蔣贇,黃國(guó)幸,鄭凌虹,劉立斌,章立鋼
Sm-Sn二元體系的熱力學(xué)優(yōu)化
蔣贇1,黃國(guó)幸2,鄭凌虹2,劉立斌2,章立鋼2
(1. 湖南蘇試廣博檢測(cè)技術(shù)有限公司,長(zhǎng)沙 410000;2. 中南大學(xué)材料科學(xué)與工程學(xué)院,長(zhǎng)沙 410083)
在綜合評(píng)估Sm-Sn體系實(shí)驗(yàn)數(shù)據(jù)的基礎(chǔ)上,采用CALPHAD方法優(yōu)化和計(jì)算該二元合金體系的平衡相圖。液相采用置換式溶體溶液模型,化學(xué)計(jì)量比中間化合物采用Neumann-Kopp規(guī)則描述其熱力學(xué)函數(shù)。通過(guò)優(yōu)化,得到一組合理自洽的熱力學(xué)參數(shù),利用該熱力學(xué)參數(shù)計(jì)算的相圖與文獻(xiàn)報(bào)道的實(shí)驗(yàn)信息吻合較好。計(jì)算所得1 203 K下的液相混合焓以及295 K下的固相形成焓也與已有的熱化學(xué)數(shù)據(jù)符合良好。
Sm-Sn;相圖計(jì)算;熱力學(xué)優(yōu)化;CALPHAD;二元合金
Mg-Sn基系是目前新型抗蠕變Mg合金開(kāi)發(fā)的一個(gè)熱門體系[1?3]。研究表明Mg中添加合金元素Sn,能使鎂鑄態(tài)組織中粗大的柱狀晶轉(zhuǎn)化為均勻的等軸晶,有效細(xì)化晶粒的同時(shí)形成顯微硬度高、熔點(diǎn)高、熱穩(wěn)定性好的Mg2Sn顆粒相[1]。相對(duì)于常用的Mg-Al和Mg-Zn等鎂合金,Mg-Sn二元合金的凝固區(qū)間小,有利于控制鑄態(tài)組織的結(jié)構(gòu)。稀土元素也是抗蠕變Mg合金中重要的添加組元[4?7]。研究者們認(rèn)為Mg-Sn- Re系合金性能與其晶體結(jié)構(gòu)、熱力學(xué)穩(wěn)定性以及相轉(zhuǎn)變點(diǎn)密切相關(guān),而相轉(zhuǎn)變溫度、熱力學(xué)穩(wěn)定性等信息都是從相圖以及相關(guān)熱力學(xué)數(shù)據(jù)中所提取[8?11]。因此,較可靠的熱力學(xué)信息對(duì)于進(jìn)一步開(kāi)發(fā)新型抗蠕變Mg合金非常重要。本文擬在實(shí)驗(yàn)數(shù)據(jù)評(píng)估的基礎(chǔ)上,對(duì)Mg-Sn-RE體系中的邊際Sm-Sn二元系進(jìn)行熱力學(xué)優(yōu)化,以構(gòu)建多元Mg-Sn-RE熱力學(xué)數(shù)據(jù)庫(kù),用于合金的設(shè)計(jì)與開(kāi)發(fā)。
PERCHERNO[12]最早采用DSC(differential scanning calorimetry,差熱分析)、光學(xué)顯微鏡(optical microscopy)和XRD(X-ray diffraction,X射線衍射)等方法,研究了Sm-Sn二元體系相圖,結(jié)果表明Sm-Sn二元體系中純組元之間沒(méi)有固溶度,并確定了Sm5Sn3(同成分熔化溫度為1 778 K),Sm4Sn3,Sm5Sn4,Sm11Sn10,Sm2Sn3,SmSn2和SmSn3(同成分熔化溫度為1 363 K)相的存在。同時(shí)PERCHERON[12]通過(guò)實(shí)驗(yàn)確定了Sm-Sn二元體系的3個(gè)共晶反應(yīng)溫度,分別為906 ℃時(shí)的L(11%Sn)?βSm+Sm5Sn3、1 080 ℃時(shí)的L(67%Sn) ?Sm2Sn3+SmSn3以及229 ℃時(shí)的L(99.8%Sn)?Sm- Sn3+(Sn)(Sn含量均為摩爾分?jǐn)?shù)),但沒(méi)有測(cè)定SmSn2包晶反應(yīng)溫度。在PERCHERO的實(shí)驗(yàn)基礎(chǔ)上,BORZONE 等[13]完整地評(píng)估了Sm-Sn二元體系相圖,評(píng)估后的相圖在MASSALSK等[14]確定的相圖中被采納。Sm-Sn二元體系相圖中各相的晶體結(jié)構(gòu)信息如表1所列。PERCHERNO[12]測(cè)定了Sm5Sn3,Sm2Sn3和SmSn3相在295 K下的形成焓,BERRADA等[15]測(cè)定了Sm-Sn體系在1 203 K下富Sn端的液相混合焓。由于在Sm-Sn二元體系相圖中SmSn2相的反應(yīng)溫度及狀態(tài)均尚不清楚,因此在本工作中該相暫不考慮。
表1 Sm-Sn體系的晶體結(jié)構(gòu)參數(shù)[14]
相中純組元(=Sm,Sn)的摩爾吉布斯自由能表示如下:
液相采用基于原子隨機(jī)混合的置換式溶體溶液模型,其摩爾吉布斯自由能表達(dá)式為:
由于中間化合物SmSn的成分范圍極窄,本研究中將其作為化學(xué)計(jì)量比相處理,采用NEUMANN- KOPP規(guī)則進(jìn)行表述。其吉布斯自由能表示為:
采用Pandat軟件包中的PanOptimizer模塊[17],對(duì)Sm-Sn系中各相的參數(shù)進(jìn)行優(yōu)化,結(jié)果列于表2。由于已有可靠的液相熱力學(xué)數(shù)據(jù),如液相混合焓和活度,首先對(duì)液相參數(shù)進(jìn)行優(yōu)化,得到一套較理想的液相參數(shù)?;谠撘合鄥?shù),根據(jù)已有液相線實(shí)驗(yàn)數(shù)據(jù)以及相平衡信息,確定中間相的參數(shù)。在優(yōu)化過(guò)程中,對(duì)更可靠的相平衡實(shí)驗(yàn)數(shù)據(jù)賦予較高的權(quán)重,以保證優(yōu)化結(jié)果更符合實(shí)驗(yàn)事實(shí)。
表2 優(yōu)化的Sm-Sn二元系各相的熱力學(xué)參數(shù)
利用表2所列熱力學(xué)參數(shù)以及SGTE數(shù)據(jù)庫(kù)中的純組元吉布斯自由能,計(jì)算出Sm-Sn體系的平衡相圖,如圖1所示。表3所列為Sm-Sn二元系零變量反應(yīng)的計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù),對(duì)比表中數(shù)據(jù)可知本文作者計(jì)算的各零變量反應(yīng)溫度與文獻(xiàn)[14]報(bào)道的實(shí)驗(yàn)測(cè)得的反應(yīng)溫度誤差在±3 K之內(nèi),計(jì)算的成分值與實(shí)驗(yàn)測(cè)定值相差不到1%(摩爾分?jǐn)?shù)),說(shuō)明本研究的計(jì)算結(jié)果與文獻(xiàn)報(bào)道的實(shí)驗(yàn)數(shù)據(jù)較符合。圖2和圖3所示分別為計(jì)算所得的液相混合焓和固相化合物在300 K下的形成焓與實(shí)驗(yàn)數(shù)據(jù)的對(duì)比。從圖中可看出優(yōu)化計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)相吻合,誤差在合理的范圍內(nèi)。
表3 Sm-Sn體系零變量反應(yīng)及反應(yīng)溫度的計(jì)算結(jié)果與實(shí)驗(yàn)結(jié)果[14]對(duì)比
圖1 計(jì)算的 Sm-Sn相圖與實(shí)驗(yàn)數(shù)據(jù)[14]
圖2 1 023 K下Sm-Sn體系中液相的混合焓計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)[15]
圖3 300 K下Sm-Sn體系化合物形成焓的計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)[12]
1) 系統(tǒng)評(píng)估了Sm-Sn二元系的實(shí)驗(yàn)數(shù)據(jù),并結(jié)合已有液相固相熱化學(xué)信息,以及已有液相線實(shí)驗(yàn)數(shù)據(jù)和相平衡信息,對(duì)該體系進(jìn)行熱力學(xué)優(yōu)化。
2) 根據(jù)優(yōu)化所得參數(shù)計(jì)算的相圖和文獻(xiàn)報(bào)道的實(shí)驗(yàn)相圖吻合較好,熱力學(xué)數(shù)據(jù)與實(shí)驗(yàn)數(shù)據(jù)符合良好,計(jì)算所得各化合物的標(biāo)準(zhǔn)形成焓與實(shí)驗(yàn)結(jié)果基本 一致。
[1] LIU Hongmei, CHEN Yungui, TANG Yongbai, et al. The microstructure, tensile properties, and creep behavior of as-cast Mg-1%?10% Sn alloys[J]Journal of Alloys and Compounds, 2007, 440(1): 122?126.
[2] 孫揚(yáng)善, 翁坤忠, 袁廣銀. Sn對(duì)鎂合金顯微組織和力學(xué)性能的影響[J]中國(guó)有色金屬學(xué)報(bào), 1999, 9(1): 55?60. SUN Yangshan, WEN Kunzhong, YUAN Guangyin. Effects of Sn addition on microstructure and mechanical properties of magnesium alloys[J]. The Chinese Journal of Nonferrous Metals, 1999, 9(1): 55?60.
[3] 劉紅梅, 陳云貴, 唐永柏, 等. 熱處理對(duì)Mg-5%Sn合金組織與顯微硬度的影響[J]材料熱處理學(xué)報(bào), 2007. 28(1): 92?95. LIU Hongmei, CHEN Yungui, TANG Yongbo, et al. Effects of heat treatment on microstructure and microhardness of Mg-5wt%Sn alloy[J]. Transactions of Materials and Heat Treatment, 2007. 28(1): 92?95.
[4] 陳君, 李全安, 李肖豐, 等. Sn對(duì)AZ61鎂合金組織和力學(xué)性能的影響[J]鑄造, 2009, 58(2): 151?154. CHEN Jun, LI Quan’an, LI Xiaofeng, et al. Effects of Sn on microstructure and mechanical properties of AZ61 magnesium alloy[J]. Foundry, 2009, 58(2): 151?154.
[5] WEI Shanghai, CHEN Yungui, TANG Yongbai, et al. Compressive creep behavior of Mg-Sn-La alloys[J]Materials Science and Engineering A, 2009, 508(1): 59?63.
[6] LIM H K, SOHN S W, KIM D H, et al. Effect of addition of Sn on the microstructure and mechanical properties of Mg–MM (misch-metal) alloys[J]Journal of Alloys and Compounds, 2008, 454(1): 515?522.
[7] 趙宏達(dá), 任玉平, 裴文利, 等. Mg-Sn-Y三元系富Mg角500 ℃等溫截面的測(cè)定[J]中國(guó)有色金屬學(xué)報(bào), 2010, 20(2): 177?181. ZHAO Hongda, REN Yuping, PEI Wenli, et al. Determination of isothermal section of Mg-riched corner in Mg-Sn-Y ternary system at 500 ℃[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(2): 177?181.
[8] 毛村, 劉立斌, 章立鋼. Bi-Te二元體系的熱力學(xué)優(yōu)化[J]. 粉末冶金材料科學(xué)與工程, 2017, 22(5): 602?607. MAO Cun, LIU Libin, ZHANG Ligang. Thermodynamic optimization of the Bi-Te binary system[J]. Materials Science and Engineering of Powder Metallurgy, 2017, 22(5): 602?607.
[9] 劉敏波, 劉樹(shù)紅, 杜勇. Al-Ce-Ge體系500 ℃相平衡的實(shí)驗(yàn)測(cè)定[J]. 粉末冶金材料科學(xué)與工程, 2018, 23(1): 1?8. LIU Minbo, LIU Shuhong, DU Yong. Experimental investigation of the phase equilibria of the Al-Ce-Ge system at 500 ℃[J]. Materials Science and Engineering of Powder Metallurgy, 2018, 23(1): 1?8.
[10] 李林, 劉立斌, 章立鋼. Ti-Al-Nb三元系1 100 ℃等溫截面的研究[J]. 粉末冶金材料科學(xué)與工程, 2018, 23(4): 341?346. LI Lin, LIU Libin, ZHANG Ligang. Study on isothermal section of Ti-Al-Nb ternary system at 1 100 ℃[J]. Materials Science and Engineering of Powder Metallurgy, 2018, 23(4): 341?346.
[11] 李晗, 劉樹(shù)紅, 杜勇. Co-Ge相圖的實(shí)驗(yàn)研究[J]. 粉末冶金材料科學(xué)與工程, 2016, 21(1): 1?7. LI Han, LIU Shuhong, DU Yong. Experimental investigation of Co-Ge system phase diagram[J]. Materials Science and Engineering of Powder Metallurgy, 2016, 21(1): 1?7.
[12] PERCHERON A, MATHIEU J, TROMBE F. Mesure calorimetrique de la chaleur de dissolution du samarium dans l’etain. Determination de l’enthalpie de formation des composes definis du systeme etain-samarium[J]CR Acad Sci C, 1968, 266: 848?851.
[13] BORZONE G, BORSESE A, FERRO R. On the alloying behaviour of Cerium with Tin[J]. Journal of the Less Common Metals, 1982, 85: 195?203
[14] MASSALSKI T B, OKAMOTO H, SUBRAMANIAN P R, et al. Binary Alloy Phase Diagrams[M]. Ohio, USA: ASM International,1990: 3385?3386.
[15] BERRADA A, CLAIRE Y, El IDEISSI M, et al. Calorimetric investigation on the Pb-Sm and Sn-Sm alloys[J]Journal of Alloys and Compounds, 1997, 260(1): 193?195.
[16] DINSDALE A T. SGTE pure elements database[J]. Calphad, 1991, 15(4): 317?425.
[17] CAO Weisheng, CHEN Shuanglin, ZHANG Fan, et al. Pandat software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation[J]. Calphad, 2009, 33(2): 328?342.
Thermodynamic optimization of the Sm-Sn binary system
JIANG Yun1, HUANG Guoxing2, ZHENG Linghong2, LIU Libin2, ZHANG Ligang2
(1. Hunan Sushi Guangbo Testing Techniques Co., Ltd, Changsha 410000, China; 2. School of Materials Science and Engineering, Central South University, Changsha 410083, China)
Based on the comprehensive evaluation of experimental data of Sm-Sn system, the equilibrium phase diagram of the binary alloy system was optimized and calculated by CALPHAD method. The liquid phase was described by the substitutional solution model, and the thermodynamic functions of stoichiometric intermediate compounds were explained by the Neumann-Kopp rule. Through optimization, a set of thermodynamic parameters with self-consistency are obtained. The phase diagrams calculated by the thermodynamic parameters coincide with the experimental information reported in the literature. The calculated liquid mixing enthalpy in 1 203 K and solid phase formation enthalpy in 295 K are also in good agreement with the existing thermochemical data.
Sm-Sn; phase diagram calculation; thermodynamic assessment; CALPHAD; binary alloy
430.1020
A
1673-0224(2019)04-303-05
國(guó)家自然科學(xué)基金資助項(xiàng)目(51871248)
2019?02?28;
2019?03?29
章立鋼,副教授,博士。電話:0731-88876692;E-mail: ligangzhang@csu.edu.cn
(編輯 湯金芝)