(guān)。1歲以及5~7歲兒童BMD異常率高于2~4歲兒童,可能是因為戶外活動時間減少。此外,活動時間≤3 h/周、睡眠時間≤8 h/d、日照時間≤7 h/d的學(xué)齡前兒童BMD異常率較高,挑食、維生素D攝入≤40 U/d、奶制品攝入≤150 mL/d、豆制品攝入≤4次/周、水果攝入≤5次/周的學(xué)齡前兒童BMD異常率較高,活動時間、睡眠時間、日照時間、挑食情況、維生素D攝入、奶制品攝入、豆制品攝入、水果攝入可能是學(xué)齡前兒童BMD異常的影響因素,提示光照、睡眠、膳食營養(yǎng)均衡與兒童BMD密切相關(guān)。采用多因素Logistic回歸分析校正混雜因素,1歲、5~7歲兒童是BMD異常的獨立危險因素,可能與1歲兒童戶外活動時間減少,維生素D及鈣劑補充不足有關(guān),而5~7歲兒童則是挑食、維生素D制劑和鈣劑補充頻率不高、室外活動減少等有關(guān)?;顒訒r間少是兒童BMD異常危險因素,這與有關(guān)研究結(jié)果一致[16],即活動,尤其是陽光下活動可以使維生素D合成增加并加快鈣、磷吸收,從而提高BMD水平。睡眠時間短也是兒童BMD異常的危險因素,可能是因為睡眠有助于機體分泌生長激素,睡眠不足影響生長激素的分泌,進而影響骨骼生長發(fā)育[17]。日照時間不足是BMD異常危險因素,這也與光照不足導(dǎo)致維生素D合成減少密切相關(guān)。研究表明[18],膳食均衡有助于兒童骨量的增加以及為能量儲備提供物質(zhì)基礎(chǔ),挑食或者飲食不均衡可能導(dǎo)致微量元素或者脂肪等的攝入不足,進而影響B(tài)MD。上述結(jié)果提示,密切監(jiān)測學(xué)齡前兒童BMD,適時補充適量鈣劑和維生素D,增加戶外活動時間,保持良好的睡眠及合理營養(yǎng)膳食。
血清25-(OH)D是反映兒童營養(yǎng)狀況的敏感指標(biāo),有研究表明[19],25-(OH)D水平與BMD呈正相關(guān),25-(OH)D水平越高,BMD含量越豐富。但是,也有研究[4]認(rèn)為BMD僅能反映維生素D不足時的維生素D水平。還有研究[20]發(fā)現(xiàn)25-(OH)D與BMD無明顯關(guān)系。
綜上所述,學(xué)齡前兒童BMD異常率較高,尤其是1歲和5~7歲兒童是高發(fā)人群,定期監(jiān)測學(xué)齡前兒童BMD有重要意義,適量補充維生素D、鈣劑,合理膳食、均衡營養(yǎng)、保證充足睡眠、加強戶外活動是預(yù)防兒童BMD異常,確保骨骼正常生長發(fā)育的重要措施。
[參考文獻]
[1]? Smith GC,Stenhouse EJ,Crossley JA,et al. Early pregnancy levels of pregnancy-associated plasma protein a and the risk of intrauterine growth restriction,premature birth,preeclampsia,and stillbirth [J]. J Clin Endocrinol Metab,2002,87(4):1762-1767.
[2]? Bujold E,Roberge S,Nicoladids KH. Low-dose aspirin for prevention of adverse outcomes related to abnormal placentation [J]. Prenat Diagn,2014,34(7):642-648.
[3]? VanWijk MJ,Kublickiene K,Boer K,et al. Vascular function in preeclampsia [J]. Cardiovasc Res,2000,47(1):38-48.
[4]? Monte S. Biochemical markers for prediction of preeclampsia:review of the literature [J]. J Prenatal Med,2011,5(3):69-77.
[5]? Afrakhteh M,Moeini A,Taheri MS,et al. Uterine Doppler velocimetry of the uterine arteries in the second and third trimesters for the prediction of gestational outcome [J]. Rev Bras Ginecol Obstet,2014,36(1):35-39.
[6]? Jamal A,Abbasalizadeh F,Vafaei H,et al. Multicenter screening for adverse pregnancy outcomes by uterine artery Doppler in the second and third trimester of pregnancy [J]. Med Ultrason,2013,15(2):95-100.
[7]? Nicoladids KH. A model for a new pyramid of prenatal care based on the 11 to 13 weeks′ assessment [J]. Prenat Diagn,2011,31(1):3-6.
[8]? Bujold E,Roberge S,Lacasse Y,et al. Prevention of preeclampsia and intrauterine growth restriction with aspirin started in early pregnancy:a meta-analysis [J]. Obstet Gynecol,2010,116(2Pt1):402-414.
[9]? Roberge S,Nicolaides KH,Demers S,et al. Prevention of perinatal death and adverse perinatal outcome using low dose aspirin:a meta-analysis[J]. Ultrasound Obstet Gynecol,2013,41(5):491-499.
[10]? Roberge S,Nicolaides KH,Demers S,et al. The role of aspirin dose on the prevention of preeclampsia and fetal growth restriction:systematic review and meta-analysis [J]. Am J Obstet Gynecol,2017,216(2):110-120.
[11]? Kafkasl A,Turkcuoglu I,Turhan U. Maternal,fetal and perinatal characteristics of preeclampsia cases with and without abnormalities in uterine artery Doppler indexes [J]. J Matern Fetal Neonatal Med,2013,26(9):936-940.
[12]? Madzli R,Yuksel MA,Imamoglu M,et al. Comparison of clinical and perinatal outcomes in early- and late-onset preeclampsia [J]. Arch Gynecol Obstet,2014,290(1):53-57.
[13]? Martin AM,Bindra R,Curcio P,et al. Screening for pre‐eclampsia and fetal growth restriction by uterine artery Doppler at 11-14 weeks of gestation[J]. Ultrasound in Obstetrics and Gynecology,2001,18(6):4.
[14]? Gómez O,Martínez JM,F(xiàn)igueras F,et al. Uterine artery Doppler at 11-14 weeks of gestation to screen for hypertensive disorders and associated complications in an unselected population [J]. Ultrasound Obstet Gynecol,2005, 26(5):490-494.
[15]? Albaiges G,Missfelder-Lobos H,Lees C,et al. One-Stage Screening for Pregnancy Complications by Color Doppler Assessment of the Uterine Arteries at 23 Weeks? Gestation [J]. Obstet Gynecol,2000,96(4):559-564.
[16]? Martin AM,Bindra R,Curcio P,et al. Screening for preeclampsia and fetal growth restriction by uterine artery Doppler at 11-14 weeks of gestation [J]. Ultrasound Obstet Gynecol,2001,18(6):4.
[17]? Li N,Ghosh G,Gudmundsson S. Uterine artery Doppler in high-risk pregnancies at 23-24 gestational weeks is of value in predicting adverse outcome of pregnancy and selecting cases for more intense surveillance [J]. Acta Obstet Gynecol Scand,2014,93(12):1276-1281.
[18]? Velauthar L,Plana MN,Kalidindi M,et al. First-trimester uterine artery Doppler and adverse pregnancy outcome:a meta-analysis involving 55,974 women [J]. Ultrasound Obstet Gynecol,2014,43(5):500-507.
[19]? D′Silva A,F(xiàn)yfe R,Hyett J. First trimester prediction and prevention of adverse pregnancy outcomes related to poor placentation [J]. Curr Opin Obstet Gynecol,2017,29:367-374.
[20]? Hafner E,Metzenbauer M,Honfinger D,et al. Comparison between three-dimensional placental volume at 12 weeks and uterine artery impedance/notching at 22 weeks in screening for pregnancy-induced hypertension, pre-eclampsia and fetal growth restriction in a low-risk population [J]. Ultrasound Obstet Gynecol,2006,27(6):652-657.