陳小明,姜志鵬,張磊,劉偉,趙堅(jiān),伏利
激光功率對(duì)Ni基合金熔覆層的結(jié)構(gòu)及性能影響
陳小明1, 2, 3,姜志鵬1, 2,張磊1, 2,劉偉1, 4,趙堅(jiān)1, 2,伏利2, 4
(1. 水利部產(chǎn)品質(zhì)量標(biāo)準(zhǔn)研究所,杭州 310012;2. 浙江省水利水電裝備表面工程技術(shù)研究重點(diǎn)實(shí)驗(yàn)室,杭州 310012;3. 北京科技大學(xué),北京 100083;4. 水利機(jī)械及其再制造技術(shù)浙江省工程實(shí)驗(yàn)室,杭州 310012)
本文通過研究激光功率對(duì)Ni基合金熔覆層的組織結(jié)構(gòu)及抗磨耐蝕性能的影響,尋求最佳的激光功率參數(shù),以求獲取冶金結(jié)合良好,耐磨及耐蝕性優(yōu)異的Ni基合金涂層。研究結(jié)果表明,熔覆制備的Ni基合金涂層與基體呈現(xiàn)冶金結(jié)合,無明顯的裂紋及孔洞,其主要成分為γ-(Ni,Fe)固溶體,并在較低的激光功率下伴隨有少量的Cr3C7相出現(xiàn)。隨激光功率增大,熔覆層中的Ni和Cr元素含量下降,F(xiàn)e元素含量升高,熔覆層的厚度從545 μm增加到1 100 μm,組織明顯寬化,并有從樹枝晶向胞狀晶轉(zhuǎn)變的趨勢(shì)。同時(shí),隨激光功率增大,試樣的顯微硬度從508 HV降低到375 HV,耐磨性能隨之下降,耐蝕性反而提升,自腐蝕電流密度從4.347×10?7A/cm2降低到8.257×10?8 A/cm2。
激光功率;γ-(Ni,Fe)固溶體;顯微硬度;耐磨性;耐蝕性
激光熔覆(Laser Cladding),是在基材表面通過不同的添料方式添加熔覆材料,利用高能量密度的激光束使之與基材表面一起快速熔凝,在基材表面形成與其呈冶金結(jié)合的涂層,從而改善基材表面的耐磨、耐蝕、耐熱及抗氧化等性能的一種表面改性技術(shù)[1?5]。激光熔覆具有冷速快(高達(dá)106K/s)、涂層與基體結(jié)合強(qiáng)度高、熱影響區(qū)小、稀釋率低、基材變形小、易于實(shí)現(xiàn)自動(dòng)化、無污染等一系列優(yōu)點(diǎn)[6?8]。Ni基自熔性合金粉末因具有很好的潤(rùn)濕性、耐蝕性、高溫自潤(rùn)滑作用和適中的價(jià)格,使得激光熔覆Ni基合金涂層得到了廣泛的研究與關(guān)注[9?11]。熔覆過程中的工藝參數(shù)主要包含激光功率[12?14]、掃描速度[15?18]、光斑尺寸[19]、搭接率[20]和送粉速度[21]等。其中若掃描速度過快,合金粉末未能完全熔化,就無法獲得優(yōu)質(zhì)的熔覆效果;但若掃描速度過低,則熔池持續(xù)時(shí)間過長(zhǎng),合金粉末燒損嚴(yán)重,同時(shí)基體大量的熱輸入會(huì)導(dǎo)致基材熱變形[15?16]。光斑尺寸的差異會(huì)引起熔覆層表面能量分布的變化,所制備的熔覆層組織結(jié)構(gòu)和性能有較大的差別[22]。目前,激光功率對(duì)熔覆層組織的影響報(bào)道較少,功率對(duì)激光熔覆層的組織及性能的影響尚不明確,因此本研究將著力于解決激光功率對(duì)熔覆層的作用規(guī)律,并為制備高性能的Ni基合金涂層提供優(yōu)化工藝。
選取45#鋼作為基體材料,1550-00#Ni基合金粉末作為熔覆層材料,化學(xué)成分如表1所列。用線切割機(jī)將基材切割成80 mm×40 mm×20 mm尺寸的長(zhǎng)方體試樣,將需熔覆的基材表面用砂紙打磨以去除表面的氧化層,并用無水乙醇清洗吹干后放入烘箱備用。采用德國(guó)LASERLIN公司LDF4000型光纖耦合半導(dǎo)體激光器進(jìn)行同軸送粉和多道搭接激光熔覆,激光功率分別為1.6,2.0,2.4和2.8 kW,掃描速度為10 mm/s,搭接率為50%,送粉率為0.4 r/min,基材預(yù)熱溫度為100 ℃,熔覆過程中用N2作為載氣和保護(hù)氣體。
表1 粉末和基材成分
將熔覆后的試樣用線切割加工成10 mm×10 mm×8 mm尺寸的小樣塊,用美國(guó)Buehler公司生產(chǎn)的全自動(dòng)磨拋機(jī)制取金相試樣,選取王水作為浸蝕液。通過X射線衍射儀(XRD, PANalytical X’Pert Powder)對(duì)Ni基合金涂層進(jìn)行物相分析;用配備牛津能譜儀(EDS)的場(chǎng)發(fā)射掃描電子顯微鏡(SEM, ZEISS SUPRA55)表征Ni基合金涂層的微觀形貌和元素組成及分布。選用HVS?1000型數(shù)顯顯微硬度計(jì)來檢測(cè)熔覆層截面沿厚度方向的顯微硬度,載荷為1.96 N,加載時(shí)間10 s;采用Bruker UMT 3.0摩擦磨損試驗(yàn)機(jī)測(cè)試分析不同激光功率下熔覆層的耐磨性能,并計(jì)算其質(zhì)量損失率。采用RST5200型電化學(xué)工作站測(cè)試分析激光功率對(duì)熔覆層耐蝕性的影響,腐蝕介質(zhì)為質(zhì)量分?jǐn)?shù)為3.5%的NaCl溶液,掃描范圍為開路電位(OCP) 以下1 V至OCP以上0.2 V,掃描速度1 mV/s。采用Tafel曲線外推法獲取自腐蝕電位(corrvs SCE)和自腐蝕電流密度(corr)。
圖1所示為不同激光功率(1.6,2.0,2.4和2.8 kW)下熔覆層的截面形貌圖,包含了熔覆層的頂部(1)、中段(2)和底端(3)。從圖中可以明顯看出,涂層與基體部分呈現(xiàn)出良好的冶金結(jié)合,并沒有明顯的裂紋及孔洞。隨激光功率增大,涂層的整體厚度從545 μm增加到1 100 μm,這是因?yàn)榧す夤β试酱?,單位時(shí)間內(nèi)的能量輸入越大,粉末和基材的熔化量越多,熔覆深度越大,從而導(dǎo)致涂層厚度增加。同時(shí)也可看出,在低功率下制備的熔覆層的組織更為細(xì)小,并隨功率增大,熔覆層組織明顯寬化,且伴隨有從樹枝晶向胞狀晶轉(zhuǎn)變的趨勢(shì)。這是由于隨激光功率增大,試樣熔覆區(qū)吸收的熱量增加,同時(shí)冷卻速度變慢,結(jié)晶速度減小,組織得以長(zhǎng)大寬化,并逐漸形成胞狀晶。激光熔覆過程中,涂層與基體之間的溫度梯度分布可簡(jiǎn)化表示 為[23]:
式中:為溫度梯度分布,K/mm;為材料熱導(dǎo)率,W/(m?K);為合金液相線溫度,K;0為基體預(yù)熱溫度;為激光吸收率;為激光功率,W。隨激光功率增大,試樣熔覆區(qū)吸收的熱量增加,同時(shí)溫度梯度變小,冷卻速度降低,結(jié)晶速度減小,組織得以長(zhǎng)大寬化,并逐漸形成胞狀晶。表2所列為不同激光功率(1.6,2.0,2.4和2.8 kW)下熔覆涂層的EDS數(shù)據(jù),分析結(jié)果發(fā)現(xiàn),隨功率增大,Ni和Cr原子的相對(duì)含量逐漸下降,F(xiàn)e原子的相對(duì)含量上升。
圖2所示為不同激光功率(1.6,2.0,2.4和2.8 kW)下熔覆涂層的X射線衍射分析圖譜,可以看出涂層主要為γ-(Ni,Fe)物相,并在較低的激光功率下出現(xiàn)了Cr3C7的衍射峰。結(jié)合EDS結(jié)果分析,激光熔覆層組織中枝晶部分為γ-(Ni,Fe)固溶體,Cr3C7主要出現(xiàn)在枝晶間的灰色區(qū)域。由于Ni與γ-Fe同屬于Fm3m空間群于面心立方結(jié)構(gòu),因此可以互熔形成γ-(Ni,Fe)固溶體[24?25],即Ni先在γ-Fe表面形成固溶體晶核,然后不斷吸收熔池中的Ni原子,形成富Ni的γ-(Ni,Fe)固溶體。低功率下Cr3C7衍射峰的出現(xiàn)也印證了EDS的結(jié)果,即在低功率下的涂層中Cr的含量大于高功率下的Cr含量。
圖3所示為不同激光功率下熔覆層和基體部分的顯微硬度,可以看出,熔覆層的硬度均高于基體部分的硬度,并且在低功率下兩者差異尤為顯著。功率為1.6 kW時(shí)所制備的熔覆層的顯微硬度為508 HV,約是基體的1.6倍。隨激光功率增大,熔覆層的硬度反而下降,這是因?yàn)樵诘凸β氏掠操|(zhì)相Cr3C7的生成使得硬度增大,同時(shí)隨功率增大,涂層內(nèi)部組織從樹枝晶向胞狀晶的轉(zhuǎn)變也會(huì)影響硬度。圖4所示為不同激光功率下熔覆試樣經(jīng)摩擦磨損試驗(yàn)后的質(zhì)量損失率,從圖中可以看出經(jīng)過熔覆后的試樣的質(zhì)量損失率顯著低于基體本身,表明熔覆的Ni基合金涂層可大幅提高材料的耐磨性。并且隨激光功率增大,試樣的質(zhì)量損失率增大,這可歸因于在較低功率下,硬質(zhì)相Cr3C7提升了試樣本身的硬度,增強(qiáng)了其耐摩擦磨損性能。
圖1 不同激光功率下的熔覆層截面SEM形貌
(a) 1.6 kW; (B) 2.0 kW; (C) 2.4 kW; (D) 2.8 kW(A1), (B1), (C1), (D1) are the top parts of (A), (B), (C), (D) respectively; (A2), (B2), (C2), (D2) are the middle parts of(A), (B), (C), (D) respectively; (A3), (B3), (C3), (D3)are the bottom parts of (A), (B), (C), (D) respectively
表2 不同激光功率下熔覆層的元素含量
圖2 不同激光功率下的熔覆層XRD物相分析
圖3 不同激光功率下的熔覆層與基材的平均顯微硬度
圖5為不同激光功率下熔覆試樣在質(zhì)量分?jǐn)?shù)為3.5%NaCl溶液中的Tafel曲線,通過Tafel曲線線性外推法可以求出自腐蝕電位和自腐蝕電流密度,結(jié)果如表3所列。從圖表中可以看出,基體部分的自腐蝕電位遠(yuǎn)小于熔覆試樣,而自腐蝕電流遠(yuǎn)大于熔覆試樣,表明熔覆試樣的耐蝕性遠(yuǎn)優(yōu)于基體的耐蝕性。隨激光功率增大,熔覆試樣的自腐蝕電位變大,表明試樣的自腐蝕傾向減??;與此同時(shí)試樣的自腐蝕電流密度減小,表明試樣的腐蝕速率下降。
圖4 不同激光功率下的熔覆層經(jīng)摩擦磨損后的質(zhì)量損失率
圖5 不同激光功率下熔覆試樣在NaCl溶液中的Tafel曲線
從上述結(jié)果中可以發(fā)現(xiàn),試樣的耐蝕性隨激光功率增大而提高,但2.4 kW和2.8 kW時(shí)的耐蝕性差異不明顯。分析認(rèn)為,當(dāng)激光功率相對(duì)較低時(shí),一方面熔覆區(qū)域內(nèi)輸入能量少,Ni基合金粉末可能未能完全熔化,致使沒有充分發(fā)揮Ni基涂層的耐蝕性;另一方面,在較低激光功率下,涂層中存在的少量Cr3C7硬質(zhì)相與γ-(Ni,Fe)固溶體存在的電位差,導(dǎo)致了腐蝕電化學(xué)微電池的形成,從而導(dǎo)致耐蝕性不如較高激光功率下的涂層。
表3 不同激光功率下Tafel曲線的擬合結(jié)果
1) 熔覆的Ni基合金涂層與基體呈現(xiàn)冶金結(jié)合,無明顯的裂紋及孔洞,涂層的主要成分為γ-(Ni,Fe)固溶體,并在較低激光功率下出現(xiàn)少量的Cr3C7相。
2) 隨激光功率增大,熔覆層的厚度從545 μm增加到1 100 μm,熔覆組織寬化,并伴隨有從樹枝晶向胞狀晶轉(zhuǎn)變的趨勢(shì)。
3) 隨激光功率增大,熔覆層中的Ni和Cr元素含量下降,F(xiàn)e元素含量上升,熔覆層的顯微硬度從508 HV下降至375 HV,摩擦磨損性能下降,耐蝕性提升,自腐蝕電流密度從4.347×10?7A/cm2降低到8.257× 10?8 A/cm2。
[1] WENG Fei, CHEN Chuanzhong, YU Huijun. Research status of laser cladding on titanium and its alloys: A review[J]. Materials & Design, 2014, 58(1): 412?425.
[2] LIU Jianli, YU Huijun, CHEN Chuanzhong, et al. Research and development status of laser cladding on magnesium alloys: A review[J]. Optics and Lasers in Engineering, 2017, 93(2): 195?210.
[3] CHEN Jianming, GUO Chun, ZHOU Jiansong. Microstructure and tribological properties of laser cladding Fe-based coating on pure Ti substrate[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(9): 2171?2178.
[4] FENG Shurong, TANG Haibo, ZHANG Shuquan, et al. Microstructure and wear resistance of laser clad TiB-TiC/ TiNi-Ti2Ni intermetallic coating on titanium alloy[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(7): 1667?1673.
[5] 馬海波, 張維平. 鈦合金表面激光熔覆鈷基復(fù)合涂層的組織和性能[J]. 稀有金屬材料與工程, 2010, 39(12): 2189?2192. MA Haibo, ZHANG Weiping. Microstructure and properties of Co-based alloy laser clad layer on titanium alloy surface[J]. Rare Metal Materials and Engineering, 2010, 39(12): 2189?2192.
[6] 張曉偉, 劉洪喜, 蔣業(yè)華, 等. Ti6Al4V合金表面激光熔覆功能復(fù)合涂層研究進(jìn)展[J]. 稀有金屬材料與工程, 2012, 41(1): 178?183. ZHANG Xiaowei, LIU Hongxi, JIANG Yehua, et al. Research progress of functional composite coatings on Ti6Al4V alloy surface prepared by laser cladding technique[J]. Rare Metal Materials and Engineering, 2012, 41(1): 178?183.
[7] QUAZI M M, FAZAL M A, HASEEB A S M A, et al. Effect of rare earth elements and their oxides on tribo-mechanical performance of laser claddings: A review[J]. Journal of Rare Earths, 2016, 34(6): 549?564.
[8] 陳小明, 王海金, 周夏涼, 等. 激光表面改性技術(shù)及其研究進(jìn)展[J]. 材料導(dǎo)報(bào), 2018, 32(1): 341?344. CHEN Xiaoming, WANG Haijin, ZHOU Xialiang, et al. Laser surface modification technology and research progress[J]. Materials Review, 2018, 32(1): 341?344.
[9] 高陽(yáng), 佟百運(yùn), 梁勇. 激光熔敷Ni基合金涂層的結(jié)構(gòu)與性能[J]. 材料研究學(xué)報(bào), 2003, 17(1): 87?91. GAO Yang, TONG Baiyun, LIANG Yong. Investigation on structure and properties of laser remelting Ni-base alloy coatings[J]. Chinese Journal of Materials Research, 2003, 17(1): 87?91.
[10] 王存山, 夏元良, 李剛, 等. 寬帶激光熔覆Ni基合金涂層結(jié)合區(qū)組織結(jié)構(gòu)[J]. 應(yīng)用激光, 2001, 21(2): 88?90. WANG Cunshan, XIA Yuanliang, LI Gang, et al. Microstructure of bonding zone of Ni-based alloy coating produced by broad-beam laser cladding[J]. Applied Laser, 2001, 21(2): 88? 90.
[11] 金君, 董晨竹, 徐東, 等. 電火花沉積Ni基合金涂層的摩擦磨損特性[J]. 表面技術(shù), 2011, 40(6): 32?34. JIN Jun, DONG Chenzhu, XU Dong, et al. Tribological properties of Ni-based coating prepared by electrospark deposition[J]. Surface Technology, 2011, 40(6): 32?34.
[12] 李剛, 侯俊英, 劉麗, 等. 激光熔覆Ni基非晶復(fù)合涂層組織結(jié)構(gòu)及性能研究[J]. 表面技術(shù), 2010, 39(4): 15?17. LI Gang, HOU Junying, LIU Li, et al. Study on microstructure and properties of the Ni-based amorphous composite coating prepared by laser cladding[J]. Surface Technology, 2010, 39(4): 15?17.
[13] YE Xiaoyang, BAE Heehun, SHIN Y C, et al. In situ synthesis and characterization of Zr-based amorphous composite by laser direct deposition[J]. Metallurgical and Materials Transactions A, 2015, 46(9): 4316?4325.
[14] 達(dá)則曉麗, 朱彥彥, 李鑄國(guó). 激光功率對(duì)激光熔覆Fe-Co-B- Si-Nb涂層組織和性能的影響[J]. 中國(guó)表面工程, 2012, 25(3): 52?56. DAZE Xiaoli, ZHU Yanyan, LI Zhuguo. Effect of laser power on microstructure and properties of laser cladding Fe-Co- B-Si-Nb coatings[J]. China Surface Engineering, 2012, 25(3): 52?56.
[15] WANG Yanfang, LU Qinglong, XIAO Lijun, et al. Laser cladding Fe-Cr-Si-P amorphous coatings on 304L stainless[J]. Rare Metal Materials and Engineering, 2014, 43(2): 274?277.
[16] WANG Cunshan, CHEN Yongzhe, LI Ting, et al. Composition design and laser cladding of Ni-Zr-Al alloy coating on the magnesium surface[J]. Applied Surface Science, 2009, 256(5): 1609?1613.
[17] 柳吉華, 王存山. 掃描速度對(duì)激光熔覆Ni-Zr-Al合金涂層組織性能的影響[J]. 應(yīng)用激光, 2011, 31(5): 400?404. LIU Jihua, WANG Cunshan. Influence of scanning velocity on microstructure and properties of laser clad Ni-Zr-Al alloy coatings[J]. Applied Laser, 2011, 31(5): 400?404.
[18] 董丹陽(yáng), 張濱, 陳歲元, 等. 掃描速度對(duì)硅鋼表面激光熔覆層組織和硬度的影響[J]. 東北大學(xué)學(xué)報(bào)(自然科學(xué)版), 2008, 29(6): 849?852. DONG Danyang, ZHANG Bin, CHEN Suiyuan, et al. Effect of scanning speed on microstructure and microhardness of laser cladding of silicon steel[J]. Journal of Northeastern University (Natural Science), 2008, 29(6): 849?852.
[19] 李嘉寧. 激光熔覆技術(shù)及應(yīng)用[M]. 北京: 化學(xué)工業(yè)出版社, 2015. LI Jianing. Laser Cladding Technology and Application[M]. Bejing: Chemical Industry Press, 2015.
[20] 張帥, 董霞, 王恪典, 等. 搭接率對(duì)激光重熔氧化鋯涂層結(jié)構(gòu)及熱震性能的影響[J]. 西安交通大學(xué)學(xué)報(bào), 2018, 52(10): 72?79. ZHANG Shuai, DONG Xia, WANG Kedian, et al. Effect of overlap rate on microstructure and thermal shock properties of laser re-melted yttria stabilized zirconia coating[J]. Journal of Xi’an Jiaotong University, 2018, 52(10): 72?79.
[21] 王志堅(jiān), 董世運(yùn), 徐濱士, 等. 激光熔覆工藝參數(shù)對(duì)金屬成形效率和形狀的影響[J]. 紅外與激光工程, 2010, 39(2): 315? 319. WANG Zhijian, DONG Shiyun, XU Binshi, et al. Effect of laser cladding processing parameters on metal forming efficiency and geometry[J]. Infrared and Laser Engineering, 2010, 39(2): 315? 319.
[22] 柳吉華, 王存山. 掃描速度對(duì)激光熔覆Ni-Zr-Al合金涂層組織性能的影響[J]. 應(yīng)用激光, 2011, 31(5): 400?404. LIU Jihua, WANG Cunshan. Influence of scanning velocity on microstructure and properties of laser clad Ni-Zr-Al alloy coatings[J]. Applied Laser, 2011, 31(5): 400?404.
[23] ROSENTHAL D.The theory of moving source of heat and its application to metal treatments[J].Transactions of the ASME, 1946, 86(43): 849?853.
[24] XIE Guozhi, LIN Xiaoyan, WANG Keyu, et al. Corrosion characteristeristics of plasma-sprayed Ni-coated WC coatings comparison with different post treatment[J]. Corrosion Science, 2007, 49(2): 662?671.
[25] LIANG Gongying, WONG T T, MacAlpine J M K, et al. A study of wear resistance of plasma-sprayed and laser-remelted coatings on aluminium alloy[J]. Surface and Coatings Technology, 2007, 127(2): 233?238.
Effects of laser power on microstructure and properties of Ni-based alloy cladding layers
CHEN Xiaoming1, 2, 3, JIANG Zhipeng1, 2, ZHANG Lei1, 2, LIU Wei1, 4, ZHAO Jian1, 2, FU Li2, 4
(1. Standard & Quality Control Research Institute, Hangzhou 310012, China;2. Key Laboratory of Surface Engineering of Equipments for Hydraulic Engineering of Zhejiang Province, Hangzhou, 310012, China; 3. University of Science & Technology Beijing, Beijing 100083, China; 4. Hydraulic Machinery and Remanufacturing Technology Engineering Laboratory of Zhejiang Province, Hangzhou 310012, China)
The effects of laser power on the microstructure and wear-resistant and corrosion-resistant properties of Ni-based alloy cladding coatings were studied in this paper, in order to get the optimal laser power parameters and obtain Ni-based alloy coatings with good metallurgical bonding and excellent wear resistance and corrosion resistance. The results showed that Ni-based alloy coating prepared by laser cladding is metallurgically bonded to the substrate without obvious cracks and holes, and the main composition of the Ni-based alloy coating is γ-(Ni,Fe) solid solution, and a small amount of Cr3C7phase appeared in relatively lower power. With increasing laser powers, the element contents of Ni and Cr in the cladding layers decreased, the element content of Fe in the cladding layers increased, and the thickness of cladding layers increased from 545 μm to 1 100 μm, microstructure was coarsened obviously and the transition from dendrites to cellular dendrites tendency. Meanwhile, with increasing laser powers, the microhardness decreased from 508 HV to 375 HV, and the wear resistance of the specimens decreased, but the anti-corrosion resistance was enhanced, the corrosion current density decreased from 4.347×10?7A/cm2to 8.257×10?8 A/cm2.
laser powers; γ-(Ni,Fe) solid solution; microhardness; wear resistance; anti-corrosion resistance
TG174.44
A
1673-0224(2019)04-315-06
浙江省一帶一路國(guó)際科技合作項(xiàng)目(2019C04019);浙江省公益性項(xiàng)目(2017C37048,2018C37029)
2019?01?08;
2019?03?05
陳小明,高級(jí)工程師。電話:0571-880871155;E-mail: xiaoming840@163.com
(編輯 高海燕)